

i-Open Sets and Separating Axioms Spaces

Amir A. Mohammed Sabih W. Askandar Department of Mathematics \ College of Education for Pure Sciences University of Mosul Mosul-Iraq

Received Accepted 02/12/2012 11/03/2013

الطجاميع الطفتوحة من الظوع-i وفضاءات بديهيات ال نفصال أ.م.د. عامر عبد اإلله دمحم و م.م. صبيح وديع اسكظدر قسم الرياضيات/ كلية التربية للعلهم الصرفة/ جامعة الطهصل الطهصل / العراق

الخالصة:

الهدف من هذا البحث هو استخدام نوع من المجاميع المفتوحة المسماة بالمجاميع المفتوحة من النوع–i [9] لدراسة عدة أصناف من فضباءات بديهيات الانفصيال للمجاميع المفتوحة، المفتوحة من النوع– α و شبه المفتوحة. فضلا عن ذلك، قمنا بدراسة العلاقة بينها.

 \cdot **الكلمات المفتاحية:** T_{si} **,** $T_{j_{i}}$ **,** $T_{j_{j}}$ **,** $T_{j_{j}}$ **,** $T_{j_{i}}$ **,** $T_{j_{i}}$ **,** $T_{j_{i}}$ **,** $T_{j_{i}}$

Abstract:

The purpose of this paper is using a class of open sets called i-open sets [9] to study some classes of separating axioms spaces for open, α -open and semi-open sets. Further, we studied the relations between such spaces.

Keywords: $T_{\scriptscriptstyle{si}}$, $T_{\scriptscriptstyle{li}}$, $T_{\scriptscriptstyle{2i}}$, $T_{\scriptscriptstyle{3i}}$, $T_{\scriptscriptstyle{({3\frac{1}{2}})^i}}$, $T_{\scriptscriptstyle{4i}}$, $T_{\scriptscriptstyle{5i}}$.

Introduction:

Levine in 1963[5], introduced the concept of semi-open sets which improved many important basic theories of the general topology. Njastad in 1965[10], introduced the concept of α -open sets which is a subclass of generalized open sets. Also Levine in 1970[6] introduced the concept of generalized closed sets.. Mashhour A.S., Abd El-Monsef M.E. and El-Deeb, S.N., in 1982[8], introduced the concept of Pre-open sets. Dontchev and Maki, in 1999[3], introduced the concept of θ -generalized closed sets. Devi, R., Selvakumar, A. and Parimala, M., in 2011[2], introduced the concept of $\alpha \psi$ – closed sets in topological spaces, which, it is complements were called $\alpha \psi$ – *open sets*. Mohammed and Askandar In 2012 [9], introduced the concept of i-open sets which they could to entire them together with many other concepts of Generalized open sets mentioned above. In 2006 Fatima, M. Mohammad introduced Pre- Techonov and Pre-Hausdorff Separation Axioms in Intuitonistic Fuzzy special topological spaces [4] by using the concept of Pre-open sets [8]. In 2011 Y.K. Kim, R. Devi and A. Selvakumar used $\alpha \psi$ – Open sets [2] to introduce the concept of Weakly Ultra Separation Axioms [12]. In 2012 Al-Sheikhly, A.H. and Khudhair, H.K.[1] introduced another Type of Separation Axioms Depend on an θ g – *open set* [3]. The aim of this paper is to introduce another type of Separating Axioms spaces depend on i-open sets [9] for compare with the other separating axioms spaces. This work consists of two sections. In the first one, i-open sets[9] are defined and many related examples have been gave, the comparison between i-open sets, semi-open and α-open sets respectively are investigated, New class of mappings named, i-continuous [9] are introduced and comparison among i-continuity [9], continuity [11], semi-continuity [5] and α -continuity [13], are investigated (see Corollary 1.28). In the $2nd$ section, we study many types of separating axioms spaces as like as $(T_s, T_1, T_2, T_s, T_{(3/2)}^T, T_4$ and T_s) [11], $(T_{\alpha\alpha}, T_{1\alpha}, T_{2\alpha}, T_{3\alpha}, T_{(3/2)\alpha}, T_s)$ $T_{_{4\alpha}}$ and $T_{_{5\alpha}}$), $(T_{_{\circ s}},T_{_{1s}}$, $T_{_{2s}}$, $T_{_{3s}}$, $T_{_{(3\frac{1}{2})s}},$ $T_{_{4s}}$ and $T_{_{5s}}$) and $(T_{_{\circ i}},T_{_{1i}}$, $T_{_{2i}}$, $T_{_{3i}}$, $T_{(3/2)i}$, T_{4i} and T_{5i}) by using open, α -open[10], semi-open[5] and i-open sets[9] respectively. We give many examples to show that the converse may not be true. Also we discuss the relation among them. (See Corollary 2.5 and Corollaries 2.29). Throughout this work, (X, τ) and (Y, δ) are always topological spaces and *f* is always a mapping from (X, τ) into (Y, δ) .

1. i-open sets

In this Section the concept of i-open sets [9] is defined and their position with the some other classes of generalized-open sets is determined. New class of mappings named i-continuous [9] is introduced and comparison between i-continuity [9], continuity [11], semi-continuity [5] and α -continuity [13], are investigated.

Definition1.1. [9] A subset A of (X, τ) is said to be an i-open if there exists an open set $G \neq \phi$, X such that $A \subseteq Cl(A \cap G)$. The complement of an iopen set is called i-closed set.

