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Abstract: This paper presents local search 

algorithms for finding approximation solutions of the 

multiobjective scheduling problem within the single 

machine context, where the problem is the sum of the 

three  objectives total completion time, maximum 

tardiness and maximum late work.  

       Late work criterion estimates the quality of a 

schedule based on durations of late parts of jobs. 

Local search algorithms descent method (DM), 

simulated annealing (SA) and genetic algorithm (GA) 

are implemented. Based on results of computational 

experiments, conclusions are formulated on the 

efficiency of the local search algorithms.  

Keywords: Local search, multiobjective scheduling, late work 

criterion, genetic algorithm.       

 

1. Introduction 

Real world problems arising in various application domains are 

usually strictly related to time [1]. Time constraints are important 
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from two points of view. They determine feasibility conditions and 

they make it possible to evaluate the quality of feasible solutions. In 

scheduling theory, time restrictions are usually modeled by due 

dates or deadlines and the quality of schedules is estimated with 

reference to these parameters. Performance measures involving due 

dates model, the informal criteria that are applied by practitioners.  

This makes these objective functions a very attractive and widely 

explored subject of research. A significant part of scheduling 

literature is devoted to classical objective functions, such as 

minimizing the maximum lateness, mean or total tardiness and the 

number of tardy jobs or mean earliness – tardiness (cf. e.g. 

[2],[3],[4]). Late work performance measures are not so widely 

explored. 

The scheduling problem is defined as a problem of assigning 

a set of jobs to a set of machines in time under given constraints 

([2],[3],[4]). Jobs j ( j=1,2,…,n ) are mainly characterized by 

processing times ( pj ) due dates ( dj ), define expected completion 

times ( Cj = ∑  
 
   i ) for particular schedule of jobs. 

The late work criterion estimates the quality of a solution (a 

schedule) on the basis of the duration of late parts of particular jobs. 

In the non- preemptive case the late work parameter for job j in a 

given schedule is defined as  

 

               0             if  Cj ≤ dj , j = 1,2,…,n 

Vj =        Cj - dj      if  dj < Cj < dj + pj , j = 1,2,…,n 

                pj            if  Cj ≥ dj + pj , j = 2,…,n 
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The phrase " late work " was proposed by Potts and Van 

Wassenhove [5]. Some researchers, e.g. Hochbaum and Shamir [6], 

use a descriptive name for this schedule parameter – the number of 

tardy job units.  

Leung [7] pointed out application of late work scheduling in 

computerized control systems, where data are collected and 

processed periodically. 

           The multiobjective problem that is considered concerns the 

minimization of a linear function of total completion time


n

1j
j

C , 

maximum tardiness (Tmax) and maximum late work (Vmax). This 

problem belongs to the class of simultaneous multiobjective 

problems. In the simultaneous problems, two or more than two 

criteria are considered simultaneously. Sen and Gupta [8] solve the 

problem 1//Lmax+


n

1j
j

C  by a branch and bound (BAB) algorithm. 

The organization of this paper is as follows. Section 2 

presents the problem formulation. Section 3 provides the local 

search approximation algorithms. Section 4 summarizes results of 

computational experiments and it is followed by conclusions are 

given in section 5. 

 

2. Problem Formulation   

A set of n independent jobs N = {1,2,…,n} are available for 

processing at time zero, job j ( j=1,2,…,n ) is to be processed 

without interruption on a single machine that can be handle only 

one job at a time, requires processing time pj and due date dj. For a 

given schedule σ of the jobs, completion time Cσ(j) = ∑  
 
   σ(i), 
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maximum tardiness Tmax(σ) = max{Tσ(1) , Tσ(2) , … , Tσ(n)}, where 

