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    In this paper, our main objective is to use a latent variable model and to propose a 

suitable model with features such as a nonlinear fixed covariates and latent variables based 

on different models that could be described both based on mathematical as well as 

structural model. We also used dichotomous (Binary) variables in Non-Linear latent 

variables model for two populations by using Bayesian approach as well as the Gibbs 

sampling method to find the comparison, differences and similarities based on different 

data points and estimate them accordingly. We have also included Hidden continuous 

normal distribution that can be both censored and truncated based on the type and need of 

the moment using which we can screen the different aspects involved in analysing the data 

and further Gibbs sampling method can also be used in the same filtering. It is often used 

in a view to solve the problem related to dichotomous data and accordingly relate it to 

different variables as a continuous normal distribution. We can also make use of various 

inferences derived based on the statistical results that include all the perspectives 

considering the scope of standard errors, most common methods, simplified approaches, 

and highest posterior density problem for testing and so on. All the theories are 

substantiated using real data and the results obtained from them using the OpenBugs 

program.  It’s obvious from the results of DIS that the results of interval censored normal 

distribution was the best, then, the results of interval truncated normal distribution and, 

finally, the results of continuous normal distribution. 
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Latent variable models (LVMs) are a statistical method for modeling a series of correlated data in order to assess the 

correlations between manifest and latent variables (Bollen and Paxton, 1998; Lee, 2007). 

The Bayesian method starts by defining a prior distribution for the parameters that need to be estimated. Without 

referencing the dataset used to estimate the model, the prior represents the researcher's knowledge (Lee, 2007). 

The rapid growth of LVMs is a result of the demand for complex models and the accompanying statistical approaches for 

tackling difficult research problems in a range of fields. The Bayesian technique is built using the Gibbs sampler algorithm 

(Geman and Geman, 1984), where latent variables in multiple populations and concealed continuous normal measurements 

are regarded as hypothetical missing data. Conjugate priors are employed for the structural parameters whereas non-

informative priors are used for the thresholds (cut points with equally and unequally spaced distances). The primary 

objective of this study is to present a Bayesian approach for the analysis of two populations nonlinear LVMs with 

dichotomous variables and covariates. 

Many academics have suggested models in recent years that incorporate nonlinear relationships between the manifest, and 

latent variables. Several of these publications were suggested by Lee and Song (2003), Lee and Song (2005), Lee (2006), 

Lee and Tang, (2006(, Cai et al. (2008(, Lee et al. (2009), Lee et al. (2010). 

A specific methodology for using the Bayesian approach in factor analysis is provided by Song and Lee (2002). They 

developed an analytical model that uses joint Bayesian estimations for the component scores and structural parameters in 

relation to the established restrictions, enabling the simultaneous determination of numerous findings. This system has been 

shown to be effective in producing calculations of these estimations because it combines the Gibbs model and Metropolis-

Hastings algorithm. 

The maximum likelihood method was applied by Song and Lee (2006) to multi-sample nonlinear structural equation 

models with missing continuous and dichotomous data.  

A Bayesian nonlinear structural equation model was created by Song and Lee (2006) using linear fixed covariate and latent 

variables in the measurement model and nonlinear fixed covariate and latent variables in the structural model. Mixed 

continuous and dichotomous data are used in this study, and a concealed continuous normal distribution (a truncated 

normal with unknown parameters) is presented to overcome the dichotomous data problem. In order to solve the issue,  

Lee (2007) used an underlying latent continuous normal distribution (a truncated normal distribution with unknown 

parameters) in Bayesian multi-sample nonlinear structural equation models with dichotomous variables. Additionally, the 

Gibbs sampling method was employed to estimate the parameter. The ordered categorical variables were handled as a 

continuous normal distribution in Lu et al. (2012) Bayesian study of multi-sample nonlinear structural equation models 

with application to behavioural finance. The multi-sample analytic method is essential in many applications, such as cross-

cultural research. Nonlinear effects, such as quadratic and interaction effects between the covariates and latent variables, 

are frequently essential for constructing the main theory.  

The document has the following structure. The model is described in Section 2 of the document.  The Bayesian analysis is 

described in Section 3. The model comparison using DIC is described in Section 4. A case study may be found in Section 

5. Section 6 summarizes the results and the discussion, while Section 7 offers conclusions and recommendations. 

 

2. Model Description 

The suggested latent variable model for this case include both latent variables and linear covariates in the measurement 

equation. The structural model also includes latent nonlinear variables and nonlinear covariates. This LVM is taken into 

account. 

           

( ) ( ) ( ) ( ) ( ) ( ), 1,...,g g g g g g

i i i i i n   y A c  
                                                                    

(1) 

where 
( )g

iy 1p   is a manifest variable with dichotomous data that has been established as a random vector, 

( )

1( )g p mA is a vector of linear covariates, and 
 

( )

1( 1)g

i m c  is a vector of dichotomous covariates, since 

( ) ( )g p q is a matrix with unknown parameters, it is frequently referred to as the factor loading matrix. A random 

vector of latent variables is shown in 
( )g

i  1q  , while a random vector of residuals is shown in 
( )g

i 1p  . 
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This leads to the assumption that the outcome of 
( ),g

i sy  is independent, and that 
( )g

i  is then distributed independently 

as 
( )[ , ]gN 0  . Additionally, 

( )g

i  has an independent distribution as 
( )

[ , ]
g

N 0  , where 
  is a diagonal matrix with 

1,..., p    as its diagonal components. 

Furthermore, it has been found that 
( )g

i and 
( )g

i
 
in this instance are both independent. A latent vector,

i , is separated 

into ( , )T T T

i i , where vectors  
1( 1)i q  and

2( 1)i q  are both present, in order to implement more complex 

mathematical situations. 

The vectors of the exogenous latent variables are 
2( 1)i q  and the endogenous latent variables are 

1( 1)i q  , 

respectively. 

The vector of dichotomous variables on 
i is used to estimate the probable significant causal impact of 

2( 1)i m x . But if 

ix is non-normal, then 
i must likewise be non-normal. 

The following latent variable model gives the definition of the structural equation: 

        

( ) ( ) ( ) ( ) ( ) ( )( , ) 1,...,g g g g g g

i i i i i n  B F x                                                                               (2) 

 

A matrix of unknown parameters is represented by 
( )

1 1( )g q qB , a vector-valued function with differentiable functions is 

represented by
 

( ) ( )( , )g g

i i F x   
( ) ( )

1( ( , ),...,g g

i if x  ( ) ( )( , ))g g T

r i if x  , and an unknown parameter matrix is 

represented by 1,..., rf f , and 
( )

1( )g q r . For a simple expression, (2) can be written as: 

( ) ( ) ( ) ( ) ( ) ( )( , , )
i i i i i

g g g g g g G x      

where 
( )

1( 1)
i

g q  , 
( ) ( ) ( )( , )g g g B  , and 

( ) ( ) ( )( , , )g g g

i i i G y x  ( ) ( ) ( )( , ( , ) )
Tg g g T T

i i iF x  are error measurement 

vectors. 

It is necessary to first suppose that 
( )g

i is distributed as [ , ]N 0  , then that 
( )g

i is distributed as [ , ]N 0  , and that 

  is a representation of a diagonal matrix with the entries 1 1,..., q   and for which 
( )g

i and 
( )g

i  are independent of 

each other. 

