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also beneflicial such that provide the algorithm with more
chances to exchange evolved angles between individuals.

5.Conclusion

+
The multimembered (i, 2)-ESs provides the user with

the ability to vary the amount of strategy parameters, i.c.,
standard deviations and inclination angles attached to the
ES’s individuals. Moreover, the concept of self adaptation
of these strategy parameters by means of extending the
eviolutionary operators mutation and recombination to the
step sizes and rotation angles provide the robustness and
learning capabilities of the mechanism. For Rosenbrock™s
Saddle problem, the mutative step size control as
presented by ES1 is insufficient for the complicated case of
the problem, because the internal models of individuals are
to restricied hy ng = n 1o explore the 4-dimensional search

space in an effective way. On the ather hand, adapting a
relatively large amount of strategy parameters including
rotation angles, as implied by ES2 and ES3, were found
here to be sufficient (o locate the reliable solutions.
Additionally, ES3 requires more computational work than
ES2, as it uses more strategy parameters, but it finally
pointed out to be more cffective then the latter ES.

Reference
[1] Schwefel, H-P. (1981): Numerical Optimization Of
Computer Models, Chichester: Wiley,
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300 8.3371e-003 | 4.4710e-010 | 2.7581e-004
325 6.1316c-003 | 3.6148¢-012 | 1.9108¢-004
350 4,6242e-003 | 6.5276e-013 | 1.3445e-004 |
375 3,4573c-003 | 3.4632¢-013 | 7.1630¢-005
400 2.6312e-003 | 2.0917e-013 | 3.9637e-005
425 1.993%e-003 | 2.1868e-013 | 8.4606e-007
450 1.5239e-003 | 1.5640e-013 | 2.6221e-011
475 1.1368¢-003 | 2.9217e-013 | 2.2194e-014
500 B.3619e-004 | 3.0444e-013 | 9.9045e-015

From the results above, one can see the difference in the
reliability behavior of ES1 at one hand and ES2 and £S3
at the other hand. The performance of an evolution
strategy like ES1 becomes worse when only standard
mutation with no oricntation ability is used, ln such cases,
the step lenpgth changes provided by the standard
deviations occurred to an evelved individual did not let
that individual to locate the promising region of the search
space. While the results of 52 and ES3, show thai thie use
of correlated mutsiion with an evolution strategy for this
type of problem will causes more effective search, iLe.,
betier approximation of the minimum and more robust
search. In other wards, the orientation feature permits the
evolution strategy to change its direction so as to locate the
rehable region of the search space. Here, while the
stundard deviations veclor remove the evolved individual
from one position to another via addition or subtraction of
step lengths, the inclination angle vecior enable that
individual to change its orientation. Moreover, from the
resulis of both these two evolution strategics, on¢ can
deduce that the wuse of rccombination operator to
recombine parents’ angles, rather than standard no

- recombination operation applied to inclination angles, is
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3.E53: (30--200)-ES with number of parents g4 =30and
number of offspring A =200. Use self adaptation of
ne = nstandard deviations, and the standard deviations

c;i Vie{l,.,n} are initialized to a value of 0.5, Use
corrclated mutation with p, =n(n-1)/2. Also, as in
ES2 the standard recombination setting are used for

only

objective

deviations;; while we

recombination on
a]'Vj e{l,..,n(n-1/2}.

variables  ;

and

standard

used here global discrete

inclination

angles

All resulis were obiained by running fiftecn experiments
per evolution strategy and averaging the resulling data.
Each algorithm run performed 3500 generations and at
vach generation we store the minimum objective function
value of the current evolved population values. Then, the
results in the following table are average of minimum of
the different fiftcen runs listed at every twenty-five

