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1. INTRODUCTION

A data set can show fitting to many distributions. It is important for statistical inference to determine statistical
distribution that best fits to a data set. In recent years, many new statistical distributions have been suggested to modeling real
data sets. These new distributions have better fit than current distributions for some real data sets. In literature, many methods
have been developed to obtain new continuous distributions. Eugene et al. [9] introduced a family of distributions generated
by beta distributions. Cordeiro and Castro [6] introduced the family of distributions generated by the Kumaraswamy
distribution. Nadarajah and Kotz [15,16] suggested The beta gumbel and the beta exponential distributions. Akinsete et.al. [1]
introduced The beta-pareto distribution. Alzaatreh et al. [2] introduced the new class of distributions by extend method of
Eugene et al. [8]. The motivation of this study is method suggested by Alzaatreh et al. [2]. This method can be defined as

follows. Suppose K(t) and K(t) is probability density function (pdf) and cumulative distribution function (cdf) of a
continuous T €[a,b] , —oo<a <b <o random variable, respectively. Let G(x) is cumulative distribution function (cdf)

of any random variable X and W (G(X)) is a function that has the following properties.
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i. W(G(x) <[a,b]

ii. W(G(x)) is a differantiable and monotone non-decreasing function.

iii. When X — —oo, W(G(X)) — a and while X > oo, W(G(x)) > b.
In this case ,the family of new distributions is defined as follows

W(G(x))
F(X)= j k(t)dt = K (W (G(x))) )
New distributions obtained by using this method are called as T — X distributions family. (Alzaatreh et al. [2]). Recently,
many researchers have found new statistical distributions using this method. Some of these studies can be included as
follows: Alzaatreh et al. [2,3] introduced Beta-Exponential-X distribution, Weibull-Pareto distribution and Weibull-X
families of distributions. Alzaghal et al. [4] suggested Exponentiated T-X Family of distributions, Tahir et al. [22,23,24]
introduced the odd generalized exponential family of distributions, The logistic-X family of distributions and A new Weibull
family of distributions. Celik and Guloksuz [8] suggested a new lifetime distribution called as Uniform-Exponential
Distribution.
The main purpose of this study is to introduce a new statiscal distribution with four parameters by using method of

Alzaatreh et.al. [2] and this new distribution is called as Exponential Power Chen (EPCh) distribution. The rest of this paper is

organized as follows. In section 2, information is given about Exponential power and Chen distributions. In section 3, EPCh
distribution with parameters (/1,05, B, 9) have been introduced. In section 4, the some statistical properties such as hazard

function, random number generator, moment generating function, moments, variance, skewness and Kkurtosis coefficients,
renyi and shannon enropies for this new distribution are presented. In section 5, maximum likelihood (ML) estimators for
parameters of EPCh distribution are obtained. In section 6, a simulation study to see the performances of this estimators in
terms of mean square errors (MSESs) and biases is performed. In section 7, a real data analysis is presented. Finally, conclusion
is given in section 8.

2. Exponential Power (EP) and Chen Distributions

EP distribution introduced by Smith and Bain [21] is used to modeling lifetime data. The cdf, pdf and hazard function (hf)
of a random variable X having EP distribution with & and /3 parameters can be written in order as follows :

Y

F(x)=1-exp 1—exp(—j @)
(04
x Y x Y

f(x)=x""a""Bexp {—j exp 1—exp(—j ®3)
o (04
<V

h(x)=x""a"" Bexp (—j 4)
o

Another distribution used to model lifetime data is Chen distribution suggested by Chen [7]. The cdf, pdf and hf of a
random variable X having Chen distribution with 4 and @ parameters are given, respectively, by

G(x):l—exp(/l(l—exp(xg))) ©)
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g(x)=Ax""0exp(x’)exp (/1 (1— exp(xg))) (6)
h(x)=Ax""6exp(x’) @)

3. Exponential Power-Chen Distribution
This new distribution is obtained by using method of Alzaatreh et al. [2]. Suppose that W (G (X)) in Eq. (1.1) is defined as
follows:

W (6(x))=~1og(1-6(x)
(©))
= l(exe —1),
where G (X) is defined in Eq. (5). If it is used pdf of EP distribution defined in Eq. (3) instead of K(t) and a=0, a new
distribution called as EP-Ch distribution with A, , f and € parameters is obtained. Cdf, pdf, hf, inverse hazard functions
(ihf) and rf of EPCh (ﬂ,, a, f, (9) distribution with are given as follows.