 

An illustration of two populations LVM defined in (2) that are connected to  

( ),i i 1 2( , ) ,T

i i i  and 1( )T

i ixx  is: 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 1 2 1 1 3 1 2 4 1 1 2 5 1 1 2 1 1 2 2i i i i i i i i i i i i i ix x x x x                        

(1) (1) (1) (1) (1) (1) (1)

3 1 1 4 2 2i i i i i                                                                                                                                                          

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

1 1 2 1 1 3 1 2 4 1 1 2 5 1 1 2 1 1 2 2i i i i i i i i i i i i i ix x x x x                        

(3) 
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(2) (2) (2) (2) (2) (2) (2)

3 1 1 4 2 2i i i i i                                                                                                                                                 

Here,
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 2 3 4 5 1 2 3 4( , , , , , , , , ),          
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

1 2 3 4 5 1 2 3 4( , , , , , , , , ),          

and 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 2 1 1 2 1 1 2 1 2 1 1 2 2( , ) ( , , , , , , , , )g g g g g g g g g g g g g g g g g g g T

i i i i i i i i i i i i i i i i i i iF x x x x x           x 
 

where g = 1; 2. Further, 
ix and 

i  are both quadratic terms of elements. As 
ix , may be drawn from the arbitrary 

distributions for covariates that are dichotomous data.  

Furthermore, let 
kA and 

k to stand for the k
th

 row for each A and . 

So, let ( , )T T T

k k k     to be a partition of 
k which corresponds with ( , )T T T

i i i   , which is also a partition. If 

follows that ( ) 0,iE   and 
1( ) ( , )i i iI B F x    , it follows from (1) that 

 

             

1( ) [( ) ] ( ( , )).ik k i k i k i k i iA c E A c I B E F x                                                                          

But when employed in a practical application scenario, ( , )i iF x   is typically not complex, and as a result, it can be 

anticipated that ( ( , ) )i iE F x   will likewise be very straightforward, making it easy to calculate
ik . 

It is also beneficial to investigate this indirect method for modeling covariates, similar to those illustrated above, by first 

adding 
iy with

ix , and then by managing each component of the latter as if it were an exogenous latent variable that could 

be measured accurately using a single indicator. 

 At most basic level, a dichotomous variable ( )g

mz can be defined according to its underlying latent continuous random 

variable ( )g

my by: 

  

( ) ( )
1, 1, 1

1 1

( ) ( )
, , 1

( ) ( ) ( )
( ) 1
1

( )

( ) ( ) ( ) ( )

g g
z z

g g
s z s zs s

g g g
g

g

g g g g

s s

if

 

 





  
   
       
     

 

M M

y
z

z

z y
                                                                                                             

In order that 
( ) ( ) ( ) ( )

,1 ,2 ,b ,b 1{ ... }
m m

g g g g

m m m m           the set of threshold values that define the specified 

categories are also true, and the number of categories for the dichotomous variable ( )g

mz is represented by 
mb . 

We will utilize hidden continuous normal distribution ( )g

mQ (a truncated normal distribution with known parameters) to 

solve the issue of dichotomous data in covariates
( )gx . Thus, it follows: 

(4) 

(5) 

(6) 
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( ) ( )
1, 1, 1

1 1

( ) ( )
, , 1

( ) ( ) ( )
( ) 1
1

( )

( ) ( ) ( ) ( )

g g
x x

g g
s x s xs s

g g g
g

g

g g g g

s s

if

 

 





  
   
       
     

 

M M

Q
x

x

x Q
                                                                                     

However, it should be noted that the number of thresholds (cut points) for each group is equal for every dichotomous 

variable. However, we employ both equally and unequally categorized distances as our criteria. 

3.  The Bayesian Analysis  

Let 
( )g serve as an unknown parameter vector in the previously mentioned model, and let 

( )g serve as an unknown 

threshold vector for the dichotomous variables that belong to the g
th

 group. 

This was chosen because a study of several populations typically identifies a certain type of parameter in 
( )g as an 

invariant within group models. The following limitations, for instance, apply to limits on cut points: 

The thresholds on the model are typically implemented as 
(1) ( ) (1) ( )... , ...G G        and/or 

(1) ( )... G   . 

Consequently, we may accept some common parameters while evaluating the data, 
(1) ( )... G   . Allow   to be a 

vector that contains all of the unknown separate parameters 
(1) ( )... G   , and allow  to be a vector that contains 

all of the unknown thresholds. 

The Gibbs sampler is used to create the Bayesian estimate of   and  . 

Let the dichotomous data that were observed be 
( ) ( ) ( )

1( ,..., )
g

g g g

NZ z z and (1) (G)( ,..., )Z Z Z . Let 
( )g

Z and Z, be 

the latent continuous measurements in ( ) ( ) ( )

1( ,..., )
g

g g g

NY y y and (1) (G)( ,..., )Y Y Y , respectively. 

After that, add Y to the observed data in the posterior analysis. The problem will be easier to handle after Y has been 

defined since all the data is taken into consideration and is deemed continuous. Furthermore, assume that 

( ) ( ) ( )

1( ,..., )
g

g g g

N   and 
(1) (G)( ,..., )   represent the latent variable matrix. 

Significantly reduced complications occur from the nonlinear connections between the latent variables. As a result, by 

enhancing the data, problems related to the model's more intricate components can be resolved. Through posterior analysis, 

( , )Y   may be added to (Z), which stands for the collection of observed data. 

We will also show how the joint posterior distribution [ , , , | ]Y Z   looks. The Geman and Geman (1984) Gibbs 

sampler may be used to generate a set of observations from the associated joint posterior distribution. 

As a consequence, using the created sample of data, a number of conventional inferences may be used to determine the 

Bayesian answer. Additionally, we may build a collection of sample observations from these conditional distributions 

[ | , , , ]Y Z   , [ , | , , ]Y Z    and[ | , , , ]Y Z   using the Gibbs sampler and the iteration technique. 

We may establish the non-informative prior to calculating  in a method similar to how previous cut point issues were 

solved, so that the corresponding prior distribution is comparable to the constant. 

(7) 
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According to the different group models, the conditional distribution [ | , , , ]Y Z    can also be divided into several 

parts that each comprise a variety of structural parameters. 

Some examples of competing models are:  

 
     

:AM No constraints 
   

(1) ( ) (1) ( )

1 2... , ...G GM M        
    

    

(1) ( ) (1) ( )

3 4... , ...G GM M           
 

(1) ( ) (1) ( )

5 6... , ...G GM M             

As various theories are used or as competing approaches are explored, these components change. When placed under the 

various definitions of Mk as described above, the components of the conditional distribution, known as [ | , , , ]Y Z   , 

and the condition applied to preceding distributions are considerably different, or variable. 

The basic assumption is that the previous distributions for the unconstrained parameters would behave independently for 

each group. It is also necessary to determine the data that belongs in each group and to supply an accurate value of the prior 

distribution when creating an estimate for the unconstrained parameters in order for them to be fully implemented.  

The Bayesian estimates and model comparison in the setting of two populations nonlinear LVMs with dichotomous 

variables are covered in this section. To complete the plan, the idea of data augmentation is merged with MCMC tools. 

Two populations nonlinear LVMs are theoretically a particular case of the two-level SEM, and the output may be utilized 

to produce different conditional distributions that are required by the Gibbs sampler.  