Tσ(j) = max{0,Cσ(j) - dσ(j)} and  maximum late work Vmax(σ) = 

max{Vσ(1) , Vσ(2) , … , Vσ(n)} can be computed where  

                 0                    if  Cσ(j) ≤ dσ(j) ,                   j=1,2,…,n 

Vσ(j) =      Cσ(j) - dσ(j)      if  dσ(j)< Cσ(j)< dσ(j) + pσ(j) ,  j=1,2,…,n  

                 pσ(j)                if  Cσ(j) ≥ dσ(j) + pσ(j) ,         j=2,3,…,n  

      The  problem of minimizing a linear function of total 

completion time 


n

1j
j

C , maximum tardiness (Tmax) and maximum 

late work (Vmax) is denoted by 1//


n

1j
j

C + Tmax + Vmax and called it ( 

P ). The problem ( P )  can be formulated as follows:  

  Z = Min{ ∑   
   σ(j)  + Tmax(σ) + Vmax(σ) }  

        σ   S  

Subject to 

Cσ(j) ≥ pσ(j)   

Cσ(j) = Cσ(j-1) + pσ(j)                j = 2,…,n                                              

Tσ(j) ≥ Cσ(j) - dσ(j)                 j,  j = 1,2,…,n                       -------( P ) 

Tσ(j) ≥ 0                                                           

Vσ(j) ≤ Cσ(j) - dσ(j)                  

Vσ(j) ≤ pσ(j)                            

Vσ(j) ≥ 0                                

Where S is the set of all schedules. 
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The aim in problem ( P ) is to find a processing order of the 

jobs on a single machine to minimize the sum of total completion 

time, maximum tardiness and the maximum late work (i.e. to 

minimize the 1//


n

1j
j

C + Tmax + Vmax ). 

       

3. Local Search Approximation Algorithms 

Local search algorithms can find the best approximation 

solution within a reasonable running time. Local search is a family 

of methods that iteratively search through the set of solutions. 

Starting from an initial solution which is obtained by applying 

some constructive heuristic, a local search procedure moves from 

one feasible solution to a neighboring solution until some stopping 

criteria are met. The choice of suitable neighborhood function has 

an important influence on the performance of local search. These 

neighborhood functions define the set of solutions to which the 

local search procedure may move to a single iteration [9]. This is 

formalized in the following definition:  

 

Definition I [9]: An instance of a combinatorial optimization 

problem is a pair ( S , f ), where the solution set S is the set of all 

feasible solutions and the cost function f is a mapping f:S        R. 

The problem is to find a globally optimal (minimal) solution, i.e. an 

s*  S, such that f(s*) ≤ f(s) for all s   S.  

3.1 Solution Representation [9] 

Solution representation depends on the problem specification. In 

a scheduling problem of n jobs, a solution is represented by a 

permutation of the integers 1,2,…,n. 
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Definition II[10]: A neighborhood function N* is a mapping  

N*:S     P(S)  which specifies for each s   S a subset N*(s) of S 

neighbors of s. 

        For sequencing problems, the natural representation is a 

permutation of the integers 1, 2,…, n with n the number of jobs. 

With this representation, two basic neighborhoods can be defined 

[9]. Each of which is illustrated by considering a typical neighbor 

of the sequence (1, 2, 3, 4, 5, 6, 7, 8). 

1. Insert(shift): Remove a job from position i in  the sequence  

and insert it at position  j (either before (left insert)   or after 

(right insert) the original position). Thus  (1,6,2,3,4,5,7,8) 

and (1,2,3,4,5,7,6,8) are both neighborhoods. 

2. Swap(interchange): Swap two jobs (i,j) which  may not be 

adjacent. Thus  (1,6,3,4,5,2,7,8) is a neighbor.  

Definition III [9]: Let ( S , f ) be an instance of a combinatorial 

optimization problem and let N* be a neighborhood function. A 

solution s*  S is called a local optimal (minimal) solution with 

respect to N* if f(s*) ≤ f(s) for all s   N*(s*). The neighborhood 

function N* is called exact if every local minimum with respect to 

N* is also a global minimum. 

3.2 Descent approximation method (DM)[10] 

        It is the simplest type of neighborhood search, which is 

sometimes known as iterative local improvement. In this method, 

only moves that result in an improvement in the objective function 

value are accepted.   

        The main components of a descent method are as follows: 
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1. Initialization  

        The search has to be initialized with an initial solution. This 

solution can be constructed by some heuristic method or it can be 

chosen at random. 