/l(exp(xg )—1)

F(xa, B,4,0)= I t"a B exp[(éjﬂ]exp(l— exp(%)ﬂJ dt

0

p ©)
= 1—exp[l—exp((&j (exg —1)?]
o
f(xa B4 9)—(£jﬂ(exg —l)ﬂfl x?'gB exp(x’) ex (ijﬂ(exg —1)ﬁ X
AP O)=| p p o
p (10)
xexptl—exp[(ij (exg —1)/}D
(04
: _ ) f(x)
h(6e A2 0)= 200 " Reo
A g x? A1 0-1 x? A g x? B (11)
:(EJ (e —1) x*1gpe exp[(;j (e —1)}
_f
TR
A o - 0
(j (ex 1) X" 1gpe"
- \¢@ x (12)

a0 £] (-4
e
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R(X;a, B,1,0)=exp (1—exp [(gjﬁ (eX" _1)ﬂ]j (13)

The plots of df, pdf, hf and ihf for the various parameter values of the EPCh(/I,a,ﬁ,H)distribution are given in the
following order: Figure 1, Figure 2, Figure 3 and Figure 4.

a=15/=2,1=02and #=0.3,05132 pS=26=031=02and ¢=05,152,3

a=1560=031=02and f#=0.6,0.9,2,4 a=15,=06,0=03and 1=05,0.7,1.4,2

Figure 1. Df plots of EP-Ch distribution for different parameter values

pe2e=020=01

p£=2,60=021=01and «=0.2,0.3,050.7 a=256=02,41=0.1and £=0.50.9,2,6
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7777777777777777777777777

a=2,4=051=01and #=0.2,05,09,2 a=2,=056=15and 1=0.9,0.5,2,3
Figure 2. pdf plots of EP-Ch distribution for different parameter values

a=15/=020=05ve1=152,253 a=1560=021=05ve =0.915,225
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Figure 3. hf plots of EP-Ch distribution for different parameter values
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a=2,4=051=0.1and 8=0.2,050.9,2 a=2,4=056=15and 1=0.9,0.5,2,3

Figure 4. ihf function plots of EP-Ch distribution for different parameter values

4. Some Statistical Properties for EP-Ch distribution
4.1. Random Numer Generator for EP-Ch Distribution

The method of inversion transformation has been used to generate random numbers from EPCh(l, a, f, 9) distribution

as following
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J—
p

F(x)=u:>x:%log exp| — +1 (14)

Where u is defined on the unit interval (0,1). When u = 0.5 in Eq (14) the median for EPCh distribution is obtained. In this
case, the median can be written as follows;

el )l

B

median:%Iog exp| — +1 (15)

4.2.Moments for EP-Ch distribution

The r™ moment of a random variable X having EPCh distribution with (/1, a, ,8, 0) parameter is obtained as follows;

E(Xr):Tx'f(x)dx

v o
=[x (iJ (e*" —1)/’7 BXOY(X, at, B, 4, 0)dX
0 [04

Where y can be written as follows:

y(x.a,f,2,0) = eXpLXQ +(§jﬂ (¢ —1)ﬂ +1—exp((§jﬂ (e” —1)’5B

B B
l 0
From the equation (16), as a result of U = H—) (e(x ) —1) J transformation, r™ moment is obtained as follows.
(04

E(Xr):T[In(lJr%u;]Te“el‘eudu (17)

0

By using the equation (17), the coefficients of skewness (CS) and kurtosis (CK) can be computed using the following
formulas;

E(x3)—3E(X)E(X2)+2(SE(X))3 (18)
(B(x*)-(E()))

K E(X*)-4E(X)E(X?)+6(E(X)) E(X?)-3(E(X))’ o

E(x)-(E(X)) |

For different parameter values of EP-Ch distribution, the r™ moment, variance, skewness and kurtosis coefficients are given
in Table 1.