Since there are clear restrictions on the parameters in different groups that must be satisfied, more attention needs to be 

paid to identifying the similar previous distributions. To employ the route sampling method for model comparison in two-

level SEMs, similar information is required (Lee and Song, 2012).  

This section explains how to use the Bayesian technique to examine the prior nonlinear LVMs in the setting of 

dichotomous variables. This method has various advantages for the whole application, including: (1) When it is included 

directly, applying past information can improve the total analysis. Particularly, it produces more precise parameter 

estimate. (2) Various scholars have shown that sampling-based Bayesian approaches are independent of asymptotic theory. 

(Lee, 2006; Lee and Shi, 2000; Shi and Lee, 2000; Lee et al., 2010; Lee et al., 2007; Lee and Song, 2002; Song et al., 

2011; Yang and Dunson, 2010); (3) Both Bayesian and ML estimates feature similar optimal asymptotic properties. 

Through the posterior analysis, the observed data, as represented by [Z], is enhanced according to the latent data [Y, ]. 

Allow 
1{ ,..., }nz zZ to represent the observed data set of Dichotomous variables and   to act as the vector having 

unknown parameters in order to construct the Bayesian method for the suggested LVMs. 

By defining ( )p  in such a way that   is treated as random variable with a prior distribution and prior probability density 

function, the Bayesian technique would be used to explain the situation. Thus, the related assumptions can be based on the 

observed data for Z and ( )p  . So, allow Let ( , )p Z represent the joint probability density function of both ( )p  with 

reference to different Mk.  

Based on a well-known identity in probability, ( , ) ( | ) ( )p p p  Z Z , where ( | )p Z  and ( | )p  Z are 

conditional probability  density functions. It follows that:  
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             log ( | ) log ( | ) log ( )p p p Z Z                                                                                                                   

The posterior density function of the unknown parameters is the name given to the function ( | )p  Z . 

The posterior density function ( | )p  Z , or unknown parameters, is what results from this. Additionally, the probability 

function ( | )p Z  and the prior density function
 

( )p   make use of sample data and previous knowledge.  

However, it should be emphasized that ( | )p Z  depends on sample size, whereas (is not). Due to its greater similarity to 

the likelihood function ( | )p  Z , ( )p  the posterior density function, is more pertinent for situations involving large 

samples than ( )p  , which is less significant. 

Therefore, keep in mind that ( )p   is important for the Bayesian technique when the sample size is less or when the data 

obtained from Z contains dichotomous information. 

By treating yi as an unobserved variable in this situation, which corresponds to the manifest dichotomous variables as they 

are found in zi, MCMC techniques are used.  

The Bayesian estimate for   and any standard error estimates may be obtained from the sample mean and variance 

matrices, respectively, if we can extract a sufficient number of observations (represented by 

( ) ( ) ( ){( , , ); 1,..., }t t t t TY  ) from the joint posterior distribution defined by ( , , | )p Y Z  , which is then used 

to construct the joint posterior distribution. 

          

1 ( ) 1 ( ) ( )

1 1

, var( | ) ( 1) ( )( ) .
T T

t t t

t t

T T 

 

     
) ) ) )
      Z                                                                        

This means that even if establishing the conditional distribution, ( | , , )  Y Z as explained in Step (1), it is still 

required to expressly identify the previous distribution for the corresponding components in  . The conjugate prior 

distributions have typically shown to be flexible and appropriate for the task during Bayesian analysis (Broemeling, 1985). 

Many Bayesian analyses in structural equation models have used this form of prior distribution (see Lee and Song, 2004; 

Song and Lee, 2007). Consequently, the popular conjugate prior distributions listed below are employed:
       

0 0 0 0 0 0( ) ~ [ , ], ( ) ~ [ , ], ( | ) ~ [ , ],k k k k k k k kp N p N p N            H H H    

       

1 1

0 0 0 0( ) ~ [ , ], ( ) ~ [ , ]q k k kp W p Gamma     R                                                                                                

Given the definition that ( )p   is distributed according to,  
k , which is the k

th
 diagonal element of , k    and k   

are the k
th

 rows of   and  , respectively. 
2 2

0 01 0( ,..., ),pdiag  H and 0 0 0 0, , , ,k k k     

0 0 0 0 0, , , , ,k k k   H H  and
0R  are assumed to be known, as prior information.  

The dichotomous variables and covariates in this situation, however, can make the linked conditional distributions too 

complicated to readily extract or simulate data from them. 

This encourages the additional escalation of Y, x the latent matrices, in the posterior analysis, and motivates attention to the 

joint posterior distribution[ , , , , , ]Y x Z Q   . To garner observations of this posterior distribution, using the Gibbs 

(8) 

(9) 

(10) 
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sampler, it is essential to begin with the starting values 
(0) (0) (0) (0) (0)( , , , , )Y x   . The following procedure is then 

implemented to simulate 
(1) (1) (1) (1) (1)( , , , , )Y x    and so on. More specifically at the m

th
 reiteration of the current 

values
 

( ) ( ) ( ) ( ) ( ), , , ,m m m m m
Y x   . 

1. Generate 
( 1)m  from

( 1) ( ) ( ) ( )( , , , , , )
m m m mp


Y x Z Q   

2. Generate 
( 1)m   from 

( 1) ( ) ( ) ( )( , , , , , )
m m m mp


Y x Z Q    

3. Generate
( 1) ( 1) ( 1)( , , )m m m  

Y x  from 
( 1) ( 1)( , , | , , , )m mp  

Y x Z Q                                                          

  The cycle will only produce 
( 1) ( 1) ( 1) ( 1) ( 1)( , , , , )m m m m m    

Y x   after the m
th

 repeat, according to the earlier 

definition.  

Therefore, it can be demonstrated that the joint distribution of the value of 
( ) ( ) ( ) ( ) ( )( , , , , )m m m m m

Y x   moves in the 

direction of the joint posterior distribution[ , , , , , ]Y x Z Q    as m gets closer to infinity (see Geman and Geman, 

(1984)).  

4.  Model Comparison 

a measure of model comparability the Akaike Information Criterion (AIC; Akaike, (1973)) is an extension of the DIC (see 

Spiegelhalter et al., 2002). The DIC is calculated using a competitive model kM with a vector of unknown parameters k

as follows: 

                            
( ) ,k k kDIC D d                                                                                                                      

where ( )kD  measures the goodness of fit of the model, and is defined as 

                        
( ) { 2log ( | , ) | }.

kk k kD p Z M Z                                                                                              

Here, kd is the effective number of parameters in kM , and is defined as 

[ 2 log ( | , ) | ] 2 log ( | ).
kk k kd p Z M Z f Z      %                                                                                    

in which % is the Bayesian estimate of  . Let 
( ){ : 1,..., }t

k t T   be a sample of observations simulated from the 

posterior distribution. The expectations in Equations (19) and (20) can be estimated as follows: 

  
( )

1

2
{ 2log ( | , ) | } log ( | , ).

k

T
t

k k k k

t

p Z M Z p Z M
T

  


                                                                         

The model with the lower DIC value is chosen in Bayesian LVMs. We analyzed the same data using two populations of 

NLVMs using the same measurement model to demonstrate how to use DIC for model comparison. The OpenBUGS 

application generates the DIC values for two populations of NLVMs using actual data.  

