

 1

Convert

Object-Oriented Program (OOP)

Into Extensible Markup Language (XML)
Prof. Dr. Hilal M. Yousif

Hadeel Sh. Kareem

Abstract:
 Extensible Markup Language (XML) is a coding language that

describes the structure of document and meaning, and it used to represent

Object -Oriented-Programming (OOP) as Database document files such

as Document Type Declaration (DTD) in textual way.

 In this paper Reverse Engineering (RE) is used to analysis and

document input Object-Oriented-Program (OOP) with (*.java; *.class)

extension .After this point the Java XML (JXML) parser used to analysis

document data (that it is a result from RE step) to XML tree (TAX)

Structure that represent Document data and finally the Extensible

Stylesheet Language Transformation (XSLT) used to generate XML files

and DTD associative files.
 XML is a joint effort to create a genuinely open standard, driven

entirely by user needs. These needs include:

 Extensibility: - to define new tags as needed.

 Structure: -to model data to any level of complexity.

 Validation: -to check data for structural correctness.

 Media independence: - to publish content in multiple formats.

 Vendor and platform: - independence, to process any

conforming document using standard commercial software or even

simple text tools.

Keywords:
 Object-Oriented-Design (OOD), Reverse Engineering (RE), Computer

Aided Software Engineering (CASE), Extensible Markup Language (XML).

 تحويل البرمجة الشيئية إلى
Extensible Markup Language (XML)

 أ.د.هلال محمد يوسف
 هديل شوكت كريم

 المستخلص:
على شكل OOPتعمل هيكلية تصميم على شكل قاعدة بيانات لذا نحن نستطيع تمثيل ألـ XML أن صيغة ألـ

 (وبشكل نصي.DTD)تعريف توثيق النوعتوثيق لقاعدة البيانات وتعتمد على

 2

 java ;*.class.*(مع امتداد)OOP في هذا البحث تم استخدام الهندسة العكسية لتحليل وتوثيق البرمجة الشيئية)
لتحويل نتائج و توثيقات الهندسة العكسية إلى تمثيل شجري يعتمد على (Java XML Parser)وثم العمل على ألـ)

(لغرض تحويل إلى (XSLTي يستخدم في تمثيل عناصر النظام. وثم العمل على الـوالذ(TAX)(وهو ألـ XMLصيغة ألـ)
 Document Type Declaration(DTD)و توثيقات ألـ XML(xmi.*)ملفات ألـ

 -تقوم بخلق معيار أساسي لاحتياجات المستخدم وهذه الاحتياجات هي: XMLأن ألـ
 قابلية التوسع: لتعريفtagsة.جديد و إضافي
 :لنمذجة البيانات لأي مستوى من التعقيد. -الهيكلية
 : لفحص البيانات لهيكلية صحيحة . -المشروعية
 :لنشر المحتوى بصيغ متعددة. -بيئة مستقلة
 .لمعالجة أي توثيق باستخدام برمجيات معيارية واقتصادية أو أدوات نصية بسيطة

1. Introduction

 Object-Oriented-Programming is concerned with realizing a software

design using an Object-Oriented-Programming language. An Object-

Oriented-Programming language supports the direct implementation of

objects and provides facilities to define object classes.

 OO languages like Smalltalk, C++, and Java provide mechanisms to

make the implementation easier [2,6].

 The Object-Orientation systems using the Reverse Engineering (RE) to

involve analyzing a system to identify its components and

interrelationships and create representations of the system in another form

or at a higher level of abstraction.

 Extensible Markup Language (XML) is a coding language that

describes the structure of document and meaning, and it used to represent

Object-Oriented-Programming (OOP) as Database document files such as

Document Type Declaration (DTD) in textual way.

 In this paper we suggest systems that convert Object-Oriented

Program system (OOP) into XML schema with DTD files. This system

acceptance OOP system with (*.java ;*.class) extension and it used

reverse engineering as a tool to analysis and document an input system

 3

and the proposed system was used Java XML (JXML) parser to read

document data which is a result from RE step and analysis it to generate

Algebra Tree XML (TAX) and finally we used the Extensible Stylesheet

Language Transformation(XSLT) to translate TAX into XML

files(*.xmi) and Document Type Declaration (DTD) associative files.