generation,
Table 1: Experimental Results
Gen. Num, ES1 | FS2 LS3
1 1.0677e+002 | 1.0677¢+002 | 1.1374e+002 |
25 8.3806e-001 | 1.1771e+002 | 1,4471e+000
50 3.2190e-001 | 2.6649e-001 1.1921e-001 |
75 1.8906e-001 | 1.7441e-001 5.7784e-002
100 1.2456e-001 | 1.0936e-001 2.5561-002
125 8.4010e-002 | 6.1457e-002 1.2126e-002
150 5.9023¢-002 | 4.0747e-002 | 6.1171e-003
175 4.1338e-002 | 2.5834c-002 2.6805¢-003
200 2.9641e-002 | 1.,7933e-002 1.3899e-003 |
225 2,1335e-002 | 9.5590e-003 9.0278¢-004
250 1.5286¢-002 | 1.9512e-003 6.5137e-004
275 1,1232e-002 | 1.5993c-06 | 4.0483e-004
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The harder problem of Rosenbrock’s Saddle is with
n=4 [8]|?] which has becn attempted by some researchers
|8]. However, their evolutionary algorithm (Breeder GA)
took roughly 77.000 function evaluations o reach

—
S(x)=01. Hence, in the next seclion we present
evaluation strategies with our proposed setting,

4. Experimental Results

Having presented the concepts of the multimembered
evolution strategics with correlated mutation together with
the formulation of the mathematical modal of
Rosenbrock’s Saddle problem in the previous sections, we
have in this section to look at the experimental results of
three evolution strategies with different settings. The
evolution strategies uscd in the experiments are listed
below:

LESI: (304+200)-ES with number of parents g =30and
number of offspring A =200. Use self-adaptation of
ng = nstandard deviations, and the standard deviations
oi Viel{l.,n} are imiialized to a value of 0.5 No
corrclated muiation, i.e., ng =0. Finally, the standard
recombination setting suggested by Schwefel is used.

2.ES2: (30+200)-FS with number of parents 4 =30and
number of offspring 1 =200. Use self adapiation of
ey = 2 standard deviations, and the standard deviations
o; Viell,. ,n} are imitinlized to a value of (L5, Use
correlated mutation with 5, =»#-1. Finally, the
stundurd recombination seiting are used for only
objective variables y; and standard deviations; ,while

we used here global discrete recombination on
inclination angles aj¥jie{l.,n-1}.
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ne last thing remains to be explained is the following,
Schwefel’s claim is that there is an implicit link between an
appropriate internal model and good fitness values and so
good values of the siratcgy parameters will emerge from
the population and aecelerate the rate of convergence. He
likens this lipear correlation process to the cpigenctic
apparatus or transmission mechanism hetween genolype
and phenotype, whereby a single gene can influcnce
several phenotypic characterisiics (pleitropy) and vice
versa (pulygeny)|7].

1.Rosenbrock’s Saddle Problem

The Rosenbrock’s Saddle problem, also called
Rosenbrock’s vallcy or Banana problem, as formulated in
equation 10, is a unimodal optimization problem that has
the minimum=0.0 located at y; =1.0, 1</ < nwithin a long
narrow curved valley which is only slightly decreasing and
with a flat bottom. This walley 15 located near the
boundaries of the search space. To find the valley is trivial;
however, convergence to the global minimum is difficult
hecause the problem has a strong inter-parameter linkage
or non-separable characteristic, i.c., there are nonlinecar
interactions hetween the variables of the problem. This
characteristic has been considered by some authors to be
real  difficult and challenge one for amy continuous
optimization program, and the feature will prohably cause
slow cunvergence in many optimization algorithms since
they must permanenily change their search direction to
reach the minimum,

—> n—1 2 5

Sx)= 2 100(x? —x; ) (1= x)” (10)

=1

where -2.048 < y; < 2.048
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which are unit matrices except that

fpp = taqg =C0s(, ) tpg = ~igp =3y )
pp =gy 2 and pe - t4p “r e, the

trigonometric terms are Jocated in column p and q each.

The factors 70, © , and £ are rather exogenous
parameters, which Schwefel supggested to set them as
follows

1 1

70 S = r - : o
Van | Vo ,and B=00873 [~5%]

The conceptual algorithm of the mutation operation on
h__)
strategy parameter ¢ and is embedded below ( sce figure

2) in the framework of the above sequences.