Example1.2. Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ by Definition 1.1, iopen sets are: ϕ , {a}, {a, c}, {c}, {a, b}, {b, c}, X.

Example1.3. Let $X = \{d, e, f\}$, $\tau = \{ \phi, \{d\}, \{e\}, \{d, e\}, X\}$. Therefore; i-open sets are: ϕ , {d}, {e}, {d, e}, {d, f}, {e, f}, X.

Theorem1.4. [9] Every open set in a topological space is i-open, but the converse is not true.

Example1.5. Let $X = \{g, h, i\}$, $\tau = \{\phi, \{g\}, \{g, i\}, X\}$, $A = \{g, h\}$. $A = \{g, h\}$ is i-open set but it is not open.

Corollary1.6. [9] Every closed set in topological space is i-closed.

Theorem1.7. [9] Every semi-open set in a topological space is i-open. **Example1.8.** Let $X = \{j, k, l\}$, $\tau = \{\phi, \{j, k\}, X\}$, $A = \{j, l\}$ is i-open set but is not semi-open in (X, τ) .

Corollary 1.9. [9] Every α -open set in a topological space is i-open. The converse of Corollary 1.9 is not true. Indeed, In Example 1.8 we see that $A = \{a, c\}$ is i-open set but is not α -open $[A \not\subset Int(CI(Int(A)))]$.

Corollary1.10. [9] By theorem (1.4) , theorem (1.7) and corollary (1.9) we have the following Diagram.

Definition1.11. [9] the extension τ^i is the family of all i-open subsets of space X.

Definition1.12. Let (X, τ^i) be a topological space and let *A* be a subset of X then,

1. The intersection of all i-closed sets containing *A* is called i-closure of *A* [9], denoted by $Cl_i(A)$: $Cl_i(A) = \bigcap_{i \in A} F_i$. $A \subseteq F_i \forall i$ Where, F_i is i-closed set $\forall i$ in *(X,τⁱ*). *Cl_i*(*A)* is the smallest i-closed set containing *A*.

2. The union of all i-open sets contained in *A* is called i-Interior of *A* [9], denoted by $Int_i(A)$. $Int_i(A) = \bigcup_{i \in A} I_i$, $I_i \subseteq A \ \forall i$, where I_i is an i-open set $\forall i$ in *(X,* τ^i *). Int_i(A)* is the largest i-open set contained in *A*.

Definition1.13. A mapping *f:* $(X, \tau) \rightarrow (Y, \delta)$ is said to be i-continuous [9](respectively semi-continuous[5]) at the point $x_o \in X$ if and only if for each open set I^* in(*Y*, δ) containing $f(x_0)$ there exists an i-open set(respectively semi-open set[5]) I in (X, τ) containing x_{a} such that $f(1)$ $\subseteq I^*$. *f* is i-continuous (respectively semi-continuous) map if it is icontinuous (respectively semi-continuous) at all points of *X*.

Theorem1.14. [9] A mapping $f: (X, \tau) \rightarrow (Y, \delta)$ is i-continuous if and only if,

1. $f^{-1}(I^*)$ is i-open set in (X, τ) for every open set I^{*} in (Y, δ) .

2. $f^{-1}(\mathbf{I}^*)$ is i-closed set in (X, τ) for every closed set \mathbf{I}^* in (Y, δ) .

Theorem1.15. [9] Every continuous mapping is i-continuous.

Theorem1.16. [9] Every semi-continuous mapping is i-continuous.

Definition1.17. [9] [13] A mapping *f:* $(X, \tau) \rightarrow (Y, \delta)$ is said to be α continuous at the point $x_o \in X$ if and only if for each open set I^* in (Y, δ) containing $f(x_o)$ there exist an α -open set I in (X, τ) containing x_a such that $f(I) \subseteq I^*$ *i* is α -continuous map if it is α -continuous at all points of *X*.

Theorem1.18. [9] [13] A mapping *f* is α -continuous if and only if $f^{-1}(\mathbf{I}^*)$ is α -open set in *(X, τ)* for every open set *I*^{*} in *(Y, δ)*.

Theorem1.19. [9] Every α -continuous mapping is i-continuous. **Corollary1.20.** [9] the following diagram is true:

2. i-Open Sets and Separating Axioms Spaces

In this section, we study new types of separating axioms spaces for iopen, semi-open and α -open sets for compare and find many relations among them.

Definition2.1. A topological space (X, τ) is said to be T_s space [11] (respect. T_{α} , T_{β} [7]and T_{α} space) if it satisfies Klomogorov axiom[11] (respect. α -Klomogorov, s-Klomogorov [7] and i-Klomogorov axiom): $[T_{\circ}$ (respect. $T_{\circ \alpha}$, $T_{\circ s}$ and $T_{\circ i}$) $\forall x, y \in X \ (x \neq y) \exists I \in \tau \ (respect. \ \tau^{\alpha}, \tau^{\beta} \ and \ \tau^{\beta}) \ \text{s.t.} \ x \in I, \ y \notin I.$

Example2.2. Let $X = \{a, b\}$, $\tau = \{\phi, \{a\}, X\}$, $\tau^a = \tau^s = \tau^i = \tau$, (X, τ) , (X, τ^a) (x, τ^*) and (X, τ^*) are topological spaces. $a,b \in X$ ($a \neq b$) $\exists \{a\} \in \tau$ (respect. $\tau^{\alpha}, \tau^{\beta}$ and τ^{β}) s.t $a \in \{a\}$, $b \notin \{a\}$. Therefore; (X, τ) is T_{σ} , $T_{\sigma\alpha}$, $T_{\sigma s}$ and $T_{\sigma i}$ space.

