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   The purpose of this study is to determine whether an enhanced confound model 

representing bivariate wavelet-autoregressive integrated moving average with exogenous 

variable BWARIMAX is beneficial for predicting monthly traffic accidents. A wavelet-

based multiresolution analysis MRA, conducted before the ARIMAX model fitting, 

shows that the performance of ARIMAX models in predicting traffic accidents can be 

significantly improved. The method described in this study identifies the ideal wavelet 

function, wavelet transform, and number of decomposition levels for the MRA and 

consequently considerably improves forecast accuracy. The analysis of the study 

demonstrated the superiority of the suggested approach and revealed that utilizing the 

BWARIMAX method, we can extract more information from the series, which enhances 

the performance of the original ARIMAX model in terms of predicting. Additionally, it 

has been demonstrated through extensive empirical testing using a wide range of wavelet 

families that Daubechies and Coiflet wavelets are excellent choices for denoising data. 

Furthermore, the study concluded that out of the two wavelet families, the performance of 

the Coiflet wavelet of order 3 was better. 
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1. Introduction 

 

   Predicting traffic accidents is an essential duty for traffic safety planners. Typically, these forecasts are useful in 

providing a better understanding of accident trends and current safety strategies. In other words, safety planners are 

interested in evaluating current policies and safety measures in order to take remedial action and analyze projected accident 

trends[1]. Before evaluating the series, it is crucial to remove the noise from the original data in order to better modeling 

and forecasting. The wavelet denoising approach, which uses a wavelet with a threshold, is a powerful mathematical tool 

for removing noise from the original data While preserving important features of the signal[2]. The use of wavelet analysis 

and time series analysis on traffic accidents data have seen a lot of implementations and proposals. Tsingotis and 

Vlahogranni [3]investigated the impact of meteorological data on the performance of short-term traffic forecasting models. 

A vector autoregressive moving average model with exogenous variables is used to examine the effects of weather and 

traffic mix on traffic speed prediction. The inclusion of exogenous variables increased predicting performance modestly, 

but vector and Bayesian estimation greatly improved the models. Junhui Zhang and Tuo Shi [4]used wavelet analysis and 

data from vehicle communication systems for the spatial study of traffic accidents to significantly increase the operational 

effectiveness of the traffic police department. Zuduo Zheng et al [5] used the Discrete Wavelet Transform DWT for the 

analysis of freeway traffic. The investigation demonstrates that the wavelet-based energy of individual cars may 
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successfully identify the sources of deceleration waves and offer information on potential causes (e.g., lane changing). In 

order to investigate a hybrid model for detecting traffic events, Shaura et al[6] used the wavelet transformation and logistic 

regression analysis. According to the findings, the method is a useful tool for detecting traffic incidents. Jabed Hossain [7] 

suggested a hybrid method that uses a wavelet transform to analyze a time-frequency (traffic count/hour) signal to identify 

acute variations in traffic flow. The improvement in accuracy for predicting long-term traffic flow was shown by the 

experiment results. For the purpose of forecasting short-term traffic flow, Hong Zhang et al[8]put up a brand-new hybrid 

technique with multivariate. In order to analyze the characteristics of traffic flow and predict the short-term state of traffic, 

this method combines statistical analysis with computational intelligence techniques that represent wavelet analysis and 

seasonal time series WSARIMA. Results of the study were encouraging. One-step ahead and ten-steps ahead forecasting 

accuracy improved using the newly proposed method. In order to anticipate the data on traffic accidents in Anambra State, 

Nigeria, Chukwutoo C. Ihueze and Uchendu O. Onwurah [9]used the ARIMA and ARIMAX models. Depending on certain 

statistical measures, the outcome showed that the ARIMAX model performed better than the ARIMA (1,1,1) model. To 

predict the price of crude oil, the author Taha Hussein Ali, and Mardin Samir Ali[10],  used various linear dynamic 

systems, represented by ARIMA with exogenous input variables (ARIMAX models). The research's primary findings were 

that bivariate wavelet filtering was more effective than standard models at forecasting crude oil prices, and that using the 

suggested method, prices will be somewhat lower in 2020 than they were in 2019. Recently, many researchers applied the 

Box-Jenkins methodology to traffic accident data    . In his work, Kidane Alemtsega Getahun [11]sought to apply the ARIMA 

approach to estimate the trend of injury, fatal, and overall traffic accidents in the Amhara region of Ethiopia from 

September 2013 to May 2017. It was discovered that the rate of traffic accidents in the Amhara region may be fitted by the 