CS =
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Tablel. r" moment, variance skewness and kurtosis values for EP-Ch distribution

(. 5.0,2) E(X) E(X?) E(X®) | E(X" Var(X) | siewness | Kurtosis
(0.6 051 0_5) 0.4065 0.3187 0.3163 0.3591 0.1535 1.0300 3.3540
( 0.6.0.5.1 1) 0.2414 0.1221 0.0812 0.0632 0.0638 1.2960 4.2560
R 0.1357 0.0413 0.0177 0.0086 | 0.0229 1.5390 5.2950
(0.6,0.5,1, 2)
(0 6.2 0.5.0 7) 0.2424 0.0786 0.0295 0.0122 0.0198 0.3006 2.3390
e 0.4661 0.2424 0.1349 0.0786 0.0251 -0.4042 2.5590
(0.6,2,1,0.7) 0.6704 0.4661 0.3327 0.2424 | 0.0167 -0.9544 3.8510
(0.6,2,2,0.7)
(0 6.0.5.10 7) 0.3180 0.2033 0.1675 0.1596 0.1022 1.1610 3.7670
e 0.3859 0.2019 0.1223 0.0813 0.0529 0.2814 2.2520
(0.6, 11, 0,7) 0.4661 0.2424 0.1349 0.0786 0.0251 -0.4042 2.5590
(0.6, 2,1,0.7)
(O 5.0.5.10 7) 0.2768 0.1573 0.1164 0.1003 0.0807 1.2310 4.0110
e 0.4591 0.3976 0.4318 0.5337 0.1868 0.9616 3.1610
(1,0,5, 1,0,7) 0.7158 0.8854 1.3263 22171 0.3730 0.6951 2.5440
(2,0.5,1,0.7)
The plots of coefficients of skewness and kurtosis are given in Figure 5 and Figure 6.
a=0.6; 4=0.5;6=1 =0.6; 3=0.5;A=0.7;
- ' ' ' N 50 ' ' '
X X
< <
2l |
3 3
0 ‘ ‘ ‘ 0 ‘
0 0.5 1 15 2 0 0.5 1 15 2
lambda theta
o=0.6;1=0.7; 6=1 A=0.7: p=1 ﬂ=0-5
0 ' ' ' <2 ! :
£ X
o] ©
O 5 ‘ ‘ w 00 ' ' ‘
0 0.5 1 15 2 0 0.5 1 15 2
beta alpha
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Figure 5. The plots of coefficient of Skewness for EPCh distribution
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Figure 6. The plots of coefficient of Kurtosis for EPCh distribution
4.3.Moment Generating Function

The moment-generating function (mgf) of a random variable X having EP-Ch(/l,a,,B, (9) distribution, M, (t) is obtained
as follows.

0
=2 e (X @

4.4. Order Statistics for EP-Ch Distribution
Let X, X,..., X, be arandom sample taken from EPCh( 4, a, 3,0) distribution. Let X(].'n) < X(Z:n)"' < X(n:n) indicate

the order statistics obtained from this sample. The pdf of the i order statistic for i =1,...,N is shown as f., (X) and it is

given by;
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)= gy ()] 1 ()]

( j )ﬁ (e(xg) _1)ﬁ1 BOx e exp[(jjﬁ (e(xg) —1)? @1)

= X

B(i,n—-i+1)

y exp[l_ex.o[(g]ﬂ G 1)ﬂD ll—exp {1_ exp([%)ﬂ G _JN

Where Ez(ﬂ,,a,ﬂ, 0), B(..) is the beta function. F(x,,u) and f(x,,u) are cdf and pdf of the EPCh distribution,

respectively.
4.5. Mean Remaining Life

The mean remaining life function, m(t), defined as the expected value of the remaining lifetime after a fixed time t for a

i-1

continuous random variable T with a life function, R (t) , is stated as follows:

m(t)=E[T-t/T >t]:ij.tw(x—t)f (x)dx:ijmxf (x)dx —t. (22)

R(t) R(t)™
Guess and Prosehan [11]. The other formula for m(t) is obtained by the help of Tonelli's theorem [20,26] and is given as

follows:

m(t)=E[T —t/T >t]:%t).|.f(x—t)f (x)dx

:ﬁj“’t(j dujf (x)dx

=t

(23)
1 = %
=—— f(x)dx du
L oo
1 e
=——| R(u)du.
R(t).[u=t ( )
From equation (22), the mean remaining life function for the EP-Ch(a,ﬂ, A, H)distribution is given by
1 (F (2 (e Pt
mt)=——| | x| = | (e* -1 X0k (X, a, B, A, 0)dx |-t 24
(t R(t)uu( ) Aok e B )J (24)