Definition2.3. A topological space (X, τ) is said to be T_i space [11] (respect. $T_{1\alpha}$, $T_{1\delta}$ [7], T_{1i} space) if it satisfies Frechet axiom [11] (respect. α -Frechet, s- Frechet [7] and i-Frechet axiom) :[T_i (respect. $T_{1\alpha}, T_{1\beta}, T_{1i}$)] $x, y \in X$ ($x \neq y$) $\exists I_i, I_j \in \tau$ (respect. $\tau^{\alpha}, \tau^{\beta}, \tau^{\gamma}$) $\forall x, y \in X \ (x \neq y) \exists I_1, I_2 \in \tau(\text{respect.} \tau^{\alpha}, \tau^{\beta}, \tau^{\beta}) \text{s.t.} x \in I_1, y \notin I_1 y \in I_2, x \notin I_2.$

Example2.4. Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ $\tau, \tau^{\alpha} = \tau^{s} = \tau^{i} = \tau$, $(X, \tau), (X, \tau^{\alpha}), (X, \tau^{s})$ and (X, τ^{i}) are topological spaces. $a,b \in X$ ($a \ne b$) \exists { a },{ b } $\in \tau$, τ^{α} , τ^{γ} , τ^{γ} , s.t. $a \in$ { a }, $b \notin$ { a } $b \in$ { b }, $a \notin$ { b }.

 $s.t. a \in \{a\}, c \notin \{a\}, c \in \{c\}, a \notin \{c\}$ $a, c \in X$ ($a \neq c$) $\exists \{a\}, \{c\} \in \tau, \tau^{\alpha}, \tau^{\beta}, \tau^{\beta}$ $b, c \in X(b \neq c) \exists \{b\}, \{c\} \in \tau, \tau^a, \tau^s, \tau^i\}$ $s.t. b \in \{b\}, c \notin \{b\}, c \in \{c\}, b \notin \{c\}.$ Therefore; (X, τ) is T_{I} , $T_{I\alpha}$, T_{Is} , and T_{Ii} -space.

Corollary2.5. The following diagram is true.

Proof: 1. Suppose that (X, τ) is T_i -space.

Then, $\forall x, y \in X \ (x \neq y)$ there existstwo open sets I_1, I_2 s.t. $x \in I_1, y \notin I_1$, $y \in I_2, x \notin I_2$. Since every open set is $\alpha - open$ (corollary1.10). Then *I*₁ and *I*₂ are α – *open* sets. Therefore; (X,τ) is $T_{1\alpha}$ -space (definition 2.3).

2. Similarly, by using corollary1.10 and definition 2.3, we can prove every $T_{1\alpha}$ - space is T_{1s} - space.

3. Similarly, by using corollary1.10 and definition 2.3, we can prove every T_{1s} -space is T_{1i} -space.

4. From 1 and 2 we have, every T_i -space is T_i _s -space.

5. From 4 and 3 we have, every T_i -space is T_{ii} -space.

6. From 2 and 3 we have, every $T_{1\alpha}$ -space is T_{1i} -space.

Example2.6. Let $X = \{1, 2, 3, 4\}$, $\tau = \{\phi, \{1\}, \{1, 2\}, \{1, 2, 3\}, X\}$, $\tau^{\alpha} = \tau^{\beta} = \{\phi, \{1\}, \{1,2\}, \{1,2,3\}, \{1,3\}, \{1,4\}, \{1,3,4\}, \{1,2,4\}, X\}$ $\tau^{i} = {\phi, \{1\}, \{1,2\}, \{1,2,3\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{X\}}$ $(X, \tau), (X, \tau^*)$, (X, τ^*) and (X, τ^i) are topological -spaces. Take, $1 \neq 2$:

1. There is no exists two open sets G_i , G_2 s.t. $1 \in G_i$, $2 \notin G_i$, $2 \in G_2$, $1 \notin G_2$, therefore; (X, τ) is not T_i -space.

2. There is no exists two α -open sets α_1, α_2 s.t. $1 \in \alpha_1$, $2 \notin \alpha_1, 2 \in \alpha_2$, $1 \notin \alpha_2$, therefore; (X, τ) is not $T_{1\alpha}$ -space.

3. There is no exists two semi-open sets S_1, S_2 s.t. $1 \in S_1$, $2 \notin S_1$, $2 \in S_2, I \notin S_2$, therefore; (X, τ) is not T_{1s} -space.

4. $\forall x, y \in X$ $(x \neq y) \exists I_1, I_2 \in \tau^i$ s.t. $x \in I_1, y \notin I_1, y \in I_2, x \notin I_2$, therefore; (X, τ) is T_{1i} -space.

Definition2.7. A topological space (X, τ) is said to be T_2 -space [11] (respect. $T_{2\alpha}$, T_{2s} and T_{2i} -space) if it satisfies Hausdorff axiom [11](respect. α -Hausdorff, s-Hausdorff and i-Hausdorff axiom: [T_2 (respect. $T_{2\alpha}$, T_{2s} and T_{2i})]: $\forall x, y \in X \ (x \neq y) \exists I_1, I_2 \in \tau \ (respect. \tau^{\alpha}, \tau^{\beta} \ and \ \tau^{\beta}), I_1 \cap I_2 = \phi$ s.t. $x \in I_1, y \in I_2$.