ARIMA (2,0,0) (1,0,0) and ARIMA (2,0,0) (1,1,0)12 models. Katherina MeiBner and Julia Rieck [12]used multivariate 

forecasting, an extension of the ARIMA method, to predict how traffic accidents will develop over time in various 

geographical areas. The authors provided two additional approaches for segmenting accident data that allow the adaption of 

police tactics to regional features in order to identify geographical areas of interest Lunacek, Monte, et al [13] assessed 

different methods for traffic demand forecasting, which will help airport operations employees to accurately predict traffic 

and congestion. The investigation discovered that these algorithms are capable of capturing diurnal variations in surface 

traffic and all perform exceptionally well when anticipating the following 30 minutes of demand. Very recently, the authors 

Aram Nasser and Vilmos Simon[14] presented two new methods for weather-based traffic analysis and wavelet attention-

based calculation. The two methodologies presented here were developed to study the temporal connections between traffic 

flow and exogenous meteorological elements at various frequencies and time intervals. In addition, to aid in understanding 

the significance of each external variable in comparison to the others. Soo-Yeon, Ji et al [15] introduced an approach for 

predicting future network events. Among the results of the analysis, Vector Auto- Regression with Exogenous variables 

VARX wavelet features can be used to analyze time series data from multivariate network traffic for the purposes of 

forecasting future network events and estimating their attack probability. Using ARIMA models, Vitalis Agati Ndume et al 

[16] examined the road traffic accidents patterns in Tanzania's selected regions. The study's main contribution to road 

safety was an estimation of road accident deaths by 2030. In this study, the implementation of bivariate wavelet analysis 

relying on discrete wavelet transform is denoted to investigate whether it can outperform bivariate ARIMA or not. for 

explanatory variable, we use the number of traffic accidents due to excessive speed as an indicator. Section 2 presents the 

methodology of bivariate time series analysis (ARIMAX model), and bivariate wavelet analysis. Section 3 deals with 

implementation and main results. In section 4, some conclusions are present.  

 

2. A Brief Overview of Time Series Analysis and Wavelet Analysis  

 

 2.1 Time Series Analysis 

 A time series is a collection of observations, each collected at a specific time[17]. The time series data has time as the 

independent variable and the observed values as the dependent variables. A time series analysis that refers to any type of 

study employing time-series data is known as a univariate or single-series analysis. In other words, attempts to explain the 

behavior of data sets using only past observations on the variable of interest[18]. 

 

2.1.1 ARIMA Model 

George Box and Jenkins (1976) proposed the ARIMA (p, d, q) model, which is made up of Autoregressive, Integration 

order, and Moving Average components. The first procedure to consider is (d), which refers to the order of the integration. 

To become stationary, the order of integration indicates the order of differencing to eliminate the unit root from a time 

series. To make a time series stationary in variance as required by the Box-Jenkins technique, we usually need to transform 

the series by the natural log or square root. We may refer the reader to [19][20]. The AR(p) process denotes the 
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Autoregressive process of order p, which defines the relationship between the target variable and the linear combination 

(regression) of its past values. The process can be represented as[21]: 

𝑦𝑡 = 𝐶 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡                                                                                                                               (1) 

Where “𝜙” is called the autoregressive coefficient and “𝜀𝑡” is white noise. The next procedure is MA(q), which refers to a 

moving average process of order "q," with the variable of interest "𝑦𝑡" being a function of current and multiple previous 

errors. The MA(q) process can be expressed as the following equation: 

𝑦𝑡 = 𝐶 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞                                                                                                                              (2) 

Where 𝜃 is moving average coefficient. When these processes are combined or mixed, the ARIMA model is produced 

which represents the “Autoregressive Integrated Moving Average”. The model is usually being shown as ARIMA (p, d, q): 

𝑦𝑡 = 𝐶 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞                                                            (3) 

Backshift formulae can be used to write the ARIMA model, where B acting as a backward shift operator. It takes effect by 

moving the data back one period. ARIMA backshift notation (p, d, q): 

∅(𝛽)𝑦𝑡 = 𝐶 + 𝜃(𝛽)𝜀𝑡                                                                                                                                                                       (4) 

Where(∅(𝛽) = 1 − ∅1𝛽1 − ⋯ − ∅𝑝𝛽𝑝)𝑎𝑛𝑑, (∅(𝛽) = 1 − 𝜃1𝛽1 − ⋯ − 𝜃𝑞𝛽𝑞).        

George Box and Jenkins (1970) proposed employing autocorrelation function (ACF) and partial autocorrelation function 

(PACF) for the initial identification of (p, q) orders (PACF). However, this strategy may only be applicable to certain 

patterns in time series. In this study, some specialized criteria employed, such as the Akaike's Information Criterion (AIC) 

for more rigorous recognition of (p, q) orders[22], and the Root Mean Square Error (RMSE) to assess the extent of forecast 

error in a forecast[23].  