5. A Case Study 

(11) 

(12) 

(13) 

(14) 

(15) 
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Let's have a look at the data that may be utilized to derive conclusions for various, independent samples that are chosen 

from the natural history based on the research of a rural drug discovered in Ohio (n=200) and Kentucky (n=200) in the 

USA between the years 2003 and 2005 (Booth et al., 2006). 

The BSI-18 scale, which examined three categories of mental illnesses and took into account factors including somatization 

(SOM), depression (DEP), and anxiety (ANX), experienced several more modifications.  

There are two covariates in each group of the sixteen variables that make up the data. Additionally, all of them were 

assessed using the following ordered categorical variables: (1, not at all; 2, a little bit; 3, moderately; 4, quite a bit; 5, 

extremely) are changed to only two categories to be dichotomous data (Wang & Wang, 2012). 

This actual data analysis, in which 16 manifest variables are associated to two fundamental latent variables 

( ) ( ) ( )

1 2( , )g g g

i i   from two populations nonlinear LVMs defined in Equations 17 and 18, provides some insight into the 

empirical performance of the suggested Bayesian technique. 

Because of this, a few quadratic and interaction effects of the latent variables are taken into account. We utilize a real data 

set connected to random vectors with G=1,2, to demonstrate the Bayesian approaches in analyzing nonlinear LVMs with 

dichotomous variables. 

let 
(g) (g) (g) (g)

1 2 16( , ,..., )i i i i
y y y y  be the latent continuous random vector, which corresponds to the dichotomous variables 

(g) (g) ( )

1 2 16, ,..., g

i i iz z z where
 

(g) , i 1,..., ni z  are dichotomous variables that are related to three latent variables
 

(g) (g) (g) (g)

1 2( , , )i i i iw    ,
(g) (g) (g) (g)

1 2 16( , ,..., )i i i i    , with the following values of the parameters in

(g) (g) (g) (g)

1 2 16( , ,..., )     and 
(g) (g) (g) (g)

1 2 13( , ,..., )        

(1) (1) (1) (1) (1) * * * * ** * * * * *
21 31 41 51 61

(g) (1) (1) (1) (1) (1)* * * * * * * * * * *
82 92 102 112

* * * * * * * * * * * (1) (1) (1) (1)
133 143 153 163

( 2) ( 2)*
21 31

( 2) * * *

0 0 0 0 01 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 1

1

0 0 0

0

    

   

   

 

 
 
 
 
  



 



( 2) ( 2) ( 2) * * * * * * * * * *
41 51 61

( 2) ( 2) ( 2) ( 2)* * * * * * * *
82 92 102 112

* * * * * * * * * * * ( 2) ( 2) ( 2) ( 2)
133 143 153 163

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 1

  

   

   

 
 
 
 
  



(1) (1) (2) (2)

(g) (1) (2)11 12 11 12

(1) (1) (2) (2)

21 22 21 22

, .
   

   

   
    

   
                                                                     

where parameters with an asterisk are treated as fixed for identifying the model. 

The true values of elements in (g)  and 
(g)

ij  are given by: 
(g) (g)

1 16... 0.0    ;
(g) (g) (g)

1 2 13... 0.8      . The 

relationships of the latent variables in 
1 2

( ) ( ) ( ) ( )( , )
i i i i

g g g gw      are assessed by the nonlinear structural equation, which is 

described in the following equations.
  

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 1 2 2 3 1 2 4 1 2 5 1 1 2 1 1i i i i i i i i i i ix x x x x x                 (1) (1) (1) (1) (1) (1) (1) (1) (1)

2 2 3 1 1 4 2 2i i i i i i                                                                                       

(16) 

(17) 
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(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

1 1 2 2 3 1 2 4 1 2 5 1 1 2 1 1i i i i i i i i i i ix x x x x x                
(2) (2) (2) (2) (2) (2) (2) (2) (2)

2 2 3 1 1 4 2 2i i i i i i                                                                                                                                    
 

Here,
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 2 3 4 5 1 2 3 4( , , , , , , , , ),         
 

 

 and 
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

1 2 3 4 5 1 2 3 4( , , , , , , , , ),           

and 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2 1 1 2 1 2 1 1 2 2( , ) ( , , , , , , , , )g g g g g g g g g g g g g g g g g T

i i i i i i i i i i i i i i i i iF x x x x x x x          . The true values for

(g) (g) (g) (g)

1 2 3 4 0.6       . The true values for
(g) (g) (g)

1 2 5... 0.6      . The covariates 
ix  come from arbitrary 

distributions that give dichotomous data. 

In the conjugate prior distributions of the parameters, the following precise prior inputs of the hyper-parameter values are 

taken into account: 

Prior I: Elements in 0 , 0k  and 0 k  in Equation (10) are set equal to the following values with initial values are 

equal to 1 for two groups of data;  

 
1

0 8  R 
 0 0,u kH H and 0 kH are taken to be 0.25 times the identity matrices; 

0 10k   , 
0 8k   , 

0 30  . 

Prior II: Elements in
0 ,

0k  and 0 k  in Equation (10) are set equal to the following values with initial values are equal 

to 0.5 for two groups of data;  

 
1

0 8 R 
0 0,u kH H and 0 kH are taken to be 0.25 times the identity matrices; 

0 10k   , 
0 8k   , 

0 30  .  

The parameter estimates for a situation with a small sample size can be significantly impacted by the prior, which is 

informative. 

Using Open BUGS, a data set (n1=200, n2=200) was analysed. The MCMC method for data analysis required more 

iterations to converge when compared to the Bayesian analyses of LVMs using data. Bayesian estimates for the truncated 

normal distribution and censored normal distribution in two populations of nonlinear LVMs were derived using T=10000 

Iterations after discarding (1000) burn-in Iterations. The Open BUGS software (Spiegelhalter et al., 2007) can implement 

Bayesian estimates of the parameters in nonlinear LVMs. To demonstrate this, we apply Open BUGS to analyse the current 

aid data based on Equations (17) and (18) with different prior inputs. 

6. Results and Discussion 

This section's goal is to give the findings of a simulation research for NLVMs in order to demonstrate how well the DIC 

and Bayesian estimates work empirically when compared to other models. However, we have the following proposed four 

models for g=1,2: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1 1 3 1 2 1 1 2 2: g g g g g g g g g g g g g g

i i i i i i i i iM x x x               
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1 1 2 1 1 3 1 2 4 1 1 2 1 1 2 2: g g g g g g g g g g g g g g g g g g

i i i i i i i i i i i iM x x x x x                                                                                                                                                                              

(18) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 1 1 2 1 2 3 1 1 1 1 1 2 2 3 1 1 4 2 2: g g g g g g g g g g g g g g g g g g g g g

i i i i i i i i i i i i i iM x x x                        
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

4 1 1 2 2 3 1 2 4 1 2 5 1 1 2 1 1: i i i i i i i i i i iM x x x x x x                
(1) (1) (1) (1) (1) (1) (1) (1) (1)