Definition2.8. A topological space (X, τ) is said to be:

1. Regular space [11] (shortly R space) if it satisfies Vietoris axiom:[R] if F is a closed set in X and $x \in X$, $x \notin F$ $\exists S_1$, $S_2 \in \tau$, $S_1 \cap S_2 = \phi$ s.t. $F \subseteq S_i$, $x \in S_i$.

2. α -Regular space (shortly R α - space) if it satisfies α -Vietoris axiom: $[R_\alpha]$ if F is an α -closed set in X and $x \in X$, $x \notin F \exists S_i$, $S_2 \in \tau^\alpha$, $S_i \cap S_2 = \phi$ s.t. $F \subseteq S_1$, $x \in S_2$.

3. s-Regular space (shortly R_s space) if it satisfies s-Vietoris axiom: $[R_s]$ if F is a semi-closed set in *X* and $x \in X$, $x \notin F \exists S_1$, $S_2 \in \tau^s$, $S_1 \cap S_2 = \phi$ s.t. $F \subset S$, $x \in S$,

4. i-Regular space (shortly R_i -space) if it satisfies i-Vietoris axiom: $[R_i]$ if F is an i-closed set in *X* and $x \in X, x \notin F$ $\exists I_1, I_2 \in \tau^i, I_1 \cap I_2 = \emptyset$ $I_1, I_2 \in \tau^i, I_1 \cap I_2 = \phi$ s.t. $F \subseteq I_i$, $x \in I_i$.

Definition2.9. A T_1 - space[11] (respect. $T_{1\alpha}$, T_{1s} and T_{1i} -space) is said to be T_3 [11] (respect. $T_{3\alpha}$, $T_{3\alpha}$ and T_{3i}) if it is Regular(respect. α -Regular, s-Regular and i-Regular).

Definition2.10. A topological space (X, τ) is said to be:

1. Normal space [11] (shortly N space) if it satisfies Urysohn axiom:

[N] if $F_1 \subseteq X$, $F_2 \subseteq X$, $F_1 \cap F_2 = \emptyset$ $\exists S_1, S_2 \subseteq X$ s.t $F_1 \subseteq S_1$, $F_2 \subseteq S_2$

where $S_i \cap S_2 = \emptyset$, F_i, F_2 *are closed sets*, S_i, S_2 *are opensets.* 2. α -Normal space (shortly N_{α} - space) if it satisfies α -Urysohn axiom: $[N_{\alpha}]$ if $F_1 \subseteq X$, $F_2 \subseteq X$, $F_1 \cap F_2 = \phi \exists S_1$, $S_2 \subseteq X$ s.t $F_1 \subseteq S_1$, $F_2 \subseteq S_2$ *where* $S_i \cap S_2 = \emptyset$, F_i, F_2 are α -closed sets, S_i, S_2 are α -opensets. 3. s-Normal space (shortly N_s space) if it satisfies s-Urysohn axiom: $[N_s]$ if $F_1 \subseteq X$, $F_2 \subseteq X$, $F_1 \cap F_2 = \phi \exists S_1$, $S_2 \subseteq X$ s.t $F_1 \subseteq S_1$, $F_2 \subseteq S_2$ *where* $S_i \cap S_2 = \emptyset$, F_i , F_2 are semi-closed sets, S_i , S_2 are semi-open sets. 4. i-Normal space (shortly *Nⁱ* space) if it satisfies i-Urysohn axiom: $[N_i]$ if $F_1 \subseteq X$, $F_2 \subseteq X$, $F_1 \cap F_2 = \emptyset \exists I_1, I_2 \subseteq X$ s.t $F_1 \subseteq I_1$, $F_2 \subseteq I_2$ *where* $I_1 \cap I_2 = \emptyset$, F_1, F_2 are *i* - *closed sets*, I_1, I_2 are *i* - *open sets.*

Definition2.11. A T_{I} -space(respect. $T_{I\alpha}$, $T_{I\alpha}$ and T_{Ii} -space) is said to be T_{4} [11] (respect. $T_{4\alpha}$, T_{4s} and T_{4i} if it is Normal(respect. α - Normal, s- Normal and i- Normal).

Definition2.12. A topological space (X, τ) is said to be:

1. Completely regular space [11] (shortly *CR* space) if it satisfies the following axiom: [*CR*] if *F* is a closed set in *X* and $x \in X$, $x \notin F$ there exists a continuous mapping $f : X \rightarrow [0,1]$ s.t. $f(F) = 1$, $f(x) = 0$.

2. α -completely regular space (shortly CR_{α} space) if it satisfies the following axiom: $[CR_{\alpha}]$ if F is an α -closed set in X and $x \in X, x \notin F$ there exists an α -continuous mapping $f : X \rightarrow [0,1]$ s.t. $f(F) = 1$, $f(x) = 0$.

3. s-completely regular space (shortly *CR^s* space) if it satisfies the following axiom: $[CR_s]$ if *F* is a semi-closed set in *X* and $x \in X$, $x \notin F$ there exists a semi-continuous mapping [5] $f : X \rightarrow [0,1]$ s.t. $f(F) = 1$, $f(x) = 0$.

4. i-completely regular space (shortly *CRⁱ* space) if it satisfies the following axiom: $[CR_i]$ if *F* is an i-closed set in *X* and $x \in X$, $x \notin F$ there exist icontinuous mapping [9] $f: X \rightarrow [0,1]$ s.t. $f(F) = 1, f(x) = 0$.