 In this paper XML is designed to store, transmit and exchange data,

XML can encode the representation for:

 An ordinary document

 A structured (database) record, such as an appointment record

 An object, with data and methods (e.g. a Java object or an ActiveX

control).

 Graphical presentation (such as an application’s user interface).

2. Object-Oriented-Programming

 Object-Oriented-Programming (OOP) is concerned with realizing a

software design using an Object-Oriented-Programming language. An

OOP language supports the direct implementation of objects and provides

facilities to define object classes. OOP is, at its highest level, the process

of building applications or systems with objects. Implementing an Object-

Oriented-Design can done using almost any programming language.

However, OO languages like Smalltalk, C++, and Java provide

mechanisms to make the implementation easier.

 It is a natural evolution from earlier innovations to programming

language design .It is more structured than previous attempts at

structured programming; and it is more modular and abstract than

previous attempts at data abstraction and detail hiding. Three main

properties characterize an object-oriented programming language:

 4

• Encapsulation: Combining a record with the procedures and

functions that manipulate it to form a new data type: an object.

• Inheritance: Defining an object and then using it to build a hierarchy

of descendant objects, with each descendant inheriting access to all

its ancestors' code and data.

• Polymorphism: Giving an action one name that is shared up and

down an object hierarchy, with each object in the hierarchy

implementing the action in a way appropriate to itself. [2,6,9].

3. Reverse Engineering (RE)

 Its starts with an existing system, analyzing the system to identify its

components and interrelationships among components.

 The principal benefit is recovery of useful information and structures.

Reverse engineering (RE) is performed to gain a better understanding of

an existing system. In other word reverse engineering is an analysis

process. As a result, software engineering rebuilds design specification

(improving the description of its architecture, its description) to set the

stage for a forward engineering.

 The core of RE is an activity called extract abstraction .The engineer

must evaluates the old program and from source code, extract a

meaningful specification of the processing that is performed, the user

interface that is applied and the program data structure or database that is

used [4,5,6].

4. Extensible Markup Language XML

 Extensible Markup Language (XML) is a data storage toolkit; a

configurable vehicle for any kind of information, an evolving and open

standard embraced by everyone from bankers to webmasters. It’s a

protocol for containing and managing information.

 5

 It is a subset of the Standard Generalized Markup Language (SGML)

SGML is a way to express structure and content in different types of

electronic documents, it has been around for more than a decade.

 The structure in XML is built up by markup tags and character data in-

groups that are normally called elements. Each element represents a logic

component of the XML document. All elements consist of one of the

following constructs:

 A tag together with the character data that the tag describes.

 A tag together with other elements (which in turn can consist of

other tags and elements and so on)

Example:

<Owner>

<Name> Kalle Karlsson </Name>

<Address> G ِ tgatan 1 </Address>

<Zip code> 11111 </Zip code>

<City> Stockholm </City>

</Owner>
 The XML document was created into editor and the processor read

this document and convert it into tree of elements and this processor pass

this tree to viewer that display it like Internet Explorer or Netscape this is

life cycle of XML document this is shown in Figure (1).

 Editor File Viewer User

Figure (1) The XML Document Life Cycle.

 The values stored within the elements can basically be of three

different types, parsed character data (PCDATA), unparsed character data

(CDATA), or processing instructions (PI).

 6

 PCDATA: - Is used to store marked-up text that will be evaluated

by the XML parser.

 CDATA: - Is used to store marked-up text so that the markup is

not evaluated, i.e. CDATA sections provide a way of making sure

specific markup is not interpreted as markup. CDATA sections

begin with the string <![CDATA, and end with the string]]>.

 PI: - Holds processing directions and information passed to XML

parsers and programs. PI instructions always start with <?, and end

with ?>. An example of a PI is the code at the beginning of every

XML document that tells the parser which version of XML the

document contains <? XML version = “1.0”? >[1,3].