2 2 3 1 1 4 2 2i i i i i i            

This paper introduces the Bayesian technique for analysing two populations nonlinear LVMs for dichotomous variables 

and covariates. Using recently created powerful instruments and the completely free statistical program Open BUGS, the 

model selection statistic (DIC) and the Bayesian analysis of the unobserved parameters are both achieved. As a result, real 

data may easily be applied to our suggested strategy. The purpose of this analysis is to use Bayesian nonlinear two 

populations LVMs with Dichotomous variables and covariates. The analysis of dichotomous data in LVMs is subject to 

various limitations. First, data are typically originating from dichotomous variables and covariates due to the nature of 

discrete data in the behavioural, medical, and social sciences. It is highly important to discover an alternate approach to 

manage the problem of dichotomous variables and covariates because when analysing dichotomous data, the fundamental 

premise in LVMs that the data originate from a continuous normal distribution is plainly broken. Thus, it is obvious that 

drawing incorrect inferences from dichotomous variables when considering them consistently as normal may do so (see 

Lee et al., 1990; Olsson, 1979). Assessing these types of data more effectively involves treating them as observations from 

a concealed continuous normal distribution with unique threshold specifications.  
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Figure 1. Two chains of observation corresponding to (a)

(2)

8 ; (b) 

(1)

11
(c)

(2)

2 ; and (d) 

(1)

1  for two populations 

NLVMs with Dichotomous Variables using Censored Normal Distribution 
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Figure 2. Two chains of observation corresponding to (a) 

(2)

8 ; (b) 

(1)

11
(c)

(2)

2 ; and (d) 

(1)

1 for two populations 

NLVMs with Dichotomous Variables using Truncated Normal Distribution 
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Figure 3. Two chains of observation corresponding to (a) 

(2)

8 ; (b) 

(1)

11
(c)

(2)

2 ; and (d) 

(1)

1 for two populations 

NLVMs with Dichotomous Variables using Continuous Normal Distribution 

 
TABLE 1. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of First Group using Censored 

Normal Distribution 
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Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) -0.985 0.222 [-1.433, -0.572] λ82 

(1) 825.8 12.88 [821..,  .28.8 ] 

μ2
(1) 

-0.308 0.231 [-0.762, 0.148] 
λ 92

(1) 
12971 12..3 [12591,  82476 ] 

μ3
(1) 

-0.334 0.201 [-0.741, 0.045] 
λ 102

(1) 
12838 12.1. [1247.,  82.69 ] 

μ4
(1) 

-0.489 0.200 [-0.894, -0.112] 
λ 112

(1) 
828.8 12.34 [12784,  826.. ] 

μ5
(1) 

-0.123 0.215 [-0.549, 0.297] 
λ 122

(1) 
12961 12.87 [12588,  82437 ] 

μ6
(1) 

0.121 0.214 [-0.284, 0.556] 
λ 143

(1) 
12666 12888 [12378,  82183 ] 

μ7
(1) 

-0.273 0.196 [-0.640, 0.119] 
λ153 

(1) 
12848 12.31 [12454,  82364 ] 

μ8
(1) 

-0.066 0.227 [-0.514, 0.368] 
λ 163

(1) 
12919 12.48 [1258.,  8247. ] 

μ9
(1) 

-1.150 0.237 [-1.639, -0.723] 
λ 173

(1) 
12414 12859 [1285.,  12775 ] 

μ10
(1) -0.860 0.224 [-1.334, -0.458] 

λ 183
(1) 

128.4 12.18 [1251.,  82314 ] 

μ11
(1) 

-0.491 0.219 [-0.917, -0.066] 
ɸ11

(1) 
12934 12.84 [12615,  82458 ] 

μ12
(1) 

-1.224 0.233 [-1.727, -0.810] 
ɸ12

(1)
 12771 12876 [12487,  82893 ] 

μ13
(1) 

-0.367 0.278 [-0.909, 0.168] 
ɸ22

(1)
 12894 12..5 [12538,  82437 ] 

μ14
(1) 

-0.153 0.208 [-0.573, 0.247] 
γ1

(1) 
0.771 0.277 [0.264, 1.375] 

μ15
(1) 

0.033 0.228 [-0.409, 0.483] 
γ2

(1)
 0.770 0.293 [0.153, 1.333] 

μ16
(1) 

-0.152 0.233 [-0.629, 0.297] 
γ3

(1)
 -0.032 0.232 [-0.476, 0.410] 

μ17
(1) 

-1.373 0.266 [-1.934, -0.901] 
γ4

(1)
 -0.203 0.213 [-0.632, 0.217] 

μ18
(1) 

-0.677 0.246 [-1.157, -0.223] 
β1

(1) 
-0.168 0.221 [-0.605, 0.278] 

λ 21
(1) 

82633 12.97 [82176,  .2.58 ] 
β2

(1)
 -0.173 0.266 [-0.679, 0.353] 

λ 31
(1) 

12935 12.86 [12566,  8248. ] 
β 3

(1)
 -0.281 0.336 [-0.932, 0.362] 

λ 41
(1) 

12778 12891 [12443,  82877 ] 
β 4

(1)
 0.390 0.332 [-0.239, 1.070] 

λ 51
(1) 

82854 12.5. [12783,  82698 ] 
β 5

(1)
 0.138 0.392 [-0.671, 0.855] 

λ 61
(1) 82.38 12.58 [12816,  82791 ] ψεδ

(1) 1258. 128.8 [12388,  12883 ] 
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TABLE 2. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of Second Group using 

Censored Normal Distribution 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(2) -1.157 0.250 [-1.659, -0.674] λ82 

(2) 1.654 0.314 [1.068, 2.275] 

μ2
(2) -0.124 0.223 [-0.583, 0.304] λ 92

(2) 1.225 0.278 [0.768, 1.869] 

μ3
(2) -0.214 0.240 [-0.697, 0.261] λ 102

(2) 0.043 0.133 [-0.212, 0.314] 

μ4
(2) -0.647 0.240 [-1.158, -0.219] λ 112

(2) -0.020 0.118 [-0.252, 0.219] 

μ5
(2) -0.430 0.223 [-0.884, -0.012] λ 122

(2) -0.065 0.135 [-0.326, 0.210] 

μ6
(2) -0.182 0.221 [-0.621, 0.240] λ 143

(2) 0.597 0.180 [0.313, 1.002] 

μ7
(2) -0.666 0.225 [-1.121, -0.228] λ153 

(2) 0.640 0.178 [0.349, 1.052] 

μ8
(2) -0.138 0.248 [-0.637, 0.350] λ 163

(2) 0.726 0.184 [0.413, 1.149] 

μ9
(2) -0.942 0.256 [-1.462, -0.417] λ 173

(2) 0.277 0.117 [0.086, 0.543] 

μ10
(2) -0.793 0.207 [-1.219, -0.420] λ 183

(2) 0.674 0.180 [0.371, 1.043] 

μ11
(2) -0.674 0.190 [-1.073, -0.334] 

ɸ11
(2) 82188 12.53 [12641,  82689 ] 

μ12
(2) -0.927 0.207 [-1.356, -0.542] ɸ12

(2)
 

12894 1289. [12587,  82316 ] 

μ13
(2) -0.729 0.306 [-1.341, -0.158] ɸ22

(2)
 

82147 12.51 [12639,  8261. ] 

μ14
(2) -0.475 0.240 [-0.971, -0.031] γ1

(2) 0.924 0.290 [0.372, 1.477] 

μ15
(2) -0.365 0.240 [-0.853, 0.090] γ2

(2)
 

0.823 0.322 [0.251, 1.550] 

μ16
(2) -0.317 0.247 [-0.806, 0.157] γ3

(2)
 

-0.306 0.232 [-0.807, 0.151] 