Definition2.13. A T_i -space(respect. $T_{i\alpha}$, $T_{i\alpha}$ and $T_{i\alpha}$ -space) is said to be $T_{(3/2)}[11]$ (respect. $T_{(3/2)\alpha}$, $T_{(3/2)\beta}$ and $T_{(3/2)\beta}$ if it is completely Regular(respect. α - completely Regular, s- completely Regular and icompletely Regular).

Definition2.14. A topological space (X, τ) is said to be:

1. Completely Normal space [11] (shortly *CN* space) if it satisfies Tietze axiom:[*CN*] If,

 $A_1 \subseteq X$, $A_2 \subseteq X$, $A_1 \cap A_2 = \phi \exists S_1$, $S_2 \subseteq X$ s.t $A_1 \subseteq S_1$, $A_2 \subseteq S_2$

where A_1 , A_2 *aretwo separated sets*, $S_1 \cap S_2 = \phi$, S_1 , S_2 *are opensets*.

2. α -completely Normal space (shortly CN_{α} space) if it satisfies α -Tietze axiom: $[CN_{\alpha}]$ if,

 $A_i \subseteq X$, $A_j \subseteq X$, $A_i \cap A_j = \emptyset$, $\exists S_i$, $S_j \subseteq X$ s.t $A_i \subseteq S_i$, $A_j \subseteq S_j$

where A_1 , A_2 *aretwo separated sets*, $S_1 \cap S_2 = \phi$, S_1 , S_2 *are* α – *opensets*.

3. s-completely Normal space (shortly *CN^s* space) if it satisfies s- Tietze axiom: [*CNs*] if,

 $A_1 \subseteq X$, $A_2 \subseteq X$, $A_1 \cap A_2 = \emptyset$ $\exists S_1, S_2 \subseteq X$ s.t $A_1 \subseteq S_1$, $A_2 \subseteq S_2$ *where* A_i , A_2 *aretwo separated sets*, $S_i \cap S_2 = \phi$, S_i , S_2 *are semi* – *open sets*. 4. i-completely Normal space (shortly *CNⁱ* space) if it satisfies i- Tietze axiom: $[CN_i]$ if, $A_1 \subseteq X$, $A_2 \subseteq X$, $A_1 \cap A_2 = \emptyset \exists I_1, I_2 \subseteq X$ s.t $A_1 \subseteq I_1$, $A_2 \subseteq I_2$ *where* A_{i} , A_{i} aretwo separated sets, $I_{i} \cap I_{i} = \phi$, I_{i} , I_{i} are i – open sets .

Definition2.15. A T_1 - space (respect. T_{1a} , T_{1s} and T_n -space) is said to be T_5 [11](respect. T_{5a} , T_{5s} and T_{5i} -space) if it is completely Normal(respect. α - completely Normal, s- completely Normal and icompletely Normal).

Example2.16. Let $X = \{a, b\}$, $\tau = \{\phi, \{a\}, \{b\}, X\}$, $\tau^{\alpha} = \tau^{\beta} = \tau^{\beta} = \tau^{\gamma}$ $(X, \tau), (X, \tau^{\alpha}), (X, \tau^{\beta})$ and (X, τ^{β}) are topological spaces. Open, α – *open*, *s* – *open* and *i* – *open* sets are: ϕ , $\{a\}$, $\{b\}$, X. Closed, α – closed, s – closed and i – closed sets are: ϕ , $\{a\}$, $\{b\}$, X $1. a,b \in X$ ($a \neq b$) $\exists \{a\}, \{b\} \in \tau$ (respect. $\tau^{\alpha}, \tau^{\beta}$ and τ^{β}) *s.t.* $a \in \{a\}$, $b \in \{b\}$. Therefore; (X, τ) is T_i , T_i , T_i , and T_i -space. 2. $a,b \in X$ ($a \ne b$) \exists { a },{ b } $\in \tau$ (respect. $\tau^{\alpha}, \tau^{\beta}$ and τ^{β}) s.t. $a \in$ { a }, $b \in$ { b }, $\{a\} \cap \{b\} = \emptyset$. Therefore; (X, τ) is $T_2, T_{2\alpha}, T_{2\alpha}$ and T_{2i} -space. *3. i.* $\{b\}$ *is a closed set and* $a \notin \{b\}$ *there are two open sets* $\{a\}$, $\{b\}$ *s.t.* $a \in \{a\}, \{b\} \subseteq \{b\}.$ Therefore; (X, τ) is Regular space. *ii.* $\{b\}$ *is* α - *closed set and* $a \notin \{b\}$ *there are two* α - *open sets* $\{a\}$, $\{b\}$ *s.t.* $a \in \{a\}, \{b\} \subseteq \{b\}$. Therefore; (X, τ) is α -Regular space. iii. {b} is a semi – closed set and $a \notin \{b\}$ there are two semi – open sets { a },{b} *s.t.* $a \in \{a\}, \{b\} \subseteq \{b\}.$ Therefore; (X, τ) is s-Regular space.

s.t. $a \in \{a\}, \{b\} \subseteq \{b\}.$ Therefore; (X, τ) is i-Regular space.

4. By (1) and (3) (i)(respect. (ii), (iii) and (iv)) we have: (X, τ) is T_{τ} -space (respect. T_{3a} , T_{3s} and T_{3i} -space).