2. Generating of neighborhood 

       To generate a neighborhood, the two basic neighborhoods 

insert or swap which are illustrated in section 3.1 can be applied. 

3. Stopping criterion 

       There are many ways for stopping criterion of the method, the 

one that is used in this paper is a fixed number of iterations, in more 

precisely the method is terminated after 18000 iteration at a near 

optimal solution. 

3.3 Simulated annealing approximation (SA) algorithm [10] 

Simulated annealing (SA) is a probabilistic algorithm that is 

applied in combinatorial optimization problems. In simulated 

annealing, probabilistic acceptance rule is used. More precisely, 

any move that results in an improvement in the objective function 

value, or leaves the value unchanged, is accepted. On the other 

hand, a move that increases the objective function value by   is 

accepted with probability exp(-  / T), where T is a parameter 

known as the temperature.  The value of T changes during the 

course of the search; typically T starts at a relatively high value and 

then gradually decreases.         

The main components of simulated annealing are as follows: 
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1. Initialization  

The initial solution can be constructed by some heuristic method 

or it can be chosen at random. This solution will be the initial 

current solution for simulated annealing method with objective 

function value Z. 

2. Neighborhood generation  

To generate a neighborhood, the two basic  neighborhoods 

insert or swap which are illustrated in section 3.1  can be applied. 

3. Accepting test 

In this step the difference value between the initial current 

solution Z and the new value Zꞌ,   = Zꞌ - Z is calculated and 

evaluated as follows:  

a) If   ≤ 0, then Zꞌ is accepted as the new current solution 

and set Z = Zꞌ. 

b) If    > 0, then Zꞌ is accepted with p( ) = exp(-  / T), 

which is the probability of accepting a move, where T is 

a known temperature.   

4. Termination test 

The algorithm is terminated after 18000 iterations at near 

optimal solution.      

   

3.4 Genetic approximation algorithm (GA)[11]  

Genetic approximation algorithms are search techniques  based 

on simplification of natural evolutionary process, genetic 

approximation  algorithms operate on a population of solutions 

rather than a single solution and employ heuristics such as 
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selection, crossover and mutation to evolve better solutions. A 

population of solutions is represented by a string of a finite set of 

parameters called chromosomes. In scheduling problem, a 

chromosome includes genes that are a number of jobs that should 

be applied on one machine with permutation.        

The main components of a genetic algorithm are as follows: 

1. Initialization  

Initially many individual solutions are generated randomly or 

produced with a good heuristic to form an initial population. The 

chromosomes should be encoded. There are many ways to encode 

the initial generation, for scheduling problems the natural 

representation is usually used. The natural representation consists 

of permutation of the jobs 1,2,…,n which defines the processing 

order of the jobs. 

2. Fitness (evolution) 

The evolution function plays an important role in genetic 

algorithm. The fitness function is equivalent to the objective 

function in traditional optimization methods. 

3. Selection 

It is the stage of a genetic algorithm in which individual 

chromosomes are chosen from a population for later breeding 

(recombination or crossover). The process of selection is used to 

form each subsequent population during the evolutionary process. 

This process is done by computing the fitness function of each 

candidate solution and then selecting the individuals (according to 

fitness value usually) that will form the next generation parents.    
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4. Crossover  

Crossover is the process of making new candidate solutions 

from previous candidate solutions. This process uses the principles 

of biological evolution to form children (new candidates) from 

parents (old candidates). We used homogeneous mixture crossover 

(HMX) on each pair of parent solutions to generate two new 

solutions. This crossover is given by the mixture of the two parents 

uniformly by making a set (m) from genes, the odd position from 

the first parent and the even position from the second parent. Then 

separate genes without repetition of the gene, since we read the set 

(m) from the left, if the gene g does not exist in the child then keep 

it and put (o) in (m), otherwise we keep gene g in the second child 

and put (1) in (m), until (m) genes are exhausted. This way also 

gives two new children. This crossover preserves the absolute 

positions taken from one parent and the relative positions of those 

from the other parent. For example:  

 Parents 

 

Mixture Exchanging 

Parent1 798251634 799586245813623741 795862413 child1 

Parent2 956483271 001000001100111111 958623741 child2 

   

5. Mutation  

Mutation is a genetic operator used to maintain genetic diversity 

from one generation of a population of chromosomes to the next. 