4.1 XML Data

 In the XML specification, the contents of the tagged elements are

always interpreted as a string. This is not satisfactory for all purposes

since many applications need to be able to specify rigid constraints on the

data they handle. They need to know if a certain data is an integer, float

or a string. Some applications also need to specify within what range a

certain value is allowed to be. The typical example is databases, which

have very stringent constraints on their field-values

 The XML-Data specification provides a standardized way to describe

datatypes, ranges, default values, and other information concerning XML

elements. In the specification, the datatype of an element is defined using

a standardized datatype-namespace and a specific datatype attribute.

Together this construct is referred to as the dt:dt attribute (the first dt is

for the datatype namespace and the second dt names the datatype-

attribute)[3,10].

 7

4.2 XML Document

 An XML document can be defined as a linear series of characters and

references to other objects. An XML processor starts at the beginning of

the document and works down to the end. XML provides a mechanism

for allowing the text and objects in the document to be organized non-

linearly. The parser then reorganizes it to the linear structure. The

mechanisms that make this possible are called entities. An entity can be

as small as a single character or as large as an entire XML document. An

XML document can be broken up into many files on a hard disk or

objects in a database and each of them is called an entity in XML

terminology. Entities can even be spread across the Internet. Whereas

XML elements describe the XML documents logical structure, entities

keep track of the location of the chunks of bytes that make up the

document.

 Very simplified an entity consists of a name and a content. The

content is the actual stored data and the name is used to refer to that data.

There are several different kinds of entities used for different purposes. If

an entity is defined without any separate storage file, and the content is

given in its declaration, the entity is called an internal entity. All internal

entities are parsed entities. This means that the XML processor parses

them like any other XML text. The name parsed is somewhat badly

chosen since the entities are in fact unparsed until they are actually used

[7,8,10].

 Internal entities used as an abbreviation

<! ENTITY dtd “document type definition”>

 Internal entities with markup

<! ENTITY dtd “<term>document type definition</term>”>

 8

4.2.1 The XML Schema

 A schema defines the content of a number of XML-documents

It defines which elements and attributes can be included: -

1. The element content.

2. The order of elements.

 Schema substitutes DTD Think of classes (schema) and instances

(document) Schema is saved with postfix(* .xsd) A document is validated

against a schema. A schema is an XML-document [10].

4.3 XML Document Type Declaration (DTD)

 An important part of XML is the ability to at the beginning of an XML

document store information about what the rest of the document will

contain; this information is called the Document Type Declaration

(DTD).

 The DTD defines what markup tags can be used in the document, what

order they can appear in, what other tags they can contain and so on. In

XML it isn’t strictly necessary to have a DTD associated with each XML

document but it is considered bad manners not to have one. Also a DTD

is necessary to be able to check if an XML document is valid and/or well

structured. These two terms will be defined below. The following

example shows the DTD for the previous employee example.

 The DTD consists of a number of <! ELEMENT> and <! ATTLIST>

tags that are used to define the structure of the rest of the XML document.

This is the DTD for the previous employee example.

<DOCTYPE Employees [

<!ELEMENT Employees (Person)>

<!ELEMENT Person(Name)>

<!ATTLIST Person

email PCDATA #IMPLIED

phone PCDATA #IMPLIED

fax PCDATA #IMPLIED>

 9

<!ELEMENT Name #PCDATA>

]>

 The DTD is used to define the model that the rest of the data in the

document must follow. The DTD can be fetched from an external source

or be imbedded in the XML document itself. Today there exist big efforts

to develop standardized DTDs for different areas [1,7,8].

4.4 Document as a Tree

 An XML document is a tree, with each edge in the tree representing

element nesting (or containment). To enable efficient processing on large

databases, we require set-at-a-time processing of data. In other words, we

require a bulk algebra that can manipulate sets of trees: each operator on

this algebra would take one or more sets of trees as input and produce a

set of trees as output. Using relational algebra as a guide, we can attempt

to develop a suite of operators suited to manipulating trees instead of

tuples. We have devised such algebra, called Tree Algebra

XML(TAX)[10].

 XML needs to refer to the information in a well-formed XML

document.

An XML-document is well formed when: -

1. It only contains one top-level element; this element name

must be unique (often-called root element).