5. i.{ a },{b } are closed sets, there are two open sets { a },{b }

s.t. ${a} \subseteq {a}$, ${b} \subseteq {b}$, ${a} \cap {b} = \emptyset$. Therefore; (X, τ) is Normal space.

ii. $\{a\},\{b\}$ *are* α -closed sets, there are two α -open sets $\{a\},\{b\}$

s.t. $\{a\} \subseteq \{a\}, \{b\} \subseteq \{b\}, \{a\} \cap \{b\} = \emptyset$. Therefore; (X, τ) is α -Normal space.

iii. $\{a\}$, $\{b\}$ *are semi* \sim *closed sets*, *there are two semi* \sim *open sets* $\{a\}$, $\{b\}$ *s.t.* $\{a\} \subseteq \{a\}, \{b\} \subseteq \{b\}, \{a\} \cap \{b\} = \emptyset$. Therefore; (X, τ) is s-Normal space.

iv. $\{a\}$ $\{b\}$ *are i* $\{\text{closed} \text{ sets there are two } i \text{—open sets } \{a\}$ $\{b\}$

s.t. $\{a\} \subseteq \{a\}, \{b\} \subseteq \{b\}, \{a\} \cap \{b\} = \emptyset$. Therefore; (X, τ) is i-Normal space.

6. By (1) and (5) (i)(respect. (ii), (iii) and (iv)) we have: (X, τ) is T_4 -space (respect. $T_{4\alpha}$, T_{4s} and T_{4i} -space).

7. i. let $f: X \rightarrow [0,1]$ *be a continuousmapping and* $\{b\}$ *is a closed set and* $a \notin \{b\}$ *s.t.* $f(a) = 0, f(\{b\}) = 1$.

s.t. $f(a) = 0, f(\lbrace b \rbrace) = 1$. Therefore; (X, τ) is Completely Regular space.

ii. let $f : X \rightarrow [0,1]$ *be an* α – *continuous mapping and* $\{b\}$ *is* α – *closed set and* $a \notin \{b\}$ *s.t.* $f(a) = 0, f(\{b\}) = 1$.

Therefore; (X, τ) is α -Completely Regular space.

iii. let $f: X \rightarrow [0,1]$ *be a semi*-continuousmapping and $\{b\}$ *is a semi*-closed *set and* $a \notin \{b\}$ *s.t.* $f(a) = 0, f(\{b\}) = 1$. Therefore; (X, τ) is s-Completely Regular space.

iv. Let $f: X \rightarrow [0,1]$ be an *i* – continuous mapping and $\{b\}$ *is an i* – closed set *and* $a \notin \{b\}$ *s.t.* $f(a) = 0, f(\{b\}) = 1$. Therefore; (X, τ) is i-Completely Regular space.

iv. (b) is an i-dosed set and a $\#$ [b) there is two i-open sets $\{a\}, \{b\}$

s.t. $a \in \{a\}, \{b\}$ [c [b]. Therefore; $\{X, \tau\}$ is i-Regular space.

4. By (1) and (3) (i)(respect. (ii), (iii) and (iv)) we have: $\{X, \tau$ 8. By (1) and (7) (i)(respect. (ii), (iii) and (iv)) we have: (X,τ) is $T_{(3/2)}$ space (respect. $T_{(3/2)a}$, $T_{(3/2)a}$ and $T_{(3/2)i}$ -space). *9. i.*{ a *},*{ b *}* \subseteq *X,thereare two open sets{* a *},{* b *}*

s.t. ${a \le a \le a}$, ${b \le b}$ where{ $a \le b \le b$ } $b \ne b$.

Therefore; (X, τ) is Completely Normal space. s.t. ${a \le a \le a}$, ${b \le b}$ where{ $a \le b \le b$ } $b \ne b$. i *i*.{ a *}*,{ b } \subseteq *X,thereare two* α -open *sets{* a *}*,{ b } Therefore; (X, τ) is α -Completely Normal space. s.t. ${a \le a \le a, b \le b} \le b$ *where*{ $a \le b \le b$ } *where*{ $a \le b \le b$ *}* $= \phi$ *.* $iii.$ { a },{ b } \subseteq X , thereare *two* semi – open sets{ a },{ b } Therefore; (X, τ) is s-Completely Normal space. s.t. ${a \le a \le a}$, ${b \le b}$ where{ $a \le b \le b$ } $b \ne b$. $iv.\{a\},\{b\} \subseteq X$, thereare two i -open sets{ a },{ b } Therefore; (X, τ) is i-Completely Normal space. 10. By (1) and (9)(i)(respect. (ii), (iii) and (iv)) we have: (X, τ) is T_s -space (respect. T_{5a} , T_{5s} and T_{5i} - space).

Corollaries2.17. The following diagrams are true. i.

Proof: 1. Suppose that (X, τ) is T space.

Then $\forall x, y \in X \ (x \neq y)$ *there exists open set I* s.t. $x \in I, y \notin I$. Since every open set is α - open(corollary1.10). Then *I* is α - open set. Therefore; (X,τ) is T_{α} -space (definition 2.1).

2. Similarly, by using (corollary1.10) and (definition 2.1), we can prove every T_{α} -space is T_{α} - space.

3. Similarly, by using corollary1.10 and definition 2.1, we can prove every T_{os} -space is T_{os} space.

4. From 1 and 2 we have, every T_{S} -space is T_{S} -space.

5. From 4 and 3 we have, every T_{\circ} -space is $T_{\circ i}$ -space.

6. From 2 and 3 we have, every T_{α} -space is T_{α} -space.

ii.

Proof: 1. Suppose that (X, τ) is T_2 -space.