μ17
(2) -1.252 0.268 [-1.803, -0.738] γ4

(2)
 

0.011 0.235 [-0.441, 0.476] 

μ18
(2) -0.936 0.271 [-1.501, -0.440] β1

(2) -0.063 0.232 [-0.514, 0.399] 

λ 21
(2) 823.6 12.71 [12863,  82878 ] β2

(2)
 

0.260 0.329 [-0.381, 0.970] 

λ 31
(2) 82368 12316 [12855,  .2141 ] β 3

(2)
 

0.284 0.242 [-0.153, 0.796] 

λ 41
(2) 12951 12.89 [12564,  82418 ] β 4

(2)
 

0.006 0.340 [-0.662, 0.695] 

λ 51
(2) 8287. 12.57 [12743,  82755 ] β 5

(2)
 

0.226 0.337 [-0.425, 0.891] 

λ 61
(2) 82.13 12.63 [12771,  8278. ] ψεδ

(2) 12548 1283. [12344,  12854 ] 
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TABLE 3. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of First Group using Truncated 

Normal Distribution 

Para Est. SE HPD Interval Para Est. SE HPD Interval 
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TABLE 4. Bayesian Estimation of  two populations NLVMs with Dichotomous Variables of Second Group using 

Truncated Normal Distribution 

μ1
(1) -1.013 0.227 [-1.462, -0.574] λ82 

(1) 82597 12313 [8216.,.2.64] 

μ2
(1) -0.342 0.251 [-0.834,0.146] λ 92

(1) 82184 12.38 [12688,82519] 

μ3
(1) -0.348 0.203 [-0.768,0.032] λ 102

(1) 128.8 12.17 [12476,82.98] 

μ4
(1) -0.521 0.206 [-0.950,-0.134] λ 112

(1) 828.1 12.41 [12694,82633] 

μ5
(1) -0.127 0.213 [-0.544,0.300] λ 122

(1) 12995 12..5 [12683,82491] 

μ6
(1) 0.110 0.216 [-0.301,0.539] λ 143

(1) 12684 12878 [12418,82199] 

μ7
(1) -0.279 0.203 [-0.683,0.123] λ153 

(1) 12856 12.17 [12589,82317] 

μ8
(1) -0.076 0.235 [-0.533,0.382] λ 163

(1) 12935 12.88 [12563,824.8] 

μ9
(1) -1.192 0.242 [-1.677,-0.718] λ 173

(1) 12485 1285. [12863,12759] 

μ10
(1) -0.872 0.224 [-1.333,-0.461] λ 183

(1) 12888 12.33 [125.6,82484] 

μ11
(1) -0.499 0.218 [-0.926,-0.072] 

ɸ11
(1) 12953 12..4 [12583,82476] 

μ12
(1) -1.288 0.249 [-1.801,-0.817] ɸ12

(1)
 

12816 12899 [1249.,82.75] 

μ13
(1) -0.379 0.282 [-0.935,0.173] ɸ22

(1)
 

12945 12.47 [12571,825.1] 

μ14
(1) -0.158 0.216 [-0.595,0.258] γ1

(1) 12781 12.54 [12897,82.88] 

μ15
(1) -1.013 0.227 [-1.462,-0.574] γ2

(1)
 

12791 12.89 [12.87,82398] 

μ16
(1) -0.342 0.251 [-0.834,0.146] γ3

(1)
 

-1214. 12.36 [-12488,12439] 

μ17
(1) -0.348 0.203 [-0.768,0.032] γ4

(1)
 

-12881 12.54 [-[12679,1234.] 

μ18
(1) -0.521 0.206 [-0.950,-0.134] β1

(1) -0.161 0.206 [-0.577,0.241] 

λ 21
(1) 82784 12319 [82889,.2398] β2

(1)
 

-0.176 0.231 [-0.620,0.298] 

λ 31
(1) 12943 12..7 [12568,82463] β 3

(1)
 

-0.169 0.309 [-0.748,0.435] 

λ 41
(1) 12795 12893 [12459,82.81] β 4

(1)
 

0.337 0.350 [-0.360,0.995] 

λ 51
(1) 82881 12.31 [12773,82665] β 5

(1)
 

0.057 0.403 [-0.720,0.888] 

λ 61
(1) 82.64 12.58 [1283.,82854] ψεδ

(1) 12515 12881 [12331,12768] 

Para Est. SE HPD Interval Para Est. SE HPD Interval 
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TABLE 5. Bayesian Estimation of  two populations NLVMs with Dichotomous  Variables of First Group using 

Continuous Normal Distribution 

μ1
(2) -1.166 0.251 [-1.675,-0.679] 

λ82 
(2) 1.671 0.314 [1.141,2.353] 

μ2
(2) -0.155 0.238 [-0.641,0.306] 

λ 92
(2) 1.264 0.270 [0.787,1.862] 

μ3
(2) 

-0.236 0.237 [-0.713,0.238] 
λ 102

(2) 
0.039 0.133 [-0.217,0.311] 

μ4
(2) 

-0.679 0.226 [-1.146,-0.258] 
λ 112

(2) 
-0.022 0.118 [-0.247,0.217] 

μ5
(2) -0.442 0.227 [-0.899,0.004] 

λ 122
(2) -0.067 0.133 [-0.330,0.204] 

μ6
(2) 

-0.185 0.228 [-0.620,0.275] 
λ 143

(2) 
0.583 0.148 [0.329,0.906] 

μ7
(2) 

-0.662 0.215 [-1.097,-0.250] 
λ153 

(2) 
0.629 0.172 [0.364,1.044] 

μ8
(2) 

-0.115 0.260 [-0.619,0.409] 
λ 163

(2) 
0.740 0.186 [0.422,1.154] 

μ9
(2) 

-0.953 0.251 [-1.465,-0.463] 
λ 173

(2) 
0.297 0.125 [0.087,0.589] 

μ10
(2) -0.805 0.207 [-1.236,-0.425] 

λ 183
(2) 

0.670 0.171 [0.381,1.068] 

μ11
(2) 

-0.687 0.198 [-1.103,-0.327] 
ɸ11

(2) 
1.121 0.276 [0.660,1.731] 

μ12
(2) 

-0.970 0.209 [-1.419,-0.591] 
ɸ12

(2)
 0.921 0.206 [0.569,1.385] 

μ13
(2) 

-0.712 0.316 [-1.357,-0.115] 
ɸ22

(2)
 1.063 0.287 [0.630,1.725] 

μ14
(2) 

-0.466 0.242 [-0.945,-0.003] 
γ1

(2) 
0.939 0.272 [0.393,1.477] 

μ15
(2) 

-0.368 0.237 [-0.837,0.102] 
γ2

(2)
 0.870 0.320 [0.293,1.572] 

μ16
(2) 

-0.314 0.263 [-0.838,0.221] 
γ3

(2)
 -0.293 0.218 [-0.747,0.112] 

μ17
(2) 

-1.299 0.268 [-1.852,-0.805] 
γ4

(2)
 -0.057 0.256 [-0.589,0.426] 

μ18
(2) 

-0.927 0.257 [-1.460,-0.461] 
β1

(2) 
-0.085 0.240 [-0.558,0.405] 

λ 21
(2) 

82395 12.71 [129.4,82966] 
β2

(2)
 0.264 0.324 [-0.334,0.931] 

λ 31
(2) 