2. Tags are properly balanced.

3. Attribute names are unique and their values quoted.

 Basically, the requirement for well formedness ensures that serialized

XML documents can be transformed into labeled trees. Every XML

document therefore consists of elements hanging together in a logical tree

structure. There is always one element that contains all the other

elements; this element is called the root element. The tree structure of the

 11

elements is a vital part of XML and is used when an application wants to

read and interpret an XML document [3,8].

Figure 2: The structure of the XML source tree; the root node and

the connected elements.

Figure 3: Shows a graphical representation of the binary tree

(containing animals).

<?XML version = “1.0” ?>

<!DOCTYPE BINARY_TREE [

<!ELEMENT BINARY_TREE (ROOT)>

<!ELEMENT ROOT (VALUE,CHILDREN)>

<!ELEMENT CHILDREN(LEFT_CHILD?,RIGHT_CHILD?)>

<!ELEMENT LEFT_CHILD(VALUE?, CHILDREN?)>

<!ELEMENT RIGHT_CHILD(VALUE?, CHILDREN?)>

<!ELEMENT VALUE(#PCDATA)>]>

<BINARY_TREE>

<ROOT>

<VALUE>Animals</VALUE>

<CHILDREN>

Root

Element
Element

XML source tree

Animals

Whales

Mammals

Monkeys

Baboon Chimpanzee

Reptiles

Snakes Lizards

 11

<LEFT_CHILD>

<VALUE>Mammals</VALUE>

<CHILDREN>

<LEFT_CHILD>

<VALUE>Whales</VALUE>

</LEFT_CHILD>

<RIGHT_CHILD>

<VALUE>Monkeys</VALUE>

<CHILDREN>

<LEFT_CHILD>

<VALUE>

 Baboon

</VALUE>

</LEFT_CHILD>

<RIGHT_CHILD>

<VALUE>

Chimpanzee

</VALUE>

</RIGHT_CHILD> </CHILDREN>

</RIGHT_CHILD>

</CHILDREN>

</LEFT_CHILD>

<RIGHT_CHILD>

<VALUE>Reptiles</VALUE>

<CHILDREN>

<LEFT_CHILD>

<VALUE>Snakes</VALUE>

</LEFT_CHILD>

<RIGHT_CHILD>

<VALUE>Lizards</VALUE>

</RIGHT_CHILD>

</CHILDREN>

</RIGHT_CHILD>

</CHILDREN>

</ROOT>

</BINARY_TREE>

4.5 Native XML Databases

 The most recent advance in database technologies regarding XML is

Native XML databases. Native XML databases (NXDs) are designed

specifically for storing XML documents. Like other databases, they

support features such as concurrency control, scalability in multi-user

environments, data integrity, transaction control, security, query

 12

languages, etc. The difference is that their internal model is specifically

designed for persisting XML.

 NXDs have the XML document as their fundamental unit. This means

that document order, processing instructions, comments, etc are preserved

in opposition to XEDs. For the same reason the existence of DTDs and

XML [1,3,7].

4.6 XML Parser

 An XML parser is software solely dedicated to reading and

interpreting XML documents to enable further processing by other

applications. They do this by giving the developer access to classes that

can process XML documents. These classes can then be called by other

classes in an application through a common interface (almost all parsers

support the DOM Level 1 interface). The most popular language to write

XML parsers in is Java even though there are also parsers available in

other languages.

Two pairs of traits distinguish the different XML Parsers:

 Whether they are validating (checks DTD) or non-validating

(checks for well-formedness, no DTD checking).

 Whether they are lightweight and therefore intended for use in

applets or whether they are best suited for full-fledged

applications [1,3].

4.7 Programming with XML

 The Extensible Stylesheet Language (XSL) was still under

development and subject to change. (XSL) which is a programming

language designed to transform one XML document into other documents

(that may be other XML documents). The popular approach to

 13

programming with XML is using the Extensible Stylesheet Language

(XSL).

XSL is made up of two parts:

1. XSL Transformations (XSLT)

2. XSL Formatting Object (XSL-FO)

 XSLT is a stylesheet language for defining transformations of XML

documents into other XML documents. XSLT-FO is a language for

specifying low-level formatting of XML documents, and is not covered

here. XSLT is an XML language, i.e. a given XSLT stylesheet (program)

is an XML document. XSLT is a declarative language; you state what

you want, but not how you want it done. XSLT uses pattern matching and

template rules to perform transformations, as illustrated in example

bellow Template rules contain rules to be applied when specified nodes

are matched. Template rules identify the nodes to which they apply (they

match) by using a pattern, e.g. the template rule <xsl: template match

="/"> will match the root node of any XML document, as the pattern ”/”

match the root node [7,8,10].