Then $\forall x, y \in X \land x \neq y$ *there existstwo open sets* $I_1, I_2, I_1 \cap I_2 = \phi$ s.t. $x \in I_1$ $y \in I_2$. Since every open set is α – *open* (corollary1.10). Then I_1 and I_2 are α – *open* sets. Therefore; (X, τ) is $T_{2\alpha}$ space (definition 2.7).

2. Similarly, by using (corollary1.10) and (definition 2.7), we can prove every $T_{2\alpha}$ -space is T_{2s} -space.

3. Similarly, by using corollary1.10 and (definition 2.7), we can prove every T_{2s} -space is T_{2i} -space.

4. From 1 and 2 we have, every T_2 space is T_2 , space.

5. From 4 and 3 we have, every T_2 space is T_2 space.

6. From 2 and 3 we have, every $T_{2\alpha}$ space is T_{2i} space. iii.

Proof: 1. Suppose that (X, τ) is a regular space. Then for every closed set F in X with $x \in X, x \notin F$ *there existstwo open* $sets S_1, S_2, S_1 \cap S_2 = \phi$ s.t. $F \subseteq S_1$, $x \in S_2$. Since every open (closed) set is α - open(α - closed)

139

(corollary1.10). Then S_i *and* S_2 are α – *open* sets and F is α – *closed* set. Therefore; (X, τ) is α -regular space (definition 2.8(2)).

2. Similarly, by using corollary 1.10 and definitions 2.8(2), 2.8(3), we can prove every α -regular space is s-regular space

3. Similarly, by using corollary 1.10 and (definitions 2.8(3), 2.8(4), we can prove every s-regular space is i-regular space.

4. From 1 and 2 we have, every regular space is s-regular space.

5. From 4 and 3 we have, every regular space is i-regular space.

6. From 2 and 3 we have, every α -regular space is i-regular space.

iv.

Proof: 1. Suppose that (X, τ) is T_s -space. Then (X, τ) is T_t and regular space (definition 2.9). Since every T_i space is T_i (corollary 2.5(1) and since every Regular space is α -Regular(corollaries 2.17(iii)(1)), we have (X, τ) is $T_{3\alpha}$ -space.

2. Similarly, by using (definition 2.8(4)), (corollary 2.5(2)) and corollaries 2.29(iii)(2), we can prove every $T_{\beta\alpha}$ space is $T_{\beta s}$ space.

3. Similarly, by using (definition 2.9), (corollary 2.5(3)) and corollaries

140

2.17(iii)(3), we can prove every T_{3s} space is T_{3i} space.

4. From 1 and 2 we have, every $T₃$ space is T_{3s} space.

- 5. From 4 and 3 we have, every $T₃$ space is T_{3i} space.
- 6. From 2 and 3 we have, every $T_{\beta\alpha}$ space is $T_{\beta i}$ space.

Proof: 1. Suppose that (X, τ) is a completely regular space. Then for every closed set *F* in X with $x \in X, x \notin F$ there exists a continuous mapping $f : X \rightarrow [0,1]$ s.t. $f(F) = 1$, $f(x) = 0$. Since every open (closed) set is α -open(α -closed) (corollary1.10) and since every continuous mapping is α -continuous(corollary 1.20) .Then F is α -closed set and $f: X \rightarrow [0,1]$ is α -continuous. Therefore; (X, τ) is α - completely regular space (definition 2.18(2)).

2. Similarly, by using (corollary 1.10), (corollary 1.20) and (definition 2.12(3)), we can prove every α - completely regular space is s- completely regular space.

3. Similarly, by using (corollary 1.10), (corollary 1.20) and (definition 2.12(4)), we can prove every s- completely regular space is i- completely regular space.

4. From 1 and 2 we have, every completely regular space is s- completely regular space.

5. From 4 and 3 we have, every completely regular space is i- completely regular space.

6. From 2 and 3 we have, every α - completely regular space is i-

completely regular space.▄

vi.

141

Proof: 1. Suppose that (X, τ) is $T_{\frac{3}{2}}$ space. Then (X, τ) is T_{τ} and completely-regular space (definition 2.13). Since every T_i space is $T_{1\alpha}$ (corollary 2.5(1) and since every completely regular space is α completely regular (corollaries 2.17(v)(1)), we have (X, τ) is $T_{(3/2)^{\alpha}}$ space.

2. Similarly, by using (corollary $2.5(2)$) and corollaries $2.17(v)(2)$, we can prove every $T_{(3/2)a}$ space is $T_{(3/2)a}$ space.

3. Similarly, by using (corollary $2.5(3)$) and corollaries $2.17(v)(3)$, we can prove every $T_{\binom{3}{2}}$ space is $T_{\binom{3}{2}}$ space.

4. From 1 and 2 we have, every $T_{\frac{3}{2}}$ space is $T_{\frac{3}{2}}$ space.

5. From 4 and 3 we have, every $T_{\frac{3}{2}}$ space is $T_{\frac{3}{2}}$ space.

6. From 2 and 3 we have, every $T_{(3/2)a}$ space is $T_{(3/2)^i}$ space. vii.

Proof: 1. Suppose that (X, τ) a normal space. Then for every $F_i \subseteq X$, $F_2 \subseteq X$, $F_i \cap F_2 = \emptyset \exists S_i$, $S_2 \subseteq X$ s.t $F_i \subseteq S_i$, $F_2 \subseteq S_2$

where $S_1 \cap S_2 = \emptyset$, F_1, F_2 *are closedsets*, S_1, S_2 *are opensets.* Since every open (closed) set is α – *open*(α – *closed*)(corollary1.10). Then S_i *and* S_2 are α -open sets and F_1, F_2 are α -closed sets. Therefore; (X, τ) is α normal space (definition 2.10 (2)).