Where k can be written as follows:

K(x, @, B, 1,6) =exp[x9 +(£jﬁ (e _1)ﬁ e exp& g jﬂ (¢ 1)/3B
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B s
A 0
As a result of applying the transformation U = (—j (e(x ) —1) in the Eq. (4.11), m(t) is obtained as follows.

o
N
mt)=——| [| In|1+=Zu” || e'e**'du |-t 25
() R j ~ (25)

B

) B

where S = [—j (etg —1) . According to Bryson and Siddique [5] and Ghitany et al.[10], if hazard function of a non-
a

negative continuous random variable T is decreasing (increasing), then mean remaining life function of T is increasing
(decreasing). The values of M(t) fort=1,2,3 and the different parameter values of EPCh distribution are given in Table 2
and its plot is given by Figure 7.

Table 2. m(t) values for t=1,2,3 and the different parameter values of EPCh distribution

(. 8,6,2) m(1) m(2) m(3)
(1.5,0.2,0.5,1.5) 1.4529 3.5196 3.8974
(1502,05.2) 1.0402 2.3229 3.7419
(1.5,0.2,0.5,2.5) 0.7466 3.1971 3.6839
(1.5,0.2,0.5,2.5) 0.5238 3.1419 3.6825
(15,0902,05) 5.1339 6.0212 6.4235
(1.5,1.5,0.2,0.5) 2.4975 3.8020 4.0010
(15,2,02,05) 2.9014 2.7051 2.4862
(15, 2,02,05) 2.7345 2.4192 2.1165
(0.2.0503,000) 26.8366 279178 28,5566
(0.5,0.5,0.3,0.01) 56.9885 58.4539 59.342
(15.05,03000) 1238780 1257015 126.8180
(2,05,03,000) 148 8599 1507784 151.9081
(1.5,2,0.3,0.01) 165.5861 164.6076 163.6312
(1.5,2,0.5,0.01) 20.2103 19.2162 18.2262
(1.5,2,0.7,0.01) 7.8161 6.8215 5.8369
(1.5,2,0.9,0.01) 44221 3.4286 2.4650
(2,1.5,1.5,0.01) 1.8048 0.8286 0.0752
(1.5,0.6,0.5,0.01) 15.5495 15.2069 14.6775
(1.5,0.6,0.6,0.01) 9.1948 8.6193 8.0192
(15.0.6,0.7,0.00) 5.9921 55846 49763
(1.5,0.6,0.9,0.01) 3.1885 2.9301 2.4320
(0.2,050.2,05) 0.4386 0.5408 0.5999
(0.5,0.5,0.2,0.5) 2.0837 3.7894 4.3722
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(1.5,0.5,0.2,0.5) 12.5983 14.3185 15.8991
(2,0.5,0.2,0.5)
(1.5,0.4,0.15,0.2) 4334017 463.4297 483.7846
(15,04,0.2,0.2) 72.1829 78.2397 82.4504
(1.5,0.4,0.3,0.2) 13.0904 14.1164 15.0439
(1.5,0.4,0.4,0.2) 5.61672 5.8228 6.33779
(2.5,0.5,0.2,0.1) 256.8916 266.7358 2735476
(2.5,0.8,0.2,0.1) 207.7318 212.4193 215.5393
(2.5,0.9,0.2,0.1) 204.6623 208.2875 210.7467
(2.5,1.5,0.2,0.1) 214.6724 215.3445 215.6490

a=1.5,$=0.2,8=0.5;

i=15 0=159=022=05
600}~ a2

=25 p=0.9
s00(- =3 600 p=15

p=2
400 1 500 p=25
E
300| | o
E
200| 1 300
100 i B 2001
_ B— -
0 1 2 4 6 8 10
t —
0 2 4 3 8 10 12

a=15/=026=05vw1=152253
a@=1560=02,1=05ve f=0.9,1.5,2,25

5 1ol (=0.5:9=0.2=0.6
4 . . .
a=15B=0.42=0.2 —
i =
0=0.15 a=05
700 . 6=0.2 15/ "i;s
600 - 0=0.3 al
/ 0=04
500 25
| E
E 2
£ 400
| 15
300
1
200
05
100 ;
0 H 4 [} [ 10 12
O 2 4 6 8 10 2 t