Example: -

<book>

<title> chicken soup </title>

<section>

 <title> Introduction </title>

 <para> I’ve always.. <para>

</section >

</book>

Template rule for book

<xsl:template match=”book”>

<body>

<h1> <xsl:value-of select=”title”/> </h1>

</body>

</xsl:template>

Template rule for section

<xsl:template match=”section”>

 <h2><xsl:value-of select=”title”/></h2>

 <xsl:apply-template select=”para”/>

</xsl:template>

book

Title section

Title para

 14

5. The proposed System
 The proposed system is designed to convert object-oriented -

programming (OOP) into XML schema and Document Type Declaration

(DTD) files "COOPXML", it is used for OOP with (*.java; *.class)

extension .

 This system is accepting OOP with (*.java ; *.class) extension and

using Reverse Engineering to analysis input OOP system to extract the

information about system components such as classes ,objects,

relationships, and the structure of input system . After this point the RE

generate document data that document input system. The proposed

system using Java XML (JXML) parser to read Document data that result

from RE step and analysis it to generate Tree Algebra XML (TAX) and

finally we used XSMLT to translate TAX into XML files (*.xmi) and

DTD associative files.

 The general algorithm of the proposed system is: -

Algorithm Conversation

Input: OOP system with (*.java;*.class)extension

Output: XML files (*.xmi), Document Type Declaration (DTD)

Step 1:Begin

Step 2: Analysis OOP to extract its components of input system using

parsing levels.

Step 3: Generate data document (DD) from parsing level.

Step4: Using Java XML (JXML) parser to analysis DD patterns and

generates Database.

 15

Step5: Parse the entire database (XML document) and build a TAX tree.

Step 6: Build XML based description XML tree (TAX) using XSLT to

translation TAX into XML schema (*.xmi) and associative

Document Type Declaration (DTD) files.

Step 7: end.

The Practical Example: -

 The input OOP with Java extension is shown in Figure (4).

Figure (4) Accept OOP system.

The proposed system in this point start the conversation operation and it

must specify the name of output file (*.xmi) that save the conversation

results, this is shown in figures (5,6)

import java.awt.*;

import java.applet.*;

/**

 * This class reads PARAM tags from its HTML host page and

sets

 * the color and label properties of the applet. Program

execution

 * begins with the init() method.

 */

public class hello1 extends Applet

{

 /**

 * The entry point for the applet.

 */

 public void init()

 {

 initForm();

 usePageParams();

 // TODO: Add any constructor code after initForm

call.

 }

 private final String labelParam = "label";

 private final String backgroundParam = "background";

 private final String foregroundParam = "foreground";

 /**

 * Reads parameters from the applet's HTML host and sets

applet

 * properties.

 */

 private void usePageParams()

 {

 final String defaultLabel = "hhh";

 final String defaultBackground = "C0C0C0";

 final String defaultForeground = "000000";

 String labelValue="hhhh";

 String backgroundValue;

 String foregroundValue;

 /**

 * Read the <PARAM NAME="label" VALUE="hhhh">,

 * <PARAM NAME="background" VALUE="rrggbb">,

 * and <PARAM NAME="foreground" VALUE="rrggbb">

 16

Figure (5) Select Convert Operation.

Figure (6) Create Folder.

 The output file with (*.xmi) was display into figures (7,8)

import java.awt.*;

import java.applet.*;

/**

 * This class reads PARAM tags from its HTML host page and

sets

 * the color and label properties of the applet. Program

execution

 * begins with the init() method.

 */

public class hello1 extends Applet

{

 /**

 * The entry point for the applet.

 */

 public void init()

 {

 initForm();

 usePageParams();

 // TODO: Add any constructor code after initForm

call.

 }

 private final String labelParam = "label";

 private final String backgroundParam = "background";

 private final String foregroundParam = "foreground";

 /**

 * Reads parameters from the applet's HTML host and sets

applet

 * properties.