>
Alszorithm 1: Coordinate Teanstormation of Positional Angles &
Bioywer = 0~ ng 1

"zl'j.’ﬂt‘f’ =R-1 .

ng=ng

for 7= nifgep 1o Hypper

ny=it—1 .

np = R

for/=110/7
x1 = X x7 = X(n9), ;
V= sinfﬂ'fn.j)); Yo = EDS{E'E(H‘?});
() =xp*ypexnyyr xa) =Xty - x2 ¥y
nz2 =ny -1
Mg = ny -1t

endfor

endfor

-

Fignre 2;: Conceptual Algorithm of Coordinate Transformation
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' 1 ) .
wilere (C(n‘](g s of )1-'~:LGF i‘l(o_ > €f )) cor is a ]"Elll:lﬂ'm

vector with normally distributed, eventually correlated
—>

components. The vector €27 can be calculated according to
__> b I_—)
|6] cor =T Z where:

> N
Z =(z1vzn) with @ NQO.g ; IVie

; ; 3

JI If'-;,qa-'

J =3 b5 1>, %
|

J

—~——

1,....n}

o !> ng
and L (8
iy Hpy ;
I'= 1 L '['pq(‘{j)
and p=i g =p+l

With /=1V2@ng=p) (P+1)-2ng+4 34 the rotation

matrices
I 0 0
0 1 l
|
uosa'j —sin | Ji
! |
1
: 1
7o )= ! !
crda gl i X
‘l sm(.l'j cos“'/ ' lf]')

e
A
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which proceeds by first mutating the strategy
— - —>

paramecters @ and @ and then modifying ¥ according to

the new set of strategy parameters obtained from mutating
- —>
O and @

E Mer —> ey
« Mo R R7 mutates the strategy parameters

molo )= o = (0185021 20,0, 5Pz, +20)) (5)

where 20~ VO 107 Lz~ NOT D) Vie . g

Again lower bound *7 is enforced for all 7/,

. >

. o .fi,:’_ul oy
1P S ~
o« MR it mutales &

>

mey )= a. = (01+z1,-»-7ﬂ'”(! ' .’-:HG_) (6)

where %77 N(6,8%) Viedl g

Rotating angles are kept feasible (i.c., in the interval

[=7.7]y by circularly mapping them into the feasible range
whenever it is left by mutation,

—>
-l N , . . .
o MxRTOR mutates the shject vaviahles v, using
- -
the already mutated 7 and ¢ ;
" > > - -
Hlx(x ) = X’ - (,\'[ + COI‘1(0'7(10)>---).X,7 +COF';;(0‘ ?a')) (?)
155

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

2005 — Joadixs > Hypih5, e &52a W Ayl e At gy il pils D08 &gt Bl o

%12 yrepresents the rotation angle of the hyperellipsoid. In
the general case of correlated mutation, hyperellipsoid
may alipn itsclf arbitrarily in the n-dimensional search
space [2][6].

lines wFrapnnd nnstdian
probability density

Figure 1 Corrclated Mutation for case
I7:2-,,r.i'0—12 ﬂ!’id ;;ru:].

Then, the correlated mutation operator
mi . vl > . G i ",
tro.. 3} is defined as foliows {Zj:

— > > -> -5 > -
m{fo_‘T,ﬁ}f_g Y=l Yolmg (s Yl V= .6 ) ()

* where x stands for Cartesian product relation.
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* mg: RS9 — g "0 mutates the strategy parameters

_.)
o
- >
ma(e )= o = (Fexplz) + ZO)’“'JUHUEHP(ZHG +2q)) (2)
where zo~ N(0.7§) .z~ N(0.7%) Vie{l. g}

To prevent standard deviations from becoming
practically zero, a minimal value of €0 is algorithmicaily
enforced for all ¢/,

-

nf? ]
. T ' - .
mx RE = R o itates the nhject variables « :

—> >
mie(y )= ¢ m bz, o)
where (3)
' 2 i R "‘cr“}
2i ~N(0.5 ) Viell..n} and ./':~’r ne {2 ag g
L

1

P

2. Correlated Mutation in Iovolution strategies

Then, Schwefel follows |1]]4][5] proposed the concept of
correlated mutations by mcluding additional strategy

ﬁ - -
parameters o , which represent the angles of the principal
axes of the generalized n-dimensional normal disiribution.