82377 12.61 [12935,82971] 
β 3

(2)
 0.294 0.237 [-0.144,0.784] 

λ 41
(2) 

12977 12.87 [12683,82469] 
β 4

(2)
 0.107 0.331 [-0.487,0.762] 

λ 51
(2) 

82895 12.47 [1278.,82731] 
β 5

(2)
 0.142 0.316 [-0.459,0.715] 

λ 61
(2) 

82.89 12.45 [12819,82798] 
ψεδ

(2) 
0.568 0.133 [0.362,0.878] 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) 0.098 0.079 [-0.056,0.251] λ82 

(1) 12831 12881 [12689,82148] 
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TABLE 6. Bayesian Estimation of  two populations NLVMs with Dichotomous  Variables of Second Group using 

Continuous Normal Distribution 

μ2
(1) 0.302 0.079 [0.146,0.459] 

λ 92
(1) 12587 12198 [12331,12788] 

μ3
(1) 0.301 0.078 [0.149,0.459] 

λ 102
(1) 1246. 12818 [12.65,12669] 

μ4
(1) 0.256 0.070 [0.119,0.392] 

λ 112
(1) 12658 12815 [12459,12869] 

μ5
(1) 0.369 0.076 [0.220,0.515] 

λ 122
(1) 12517 12197 [123.3,12699] 

μ6
(1) 0.438 0.079 [0.283,0.594] 

λ 143
(1) 1261. 12818 [12394,12888] 

μ7
(1) 0.295 0.079 [0.138,0.454] 

λ153 
(1) 12687 12818 [12484,12914] 

μ8
(1) 0.374 0.077 [0.221,0.521] 

λ 163
(1) 1266. 12815 [12461,1287.] 

μ9
(1) 0.071 0.063 [-0.054,0.196] 

λ 173
(1) 12814 12163 [-121.8,12..9] 

μ10
(1) 0.142 0.064 [0.019,0.268] 

λ 183
(1) 12487 12193 [12316,1267.] 

μ11
(1) 0.253 0.073 [0.111,0.396] 

ɸ11
(1) 

12834 12188 [12814,12873] 

μ12
(1) 0.035 0.063 [-0.088,0.159] 

ɸ12
(1)

 
12178 12184 [12153,12819] 

μ13
(1) 0.257 0.098 [0.058,0.445] 

ɸ22
(1)

 
1285. 121.8 [12886,12899] 

μ14
(1) 0.335 0.081 [0.172,0.488] 

γ1
(1) 0.326 0.135 [0.067,0.589] 

μ15
(1) 0.373 0.084 [0.206,0.537] 

γ2
(1)

 
0.211 0.151 [-0.084,0.505] 

μ16
(1) 0.329 0.080 [0.167,0.481] 

γ3
(1)

 
0.208 0.289 [-0.358,0.795] 

μ17
(1) 0.015 0.048 [-0.077,0.109] 

γ4
(1)

 
0.015 0.245 [-0.457,0.501] 

μ18
(1) 0.188 0.071 [0.049,0.328] 

β1
(1) 0.015 0.075 [-0.132,0.161] 

λ 21
(1) 12993 12888 [12766,82.33] 

β2
(1)

 
-0.040 0.170 [-0.370,0.299] 

λ 31
(1) 12778 128.5 [1253.,821.1] 

β 3
(1)

 
-0.106 0.365 [-0.825,0.625] 

λ 41
(1) 12589 1288. [12375,1288.] 

β 4
(1)

 
0.081 0.352 [-0.602,0.797] 

λ 51
(1) 12854 128.1 [126.5,82198] 

β 5
(1)

 
-0.010 0.404 [-0.807,0.773] 

λ 61
(1) 12859 128.7 [12686,82885] 

ψεδ
(1) 

12873 121.. [12834,12..8] 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(2) 0.085 0.073 [-0.057,0.229] λ82 

(2) 0.823 0.115 [0.602,1.053] 

μ2
(2) 0.332 0.076 [0.184,0.482] 

λ 92
(2) 0.579 0.091 [0.405,0.765] 
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Table 7.  Performance of Deviance Information Criterion DIC for two populations NLVMs with Dichotomous Variables 

Using Censoring, Truncation and Continuous Normal Distribution 

 
Interval 

Censored Normal 
Interval    Truncated Normal  

Continuous 

Normal 

DIC 5875.0 5887.0  6903.0 

 

μ3
(2) 0.309 0.076 [0.161,0.460] 

λ 102
(2) 0.390 0.088 [0.217,0.567] 

μ4
(2) 0.207 0.065 [0.079,0.334] 

λ 112
(2) 0.659 0.099 [0.471,0.859] 

μ5
(2) 0.252 0.077 [0.104,0.405] λ 122

(2) 0.514 0.084 [0.352,0.680] 

μ6
(2) 0.324 0.076 [0.179,0.476] 

λ 143
(2) 0.483 0.103 [0.288,0.689] 

μ7
(2) 0.193 0.080 [0.038,0.350] 

λ153 
(2) 0.588 0.102 [0.390,0.793] 

μ8
(2) 0.333 0.077 [0.182,0.481] λ 163

(2) 0.640 0.097 [0.448,0.836] 

μ9
(2) 0.153 0.063 [0.027,0.279] 

λ 173
(2) 0.113 0.060 [-0.003,0.233] 

μ10
(2) 0.165 0.058 [0.052,0.280] 

λ 183
(2) 0.347 0.085 [0.185,0.518] 

μ11
(2) 0.204 0.066 [0.069,0.335] 

ɸ11
(2) 

0.122 0.016 [0.094,0.157] 

μ12
(2) 0.113 0.058 [0.003,0.226] 

ɸ12
(2)

 
0.072 0.013 [0.048,0.100] 

μ13
(2) 0.141 0.100 [-0.054,0.339] 

ɸ22
(2)

 
0.150 0.020 [0.115,0.194] 

μ14
(2) 0.202 0.078 [0.046,0.351] 

γ1
(2) 0.588 0.497 [-0.379,1.569] 

μ15
(2) 0.232 0.080 [0.078,0.393] 

γ2
(2)

 
0.599 0.498 [-0.372,1.571] 

μ16
(2) 0.247 0.082 [0.081,0.399] 

γ3
(2)

 
0.597 0.501 [-0.393,1.560] 

μ17
(2) 0.035 0.046 [-0.055,0.126] 

γ4
(2)

 
0.601 0.503 [-0.397,1.576] 

μ18
(2) 0.124 0.066 [-0.007,0.254] 

β1
(2) 0.608 0.497 [-0.351,1.577] 

λ 21
(2) 12978 128.8 [127.9,82.31] 

β2
(2)

 
0.603 0.505 [-0.366,1.591] 

λ 31
(2) 82188 128.4 [12781,82.64] 

β 3
(2)

 
0.602 0.498 [-0.360,1.604] 

λ 41
(2) 12664 12818 [12457,12879] 

β 4
(2)

 
0.600 0.497 [-0.362,1.592] 

λ 51
(2) 1289. 128.8 [12651,82858] 

β 5
(2)

 
0.600 0.496 [-0.377,1.583] 

λ 61
(2) 129.6 128.7 [12684,82898] ψεδ

(2) 0.236 0.030 [0.182,0.301] 
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Tables (1:2) contain the results for the first and second groups using Type I and Type II inputs, dichotomous variables, 

covariates, hidden continuous normal distributions (censored normal distributions) for variables, hidden continuous normal 

distributions (truncated normal distributions with known parameters), and two types of thresholds (with equally and 

unequally distances for categories). In the first and second groups, the SD values are noticeably low.  