Mutation randomly changes one or more element of the string 

(permutation).  

6. Termination 

The termination operator is the mechanism for stopping the 

evolutionary process of a genetic algorithm. Termination can occur 
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when the algorithm has reached a predetermined number of 

generations (iterations), an acceptable solution has been found, or 

when no solution improvement has occurred for a period of time. In 

this search GA is terminated if the best chromosome of the 

population doesn't change for 100 consecutive generations. 

  

4. Test Problems and Computational Results with 

the Local Search Approximation Algorithms   

Test problems are generated as follows: for each job j, an 

integer processing time pj is generated from the discrete uniform 

distribution [1, 10]. Also, for each job j, an integer due date dj is 

generated from the discrete uniform distribution [P (1-TF-RDD/2), 

P (1-TF+RDD/2)], where P = ∑   
   j, depending on the relative 

range of due date (RDD) and on the average tardiness factor (TF). 

For both parameters, the values 0.2, 0.4, 0.6, 0.8, 1.0 are 

considered. For each selected value of n, two problems are 

generated for each of the five values of parameters producing 10 

problems for each value of n, where the number of jobs 

n=50,100,200,300. 

The local search algorithms (i.e. descent method(DM), 

simulated annealing(SA)  and genetic algorithm(GA)) for the 

problem (1//


n

1j
j

C + Tmax + Vmax ) (P) are tested by coding them in 

Matlab R2009b and running on a personal computer hp with RAM 

2.50 GB.   Each algorithm stops when it attends to a fixed number 

of iteration. The (DM) and (SA) stop after 20,000 iteration and 

(GA) stops after 100 new generation of population.  

The computational results of local search algorithms  for the 

problem (P) are given in tables (4.1) to (4.4) that show the values of 
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each local search algorithm and how many times each of them 

catches the best value. Each table contains 10 problems where:  

EX = example number. 

DM = descent method value for the problem P. 

SA = simulated annealing value for the problem P . 

GA = genetic algorithm value for the problem P . 

Best = the best value. 

No. best = number of examples that catch the best value. 

Av. Time = the average of time in second for getting solution. 

 

Table (4.1): The results of local search algorithms for n =50. 

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 6395 6423 0.582676 6462 0.506278 6395 2.3971 

2 4765 4780 0.499135 4774 0.500460 4765 2.4087 

3 4304 4349 0.494884 4325 0.494979 4304 2.3592 

4 6019 6060 0.489996 6055 0.488871 6019 2.4186 

5 4164 4214 0.486802 4219 0.502979 4164 2.4088 

6 5280 5299 0.494951 5308 0.494046 5280 2.3756 

7 5838 5874 0.495978 5890 0.502825 5838 2.4129 

8 5191 5227 0.506029 5215 0.494777 5191 2.4127 

9 5097 5114 0.480152 5122 0.495186 5097 2.3820 

10 5288 5328 0.491072 5312 0.489667 5288 2.3719 

No. best 0 Av. Time 

0.5021675 

0 Av. Time 

0.4970068 

10 Av. Time 

2.39475 
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Table (4.2): The results of local search algorithms for n= 100. 

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 18987 19390 0.734482 19401 0.658349 18987 5.2709 

2 20723 21235 0.661327 21226 0.653215 20723 5.5581 

3 19211 19590 0.674532 19552 0.660796 19211 5.4432 

4 20409 20830 0.655261 20790 0.649451 20409 5.4264 

5 19317 19700 0.652724 19698 0.649839 19317 5.4152 

6 20497 20812 0.649166 20797 0.672833 20497 5.3507 

7 18659 19071 0.652451 19080 0.654630 18659 5.6460 

8 17551 17892 0.647136 17899 0.658415 17551 5.4470 

9 20078 20389 0.631262 20382 0.693263 20078 5.3957 

10 20943 21298 0.649257 21300 0.654339 20943 5.3995 

No. best 0 Av. Time 

0.6607598 

0 Av.Time 

0.660513 

10 Av. Time 

5.43527 

 

Table (4.3): The results of local search algorithms for n= 200.   