£=056=021=05vexa=0205152
a=15,=04,1=02ve6=0.150.20.304

050030001 i w5600
T T T

£=056=031=0.01vea=0205152 a=15,=061=0.01ve =05,0.6,0.7,0.9

Figure 7. Plots of the mean remaining life function for EP-Ch (a,ﬂ, A, 9) distribution
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4.5. Measures of Uncertainty for EPCh distribution

In this section, Renyi entropy (R'enyi [18] ) and Shannon entropy (Shannon [20] ) are presented for EPCh distribution. A
larger entropy value indicates a higher level of uncertainty in the data.

4.5.1. R"enyi Entropy and Shannon Entropy

R’enyi entropy (R’enyi,[18]) is an extension of Shannon entropy and has been used in many fields such as physics,

engineering, and economics. The Rényi entropy for any distribution is defined as follows:

HE(X):élogJ': oo (Xa,B,0A)x  §#1, >0 (26)

The Rényi entropy for EPCh (a, LA, 6’) distribution is given by
1 2Y p ’
_ <4 x A\ 6-1
Hg(X)—l_glogJ.O [(aj (e 1) Bx Hk(x,a,ﬁ,}t,e)] dx @7)
Where k can be written as follows:

k(x,a, B, A,6) =exp| x° +(ijﬂ (exg —1)ﬁ +1—exp((ijﬂ (exg —1)ﬂj .
a (04

Renyi entropy values for various parameter values of EPCh (/1, a, f, 0) distribution is given in Table 3.

Table 3. R enyi entropy for some selected parameter values of EPCh distribution

Parameters Renyi entropy values

(0!, 5.0, l) I(o.os) I(o.9999) I(2)
a=05,=360=21=0.1 0.1726 -1.0210 -1.1790
a=15/=360=21=01 0.3104 -0.6808 -1.2710

a=2,[=360=21=01 0.3356 -1.0690 -1.3010

a=15,=056=2,1=0.1 0.7903 0.6042 0.5136
a=154=1560=21=01| 05325 -0.3378 | -0.5624
a=15/=260=21=01 0.4510 -0.6247 -0.8571

a=15=360=051=01 | 22360 1.7100 1.5470

a=15,=360=151=01| 05671 -0.5974 | -0.8232
a=15/4=30=22=01 0.3104 -0.6808 | -1.2710
a=15/p=360=21=05 0.8002 -0.9500 | -1.6660
a=15/p=360=2,1=15 -0.1984 -0.9898 -1.2550

a=15[=30=21=2 -0.2906 -1.1210 -1.3110
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a=1.5;4=3;0=1;1=0.1
T T T T

L L
01 0.3 05 1 11 13 15 2 21 10
delta

Figure 8. Plot of the R"enyi entropy is concave for different values of 6 > 0.

As seen from Figure7, Renyi entropy for EPCh distribution is a concave monotonically decreasing function. At the large &

values, the Rényi entropy is small.

alpha=2;beta=3;theta=2; alpha=4;beta=4;theta=1.5

06 o alpha=3;beta=2:theta=2 . 0557
0.6
-0.7
03 -0.65
£.08 “r E, 07
" 075
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il 081
-1 . ' ) 085" - . - - '
0.01 0.1 05 1 15 25 3 s o o ; " P ‘ 0.01 0.1 05 1 15 25 3
lambda lambda lambda
a=15/=020=05,1=001:01:3 =3, =260=2,1=0.01:01:3 a=4=460=15,1=001:01:3
R’enyi entropy tends to Shannon entropy for & —>1[17]. The Shannon entropy is described as follows:
H (fepw ) =E(~log(f (X;2,6.y))) (28)
The Shannon entropy for the EPCh distribution is obtained as follows.
H (x):—j f (x)log f (x)dx
o A ! 0 At 0-1 A g 0 A 6-1
H(x)=-[| £ (e* —1) Bxok()log| | Z (ex —1) Bx°0k () |dx (29)
o\ & a