The results for the first and second groups under Type I and Type II inputs, dichotomous variables, covariates, hidden 

continuous normal distribution (truncated normal distribution with known parameters), as well as two types of thresholds 

(with equally and unequally distances for categories), are reported in Tables (3:4). We noticed that the first and second 

groups' SD values are rather low.  

The parameter with the Highest posterior density (HPD) was determined. When adopting a censored normal distribution or 

a truncated normal distribution, we found that the HPD intervals work well for dichotomous variables. 

We re-analysed the data sets using a nonlinear latent variable model (M4) with interaction term to show the efficacy of 

DIC for model comparison. The DIC values were contrasted with those obtained using the appropriate model. Tables 5 and 

6 present the findings. 

The DIC values of censored normal distribution, truncated normal distribution with equally distances of thresholds, are 

(18070.0) and (19310.0) respectively.  

Using a censored normal distribution, the model that best fits the DIC of LVMs with dichotomous data is less accurate than 

using a truncated normal distribution. For dichotomous variables with censored normal distribution, it performs 

exceptionally well. 

The DIC values of censored normal distribution, truncated normal distribution with equally distances of thresholds, are 

(17580.0) and (19350.0) respectively.  

A model that fits the DIC of LVMs with dichotomous data using a censored normal distribution is less accurate than one 

that fits the DIC of LVMs with dichotomous data using a truncated normal distribution with uneven threshold distances. 

For dichotomous variables with censored normal distribution, it performs exceptionally well. 

The censored normal distribution with unbalanced distances between thresholds (17580.0) is the best fitted model with the 

lowest DIC value. Additionally, the truncated normal distribution's DIC value with equally spaced thresholds is (19310.0). 

As a consequence, we discovered that the DIC's performance is unacceptable and would be even worse when used with 

dichotomous data and a truncated normal distribution with unbalanced threshold distances.  

Plots of several simulated sequences of the individual parameters with varied beginning values are used to track the 

convergence of the Gibbs sampler and are shown in Figures (4 and 5, respectively). After eliminating (1000) burn-in 

rounds in two populations nonlinear NLVMs for censoring and truncation normal distribution, Bayesian estimates were 

obtained from T=10000 iterations for two groups.  

7. Conclusions and Recommendations 

In the social and behavioural sciences, two populations nonlinear models with nonlinear effects, nonlinear covariates, and 

latent variables are quite prevalent. The initial goal of this investigation was to acquire all the estimated parameters using 

nonlinear LVMs for two populations, nonlinear covariates, and latent variables. The second goal is to use hidden 

continuous normal distribution (censored normal distribution and truncated normal distribution) to solve the problem of 

dichotomous variables and to use hidden continuous normal distribution (truncated normal distribution with known 

parameters) to solve the problem of dichotomous covariates. Two different thresholds (with equally and unequally spaced 
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categories) were used in the suggested techniques. This presumption, nevertheless, is likely to be broken in many real 

world scenarios. Future study may focus on creating a nonparametric Bayesian technique to loosen the normality 

assumption in nonlinear NLVMs for two populations with missing data. 

There are LVM cases where nonlinear elements of latent variables are included into equations. Bollen and Paxton (1998), 

Schumacker and Marcoulides (1998), and others have noted that the lack of applications is not attributable to the validity 

of the substantive arguments that suggest the existence of nonlinearity, but rather to the technical difficulty and lack of 

understanding of the current statistical methods. In this study, a Bayesian technique is suggested for analysing nonlinear 

models including two populations and dichotomous variables. Due to the complexity of the proposed model, we also offer 

statistical methods to estimate standard deviations and model comparison using the Deviance Information Criterion (DIC).  

As we've shown, using various MCMC methods to supplement the data can help with issues brought on by the nonlinear 

causal links between the latent factors and the discrete nature dichotomous data manifest variables. More specifically, the 

fundamental concept of our work was motivated by adopting a popular strategy from recent statistical computing work (see 

Rubin, 1991) that formulated the underlying difficult problem in order that, when supplementing the actual observed data 

with the fictitious missing data, the analysis would be fairly simple with the full data. This approach is quite effective and 

may be used with other, more intricate models. 
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 تحليل بيانات ثنائية لمجتمعين في نماذج المتغيرات الكامنة باستخدام اسلوب بيز
 

ذنون يونس ذنون
1
       روبيا عدنان         

2
زارينا محمد خالد  

3
 

 هوصل2 -العراق -الجاهعة التقنية الشوالية -هوصل –الكلية التقنية الادارية  –قسن تقنيات الاحصاء والوعلوهاتية 

 جوهور -هاليزيا –الجاهعة التكنلوجية الواليزية  –كلية العلوم -قسن علوم الرياضيات 

, هدفشا الرئيدي هه استخدام نسهذج متغير كامن واقتراح نسهذج مشاسب مع ميزات مثل الستغيرات السذتركة الثابتة غير الخطية البحثفي هذا  الخلاصة: 
ت نسهذج الستغيرا ثشائية فيالالستغيرات استخدمشا والستغيرات الكامشة بشاء عمى نساذج مختمفة يسكن وصفها بشاء عمى الشسهذج الرياضي والهيكمي. نحن أيزا 

السقارنة والاختلافات والتذابهات عمى أساس نقاط البيانات السختمفة لايجاد  "معايشة جبس"ك طريقة وكذل خطية لسجتسعين باستخدام اسمهب بيز الكامشة الغير
وحاجة المحظة التي يسكششا من خلالها  وتقديرها وفقا لذلك. لقد قسشا أيزا بتزسين التهزيع الطبيعي السدتسر السخفي الذي يسكن مراقبته واقتطاعه بشاء عمى نهع

. غالبا ما يتم استخدامه اترفية نفدهالفحص الجهانب السختمفة التي يشطهي عميها تحميل البيانات ويسكن أيزا استخدام طريقة أخذ عيشات أخرى من جيبس في 
سدتسر. يسكششا أيزا الاستفادة من الاستدلالات السختمفة الطبيعي التهزيع لاثشائية وبالتالي ربطها بستغيرات مختمفة كالمن أجل حل السذكمة الستعمقة بالبيانات 

أعمى مذكمة إلى الشتائج الإحرائية التي تذسل جسيع وجهات الشظر في نطاق الأخطاء القياسية , والأساليب الأكثر شيهعا , والشهج السبدطة ,  السدتسدة استشادا  
. OpenBugsتم إثبات جسيع الشظريات باستخدام بيانات حقيقية والشتائج التي تم الحرهل عميها مشها باستخدام برنامج . يوهكذاالسدتخدمة للاختبار كثافة خمفية 

, نتائج  ع , وأخيرا  لاتجاهين السقتط التهزيع الطبيعي ذات كان أفزل , ثم , نتائجلمرقابة ذات الاتجاهين التهزيع الطبيعي  أن نتائج DISمن الهاضح من نتائج 
 .التهزيع الطبيعي السدتسر

 الستغيرات السذتركة , الستغيرات ثشائية التفرع. اثشين من البيانات الدكانية, زيتحميل ب ,نساذج متغيرة كامشة: مفتاحيةالكلمات ال
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