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 71105 76133 1.198537 76053 0.955301 71105 15.9462 

2 78611 82815 0.967703 82779 0.973503 78611 16.9266 

3 85370 89810 0.970000 89711 0.971836 85370 16.0068 

4 78768 84688 0.961153 84605 0.975451 78768 15.9601 

5 74506 79357 0.958148 79363 0.958554 74506 15.9958 

6 84066 88457 0.983067 88502 0.976251 84066 16.9431 

7 80723 86142 0.962179 85949 0.970662 80723 16.1494 

8 87814 93941 0.964851 93936 0.979546 87814 15.9670 

9 76343 81607 0.958335 81788 0.966122 76343 15.2053 

10 78499 83276 0.966904 83214 0.975118 78499 15.9035 

No. best 0 Av. Time 

0.9890877 

0 Av. Time 

0.9702344 

10 Av.Time 

16.10038 
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 Table (4.4): The results of local search algorithms for n=300.   

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 119294 128396 1.263755 128360 1.239453 119294 34.8934 

2 120367 130709 1.216018 130907 1.186773 120367 34.6639 

3 123204 133171 1.880526 133294 1.205262 123204 33.2739 

4 110212 119518 1.188934 119518 1.254122 110212 34.0288 

5 123287 134628 1.199343 134525 1.174999 123287 33.3615 

6 120395 129182 1.353742 129174 1.328534 120395 34.9723 

7 125349 131618 1.225027 131618 1.243116 125349 34.7649 

8 122456 132182 1.870435 131726 1.885144 122456 33.4627 

9 112351 122439 1.199825 122439 1.263254 112351 34.1293 

10 127426 138746 1.399265 138927 1.397453 127426 33.4537 

No. best 0 Av. Time 

1.379687 

0 Av. Time 

1.317811 

10 Av.Time 

34.10064 

 

The average computation time of (DM) is close to that of 

(SA) while for (GA) is large. The  results of the above tables show 

that the (GA) performs very well. 

 

5. Conclusions 

           In this paper local search algorithms (descent method (DM), 

simulated annealing (SA) and genetic algorithm (GA)) are 

proposed to find approximation solutions for the problem of 

minimizing a multiobjective 


n

1j
j

C +Tmax+Vmax. Computational 

experiments for the local search algorithms on a large set of test 

problems are given. 

The main conclusion to be drawn for our computational 

results is that the genetic algorithm (GA) is more effective, whereas 
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the average computation time of descent method (DM) is close to 

that of simulated annealing (SA) while for genetic algorithm (GA) 

is large.  

An interesting future research topic would involve 

experimentation with the following multiobjective  problems :  

1.  1//F(Tmax , ∑   
   j , ∑   

   j ).  

2.  1//F(∑   
   j , Vmax , ∑   

   j). 
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 خوارزميات بحث محلية لمسألة جدولة متعددة الأهداف
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 ياضياتقسم الر - كلية العلوم -جامعة ديالى 
           

 المستخلص

 جدولة ألةلمس تقريبية حلول يجادلإ محلية بحث خوارزميات يقدم البحث هذا ان

 مجموع للأهداف الثلاثة المجموع هي المسألة حيث واحدة ماكنة على الأهداف متعددة

 . متأخر عمل لوحدات تأخير عظمأو بللاسا تأخير عظمت الإتمام الكلي ، أاوقأ

 للأجزاء زمنية فترات على عتمادلابا ةالجدول كفاءة يخمن المتأخر العمل مقياس

 طريقة،  النزول طريقة وهي المحلية البحث خوارزميات أقترحت . عماللأل المتأخرة

 صياغة تم الحسابية التجارب نتائج على بالاعتماد . الجينية والخوارزمية  المحاكاة تقوية

  .المحلية البحث خوارزميات كفاءة حول استنتاجات

 جدولة متعددة الأهداف، مقياس عمل متأخر،بحث محلي، : الكلمات الرئيسية

 خوارزمية جينية.

 

  

 

 

 