(24

where K(.) =k(x,a, S, 1,0) =exp| x° +[ijﬂ (exg —1)'8 +1—exp {(ijﬁ (exg —1)'5}
o

the Shannon entropy values for different parameter values of the EP-Ch distribution are given in Table 4.
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Table 4. Plots of Shannon entropy for different parameter values of EP-Ch distribution

Shannon
(a.5.0,2) Entropy

a=05/=360=2,1=01 -1.021
a=15p=30=2,1=0.1 -0.6806
a=2,8=360=21=01 -1.069

a=15p4=050=24=01| 06042
a=15,=150=21=01 | 03378
a=15p=2,0=21=01 | %
a=154=360=051=01| 171
a=15,3=360=151=0.1| 05974
@=15p4=30=24=01 | 0808
a=15=360=24=05 | -0.9
a=15=30=24=15 | 098%
a=15p=30=22=2 | "%

6. Maximum Likelihood Estimation

Let X; X,,...., X, be a random sample with size n taken from EPCh(/l,a,ﬂ,H) distribution. The log-likelinood
function is given as follows.

| (1] X) =n Blog (§j+(ﬁ—1)znllog (e(xg‘) —1)+ nlog A+nlog(6)
+(0-1) log(x)+n (30)

[S{rem{Bf a2 0 o)

where 1= (/1, a, p, 6’) . Derivatives according to unknown parameters of the log-likelihood function are as follows:

GEBL-:_ﬂal(n+ g)ﬂ[é;(gﬁx_jﬁJJ

—at ( 4 jﬂ Zn: (e(xio) _1jﬂ o (ajﬁ[e(xiﬁ)_l]ﬂ

i=1

(31)
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8'(;’_g'-znlog( )-nlog(a (ng( _D %

A8 310 2T (10 o]

—iexp((gJ(G(xig) _1)ﬂ) (32)
(2 2 mfena)
e e
+ ZIog(xi)jeJr( “log(x))0
= (33)
+ gjﬁﬂ[: (e(x'g)—l)ﬂl alog(xi)e(x‘g)le
- gjﬂﬂ{; (e(x'g)—ljﬂ_l "Iog(xi)exp{xf+(a)ﬂ(e(*'0)—1jﬂ}9 T,
9L 022 O3 (o)
i 1 \a) 25
(34)

(2 E3( 1) ol 2] ()

MLEs of A,a, fand @ parameters are obtained by the simultaneous solutions of the equations (31) - (34). These nonlinear

equations can be solved using iterative methods.
6. Simulation Study
In this section, a simulation study based on 5000 replications to investigate the performances of MLEs of the unknown

parameters in terms of bias and mean squared error (MSE) for EPCh(i, a, f, 6’) distribution for different sample sizes n

=100,150,200,300,500 and for different parameter values such as (0.5,1.4,0.2,0.5), (0.2,0.8,0.6,0.5), (0.3,0.9,0.6,0.4),
(0.2,1.5,0.4,0.2) and (0.3, 2,0.5,0.9) is performed. The simulation results are given in Table 5.