 */

 private void usePageParams()

 {

 final String defaultLabel = "hhh";

 final String defaultBackground = "C0C0C0";

 final String defaultForeground = "000000";

 String labelValue="hhhh";

 String backgroundValue;

 String foregroundValue;

import java.awt.*;

import java.applet.*;

/**

 * This class reads PARAM tags from its HTML

host page and sets

 * the color and label properties of the

applet. Program execution

 * begins with the init() method.

 */

public class hello1 extends Applet

{

 /**

 * The entry point for the applet.

 */

 public void init()

 {

 initForm();

 usePageParams();

 // TODO: Add any constructor code

after initForm call.

 }

 private final String labelParam =

"label";

 private final String

backgroundParam = "background";

 private final String

foregroundParam = "foreground";

 /**

 * Reads parameters from the applet's

HTML host and sets applet

 * properties.

 */

 private void usePageParams()

 {

 final String defaultLabel =

"hhh";

 final String defaultBackground =

"C0C0C0";

 final String defaultForeground =

"000000";

 String labelValue="hhhh";

 String backgroundValue;

 String foregroundValue;

 /**

 * Read the <PARAM NAME="label"

VALUE="hhhh">,

 * <PARAM NAME="background"

VALUE="rrggbb">,

 * and <PARAM NAME="foreground"

VALUE="rrggbb"> tags from

 * the applet's HTML host.

 */

 labelValue =

getParameter(labelParam);

 backgroundValue =

getParameter(backgroundParam);

 foregroundValue =

getParameter(foregroundParam);

 if ((labelValue == null) ||

 17

Figure (7) XML Formula for Input system.

Figure (8) The OOP system display into XML Environment.

 18

6. Conclusion
 Through this paper and use of this system, we came out with

few points that summarize our conclusions, these are: -

1. XML is designed to store, transmit and exchange data, XML

can encode the representation for :

 An ordinary document

 A structured (database) record, such as an appointment

record

 An object, with data and methods (e.g. a Java object or an

ActiveX control).

 Graphical presentation (such as an application’s user

interface).

2. In this paper we could produce an XML-document which is a

well-formed document.

3. It is a flexible way to create “ self-describing data”, and share

both the format and data on the World Wide Web, Internets.

4. This work helps developer to great the optimal Document Type

Declaration (DTD) about input Object-Oriented System.

5. The XML uses different XML elements for each composition

operations. An XML solution to composition language problem

by describing how it addresses each of requirements listed

earlier.

6. This work can be used to represent OOP as Database documents

into textual way.

7. This work can be used as a tool for supporting Web-based

applications.

8. This work can be using from designer as a tool for semantic web

(as a translation tools).

 19

7. References

1. Bray T., Paoli J., and C.M. Sperberg-McQueen (eds.):

Extensible Markup Language (XML) 1.0,W3C Recommendation

10-February-1998, HYPERLINK: -http://www.w3.org/TR/REC-

xml.

2. Davis S.R.," Programming Visual J++ 6.0", Micro software

sires, 1999.

3. Erik, T. Ray, " Learning XML", Oreilly & associates, Inc., 2001.

4. Fisher A.S.," CASE using Software development tools ", John

Wiley, 1998.

5. Hamlet D., Maybee J.," The Engineering of software ", Addison-

Wesley longman, 2001.

6. Jacobson I.," Object-Oriented Software Engineering - A Use

Case Driven Approach", Addison-Wesley, 1992.

7. James Clark (ed): XSL Transformations (XSLT), W3C

Recommendation 16 November 1999 ,http: //www.w3.or g/T

R/xslt

8. James Davidson: Java API for XML Parsing, Version 1.0 Final

Release, HYPERLINK:-

http://java.sun.com/aboutJava/community.

9. Morgan B.," Visual J++ Unleashed", Second Edition, 2002.

10. Thompson H. S., Beech D., Maloney M., Mendelsohn N. (eds.):

XML Schema Part 1:Structures W3C Working Draft 7 April

2000, HYPERLINK :-http://www.w3.org/TR/2000 / WD-

xmlschema.