2. Similarly, by using (corollary 1.10) and (definition 2.10(3)), we can prove every α - normal space is s- normal space.

3. Similarly, by using (corollary 1.10) and (definition 2.10(4)), we can prove every s- normal space is i- normal space.

4. From 1 and 2 we have, every normal space is s- normal space.

- 5. From 4 and 3 we have, every normal space is i- normal space.
- 6. From 2 and 3 we have, every α normal space is i- normal space.

viii.

Proof: 1. Suppose that (X, τ) is T_A space. Then (X, τ) is T_A and normal space (definition 2.11). Since every T_i space is T_i (corollary 2.5(1) and since every normal space is α -normal(corollaries 2.17(vii)(1)), we have (X, τ) is $T_{\mu\alpha}$ space.

2. Similarly, by using (definition 2.11), (corollary 2.5(2)) and corollaries 2.17(vii)(2), we can prove every $T_{4\alpha}$ -space is T_{4s} - space.

3. Similarly, by using (definition 2.11), (corollary $2.5(\mathbf{r})$) and corollaries

2.17(vii)(*), we can prove every T_{4s} – space is T_{4i} -space.

4. From 1 and 2 we have, every T_4 -space is T_4 -space.

5. From 4 and 3 we have, every T_4 -space is T_4 -space.

6. From 2 and 3 we have, every $T_{4\alpha}$ - is T_{4i} -space. ix.

open (closed) set is α – *open* (α – *closed*) (corollary1.10). Then S_1 , S_2 are

 α – *closed* sets. Therefore; (X, τ) is α - completely normal space (definition $2.14(2)$).

2. Similarly, by using (corollary 1.10) and (definition 2.14(3)), we can prove every α - completely normal space is s- completely normal space.

3. Similarly, by using (corollary 1.10) and (definition 2.14(4)), we can prove every s- completely normal space is i- completely normal space.

4. From 1 and 2 we have, every completely normal space is s- completely normal space.

5. From 4 and 3 we have, every completely normal space is i- completely normal space.

6. From 2 and 3 we have, every α - completely normal space is i-

completely normal space.▄

x.

Proof: 1. Suppose that (X, τ) is T_s space. Then (X, τ) is T_t and completely normal space (definition 2.15). Since every T_i space is T_i (corollary 2.5(1) and since every completely normal space is α completely normal(corollaries 2.17(ix)(1)), we have (X, τ) is $T_{\tau_{\alpha}}$ space.

2. Similarly, by using (definition 2.15), (corollary $2.5(2)$) and corollaries 2.17(ix)(2), we can prove every T_{s_a} space is T_{s_s} space.

3. Similarly, by using (definition 2.15), (corollary $2.5(\tau)$) and corollaries

2.17(ix)(\mathbf{r}), we can prove every T_{s} space is T_{s} space.

4. From 1 and 2 we have, every T_s space is T_{ss} space.

5. From 4 and 3 we have, every T_s space is T_{s_i} space.

6. From 2 and 3 we have, every T_{5a} space is T_{5i} space.

From above we have the converses of corollaries 2.17 are not necessary to be true.

References

[1]Al-Sheikhly, A.H. and Khudhair, H.K., *Another Type of Separation* Axioms Depend on an θ g – open set, Al-Mustansiriya Univ., *Journal of Education College,* Vol. 1, No. 1, 2012, 66-75.

[2] Devi, R., Selvakumar, A. and Parimala, M., $\alpha \psi$ – closed sets in *topological spaces*, Submitted 2011.

[3] Dontchev and Maki, On θ -generalized closed sets, Internet. J.math. *and math.* Sci. Vol. 22, No. 2, (1999), 239-249.

[4]Mohammad, Fatima, M., *Pre- Techonov and Pre-Hausdorff Separation Axioms in Intuitonistic Fuzzy special topological spaces*, Tikrit Journal of Pure Science Vol. 11, No. 1, 2006.

[5]Levine, N., 1963. *Semi-open sets and semi-continuity in topological space*, Amer. Math. Monthly 70:36-41.

[6]Levine, N., 1970. *Generalized closed sets in topology*. Rend. Circ. Mat. Palermo, 19(2): 89-96.

[7]Maheshwari S.N. and Prasad R., *Some new separation axioms*, Ann.soc.sci. Bruxelles, Ser.I.,89(1975), 395-402.

[8]Mashhour A.S., Abd El-Monsef M.E. and El-Deeb, S.N., *On precontinuous and weak precontinuous mappings*, proc. Math. phys. soc. Egypt, 53(1982), 47-53.

[9]Mohammed, A.A. and Askandar, S.W., *On i-open sets*, UAE Math Day Conference, American Univ. of Sharjah, April 14, 2012.

[10]Njastad, O., *On some classes of nearly open sets*, pacific *J. Math.* 15(1965), 961-970.

[11]Pervin, W.J., *Foundations of General Topology*, translated by Attallah Thamir Al-Ani, Mosul Univ., 1985.

[12]Kim, Y.K., Devi, R. and Selvakumar, A., *Weakly Ultra Separation* Axioms Via $\alpha \psi$ – Open sets, International Journal of Pure and Applied *Mathematics*, Vol. 71, No. 3, 2011, 435-440.

[13]Reilly, I.L. and Vamanmurthy M.K., *on α-continuity in topological spaces*, Acta Math. Hungar., 45(1-2)(1985), 27-32.