Table 5. Bias and MSE for various values of 4,, fand @ parameters

A

Parameters ¥ a B

B>

(/1, a, f, (9) n bias Mse bias mse Bias mse bias Mse

100 | -0.0222 | 0.0438 | 0.0134 | 0.1736 | 0.0063 | 0.0139 0.0329 0.0169
150 | -0.0147 | 0.0132 | 0.0103 | 0.0725 | 0.0032 | 0.0034 0.0209 0.0106
(0.5,1.4,0.2,0.5) | 200 | -0.0077 | 0.0061 | 0.0086 | 0.0432 | 0.0025 | 0.0019 0.0139 0.0073
300 | -0.0019 | 0.0037 | 0.0069 | 0.0268 | 0.0026 | 0.0011 0.0077 0.0044
500 | 0.0009 0.0018 | 0.0096 | 0.0150 | 0.0019 | 0.0005 0.0043 0.0022
(0.2,0.8,0.6,0.5) | 100 | -0.0080 | 0.0543 | 0.0261 | 0.1965 | 0.1574 | 2.0267 0.0320 0.0374
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150 | -0.0108 | 0.0030 | 0.0221 | 0.0386 | 0.0491 | 0.2309 0.0277 0.0235
200 | -0.0061 | 0.0027 | 0.0164 | 0.0260 | 0.0388 | 0.0817 0.0171 0.0179
300 | -0.0033 | 0.0009 | 0.0111 | 0.0148 | 0.0226 | 0.0312 0.0099 0.0114
500 | -0.0013 | 0.0006 | 0.0135 | 0.0093 | 0.0102 | 0.0153 0.0078 0.0069
100 | 0.0100 0.7033 | 0.0799 | 2.1006 | 0.2131 | 4.6283 0.0540 0.0378
150 | -0.0067 | 0.1823 | 0.0269 | 0.5555 | 0.0844 | 0.6790 0.0320 0.0237
(0.3,0.9,0.6,0.4) | 200 | -0.0074 | 0.0518 | 0.0198 | 0.1855 | 0.0462 | 0.1454 0.0239 0.0174
300 | -0.0061 | 0.0024 | 0.0108 | 0.0182 | 0.0286 | 0.0450 0.0131 0.0110
500 | -0.0023 | 0.0011 | 0.0123 | 0.0094 | 0.0126 | 0.0198 0.0095 0.0064
100 | -0.0120 | 0.0082 | 0.0798 | 0.7168 | 0.0289 | 0.1880 0.0076 0.0024
150 | -0.0087 | 0.0021 | 0.0611 | 0.1454 | 0.0116 | 0.0141 0.0055 0.0016
(0.2,1.5,04,0.2) | 200 | -0.0055 | 0.0015 | 0.0442 | 0.1099 | 0.0099 | 0.0098 0.0033 0.0012
300 | -0.0025 | 0.0010 | 0.0380 | 0.0721 | 0.0055 | 0.0056 0.0025 0.0007
500 | -0.0009 | 0.0006 | 0.0375 | 0.0466 | 0.0017 | 0.0031 0.0020 0.0004
100 | -0.0213 | 0.0100 | 0.0666 | 0.3942 | 0.0515 | 0.1520 0.0317 0.0644
150 | -0.0127 | 0.0048 | 0.0597 | 0.2636 | 0.0250 | 0.0355 0.0215 0.0400
(0.3,2,0.5,09) | 200 | -0.0096 | 0.0033 | 0.0563 | 0.2045 | 0.0175 | 0.0215 0.0173 0.0303
300 | -0.0041 | 0.0022 | 0.0480 | 0.1337 | 0.0105 | 0.0114 0.0105 0.0189
500 | -0.0009 | 0.0013 | 0.0467 | 0.0812 | 0.0050 | 0.0062 0.0083 0.0113

7. Real Data Analysis

In this section, two real data analysis are considered to illustrate that the EPCh distribution can be better than known
distributions such as Exponentiated exponential, Weibull and Chen distribution. For this aim, EPCh distribution are
compared with above distributions using goodness of fit measures such as the Akaike's Information Criterion (AIC),
corrected Akaike's Information Criterion (AlCc), the Bayesian Information Criterion (BIC) and -2xlog-likelihood value.
These measures are given by

AIC =-2I +2k (35)
AlCc = AIC +(Mj (36)
n-k-1
BIC =2l +klog(n) (37)

where k is a number of parameters, n is sample size and | is the value of log-likelihood function. The first data set which
shows failure times of components is the real data set taken from book of Murthy et al [14] are given in Table 6.
Table6. Real Data set based on failure times (Data Set 1)
0.0014 0.0623 1.3826 2.0130 2.5274 2.8221 3.1544 49835 5.5462 5.8196 5.8714 7.4710 7.5080
7.6667 8.6122 9.0442 9.1153 9.6477 10.1547 10.7582
The second data set which states graft survival times in months of 148 renal transplant patients was obtained by Henderson
and Milner [13] and was included in the book of Hand et al. [12].