The basic idea of correlated mutation is captured here
for the case n=2, 5, =2, and '@ =lin figure 1, where the

lines of equal mutation probability density of the two-
dimensional normal distribution are plotted. Notice that

the standard deviations ©! and ©2determine the relation
of the length of the main axes of the hyperellipsoid, and
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T'able 1: Notational conventions nsed

Notation Description -
7 | Space of individuals
;’ cl A gingle individual
! ‘: e ph 1 Vector of object variables !
SR> R Objective function
D[ >R Fitness function
M TParent population size o
y) Offspring population size

~ -3 —_— )
I'(0) = {a1 (1),..., 2 4 (1)} opulation at generafion ¢

Mutation operator (with
parameter set ¢, )

ﬁ'}(.\_ym ; y 74

Un correlated mutation operator consists of the addition
of a normally distributed random number to each
compoenent of the object variable vector, corresponding to
a step in the scarch space. The variance of the step-size
distribution is itself subject fo mutation as a strategy

variable, That is m,, ,1:/ -> 1, is defined as follows ' [3]:

- N N N
irg,r Ha )= sl )omalo )= (<) (1)

Which proceeds by first mutating the strategy

%
parameters 5 and then modifies y according to the new

—>
set of strategy parameters ohtained from mutating o :

' Where 0 stands for composition relation.
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1. Introduction

In contrast to exogenously rule for changing the
standard deviations of mutations (i.e., the 1/5 success rule)
in (1+1)-ES, Schwefel takes a more general method that is
inspired from mature to adjust the mutation parameters
(internal madel) of the algarithm, A method was found hy
taking a closer look at the natural model, where the
genotype itself incorporates mechanisms to control its own
mutability (by means of genotype segments that encode
repair enzymes, or by so-called mutator pgenes).
Transferring this to the evolution strategy means that the
standard deviation for mutation must evolves by means of
mutation and recombination just as the object variables do
in a process called sclf-adaptation of the strategy
parameters [1]]2].

According to the generalized structure of (u, 2)-ESs
individuals, there are two forms of mutation: uncorrelated
and correlated mutation operators., This scetion reviews
the rule of uncorrelated mutation, Section 2, then presents
in some details the correlated mutation as will be used in
what follows. Section 3 then prescents Rosenbrock’s Saddle
problem, its difficulties and the previous attempts to track
this problem, Finally section 4 presenis evolution strategies

->
with our proposed setting fur strategy parameters o and

-
a » their length 5 and 5, , type of perturbation operators

and the experimental results. Conclusions are drawn in
section 5.

Before continue, fable 1 presenis some notational
conyentions used in what follow.
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An Evolution Strategy With
Correlated Mutation For Solving
Rosenbrock’s Saddle Problem

Dr. Mayada F. Abdul-Ilalim”

a \
Abstract

The Rosenbrock’s Saddle problem is a unimodal
optimization problem that has the mirimum eptimum
located within a long narrow curved valley which is
only slightly decreasing and with a flat bottom. This
valley is located near the boundaries of the search
space. To find the wvalley is trivial; however,
convergence (o the global minimum is difficult
because the problem has a strong inter-parameder
linkage or non-separable characleristic. The

|
multimembered evolution strategies, (u,2)-ESs can
he used as search alparithm to find this minimum
optimum. This paper presenis an evolution strategy
with appropriate setting for their operators and
strategy paramelers that enable the algorithm to solve
Rosenbrock’s Saddle problem reliably.

o /

" University of Baghdad - Collepr of Scicnce - Department of Computer
Science
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