Table 7. Real Data set based on surviving times (Data Set 2)

0.0035, 0.0068, 0.01, 0.0101, 0.0167, 0.0168, 0.0197, 0.0213, 0.0233, 0.0234, 0.0508, 0.0508, 0.0533, 0.0633, 0.0767, 0.0768,
0.077, 0.1066, 0.1267, 0.13, 0.1639, 0.1803, 0.1867, 0.218, 0.2967, 0.3328, 0.37, 0.3803, 0.4867, 0.6233, 0.6367, 0.66, 0.66,
0.718, 0.78, 0.7933, 0.7967, 0.8016, 0.83, 0.841, 0.91, 0.9233, 1.0541, 1.0607, 1.0633, 1.0667, 1.1067, 1.2213, 1.2508,
1.2533, 1.38, 1.4267, 1.4475, 1.45, 1.5213, 1.5333, 1.5525, 1.5533, 1.5541, 1.5934, 1.62, 1.63, 1.6344, 1.66, 1.7033, 1.7067,
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1.7475, 1.7667, 1.77, 1.7967, 1.8115, 1.8115, 1.8933, 1.8934, 1.9508, 1.9733, 2.018, 2.09, 2.1167, 2.1233, 2.21, 2.2148§,
2.2267, 2.25, 2.2533, 2.3738, 2.4082, 2.418, 2.4705, 2.5213, 2.5705, 3.1934, 3.218, 3.2367, 3.2705, 3.3148, 3.3567, 3.4836,
3.4869, 3.6213, 3.941, 3.9433, 4.0001, 4.1733, 4.1734, 4.2311, 4.2869, 4.3279, 4.3902, 4.4267.

The MLE(s) and their standard errors for the unknown parameters of above the distributions are given in Table 8 for data set 1
and Table 10 for data set 2. Goodness of fit measures for these data sets are shown in Table 9 for data set 1 and Table 11 for
data set 2. Plots of empirical and theoritical distribution functions of random variables having compared distributions are
given by Figure 8 for data set 1 and Figure 9 for data set 2.

Table 8. Parameter estimates (standard errors) for Data set 1

Distribution MLE
X $-00338(16891) .,  &=0.1254(2.8571)
EP-C

B= 2.2694(0.4971) , § = 0.5092(0.0642)

Exponentiated Exponential @ = 0.8377(0.2300) , d= 0.1570(0.0467)

Weibull H:1.0893(0.2210) , &=5.8164 (1.2216)

Exponential power &=8.6650(1.2778) , K= 0.9446(0.1958)

Table 9. Selective criteria statistics for Real data set 1
Dagihim -2LogL AlC BIC K-S p-value
EP-Ch 93.6475 101.6475 105.6304 0.1383 0.8359
Exponentiated 109.2411 113.2411 115.2325 0.2493 0.1663
Exponential
Weibull 109.5036 133.5036 115.4950 0.2205 0.2853
Exponential 102.9713 106.9713 108.9628 0.2049 0.3706
power

Table 4.10. Parameter estimates (standard errors) for Data set 2

Distribution MLE
EP-Ch % =0.0124(32.7709), #=0.0854 (225.346)
P=0.6267(0.2233) , B =0.6821(0.1897)
Exponential power #-2.6841(0.2115) , F=0.7464(0.0629)
Chen %-0.3212(0.0000) , §=0.6060(6.000)

Table 11. Selective criteria statistics for Real data set 2

Dagilim -2LogL AIC AlCc K-S p-value

EP-Ch 290.2455 298.2455 298.6265 0.0743 0.5776
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Exponential
power 300.3445 304.3445 304.4566 0.1158 0.1044
Chen 295.3769 299.3769 299.4891 0.1158 0.1044
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Figure 8. Goodness of fit plots for data set 1 Figure 9. Goodnes of fit plots for data set 2

3. CONCLUSION

In this paper, we have introduced a new lifetime distribution named as Exponential Power Chen (EPCh) distribution by using
method of Alzaatreh et al. [2]. Some statistical properties of EPCh distribution such as moments, moment generating function,
order statistics, mean remaining life, Renyi and Shannon entropies are obtained. Furthermore, shapes of pdf, cdf, hf and ihf for
this distribution are examined. From these shapes, it is concluded that EPCh distribution can be used to model the data having
increasing, decreasing and bathtube shaped hazard rates. Further, the maximum likelihood estimators (MLE) for unknown
parameters of EPCh distribution are derived. An Monte-Cario simulation study has been carried out to examine the
performance of this estimators in terms of mean square error and bias. To illustrate the applicability of this new distribution,
EPCh distribution for two real data sets are compared with some known distributions such as Exponentiated exponential,
Weibull and Chen distribution using some goodness of fit measures. According to real data analysis results obtained from both
data sets, EPCh distribution has the best fitting among compared distributions. This demonstrates the applicability of the EP-
Ch distribution in real life.
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