 

 2.1.2 ARIMAX Model 

Using the ARIMA model in conjunction with explanatory variables (ARIMAX) falls within the category of dynamic 

regressions, which includes a wide range of models, including conventional multiple regression models in which input 

factors have an instant effect on the output variable. In other words, the ARIMAX model represents the combination 

between linear regression and ARIMA process[24]. The ARIMAX model is configured in three steps: identification, 

parameter estimation and selection, and diagnostic checks. Identification entails deciding on data stationarity, parameter 

estimation and selection entails deciding on the order of AR and MA, and diagnostic check entails ensuring that no 

autocorrelation exists among the residuals[25].We can use formula (4) to express the ARIMAX model: 

∅(𝛽)𝑦𝑡 = 𝐶 + 𝛽𝑋𝑡 + 𝜃(𝛽)𝜀𝑡                                                                                                                                                         (5) 

Here 𝑋𝑡  is the input series or explanatory variable at time t, and 𝑦𝑡 is the output series or dependent variable. The 

construction of such a model is an iterative process, though, and each step's output potentially violates the presumptions 

that must be made. The reference[26]has drawn the following conclusions on these presumptions: 

1. The residual and the time-series used to construct the regression model both need to be stationary. If the residual is non-

stationary, the original time-series must be further differentiated, and a new regression model must be created. 

2. The residual of the final model conforms to the white noise hypothesis. 

3. Each exogenous variable's coefficients in the final model need to be statistically significant. In some cases, some 

regression coefficients can lose their significance after creating the ARIMA model for the residual in the regression model. 

The least significant coefficient must then be eliminated, and all presumptions must be reexamined. 

4. Only one-way causal relationships between exogenous and endogenous variables are possible; however, these 

relationships cannot exist between endogenous and exogenous variables (using Granger causality test). If the opposite 

causal relationship is found, the exogenous variable must be eliminated, and all presumptions must be reevaluated. 

5. In the final model, the correlation coefficients between the exogenous variables and the dependent variable must have 

the same relationship (sign) with the regression coefficients (original timeseries). 

6. In the completed model, there is no evidence of multicollinearity between exogenous variables. 

 

2.2 Wavelet  

A wavelet is indeed a small wave. A small wave grows and decomposes in a short amount of time. The opposing concept is 

clearly a "big wave." The sine function, which oscillates upwards and downwards on a plot of sin(u) versus 𝑢 ∈
(−∞, +∞), is an example of a big wave[27]. Figure1, shows the difference between sine wave and an example of 

Daubechies’ wavelet[28]. 
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Figure 1. Sine wave from the left and Daubechies wavelet from the right 

 

2.2.1 Wavelet Analysis 

Wavelet analysis is increasingly being used to investigate localized fluctuations in power within a time series. By 

decomposing a time series into time-frequency space, one can determine the major patterns of variability as well as how 

those patterns change over time[29]. Wavelet decomposition is a redesigned short-time Fourier transform that displays 

decomposed signals in both the time domain and frequency domain using a time window - based function or the mother 

wavelet function[30]. For studying signals in the frequency domain, the Fourier transform is typically employed. However, 

the Fourier transform was unable to reproduce that behavior in nonlinear time-series that contain transients of short 

duration. A damped and long-duration vibration results from transforming a brief transient from time domain to frequency 

domain. A wavelet transformation is well known for its benefit in time-frequency localization. Wavelet analysis does not 

have this restriction, hence it works well with nonstationary time-series in contrast to Fourier transform which presumes 

the signal to be stationary[31]. 

The low frequency signal that is derived from the upper level is split into two components at each level of decomposition, 

the low frequency signal and the high frequency signal. The non-stationary signal can be effectively decomposed using the 

wavelet decomposition technique. Detail and trend components are included in the findings of the decomposition. The 

time-domain and frequency-domain properties of the signal are kept by expanding and translating the wavelet basis. The 

shape of the window is automatically flattened, and the window automatically becomes long and narrow with respect to 

high frequency signals[32]. Figure2 shows the process of wavelet decomposition of the original signal x. 

 

 
 

Figure 2. The algorithm of wavelet decomposition 

 

Following wavelet decomposition, the signal x can be written as the sum of n detail parts 𝑑𝑗(𝑡) and one approximate part 

𝑎𝑛(𝑡). 

𝑥𝑛 = ∑ 𝑑𝑗

𝑛

𝑗=1

(𝑡) + 𝑎𝑛(𝑡)                                                                                                                                                                           (6) 

For many practical purposes, multiple Wavelet types of transformations are employed, such as: Discrete Wavelet 

Transform (DWT), Continuous Wavelet Transform (CWT), Fast Wavelet Transform (FWT), Wavelet Packet Transform 

(WPT), and Stationary Wavelet Transform (SWT). The DWT transform is one of the most significant ones utilized in 

wavelets. Many different disciplines use this type of transform and its variations[33]. The DWT will be the subject of this 

paper because it is a fundamental tool for wavelet-based time series analysis. 

The DWT differs from CWT in that it only uses a select few scales as opposed to transforming data across all scales. 

Again, a mother wavelet is used to create discrete wavelets, but this time, scale and shift are applied in discrete increments. 
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In a multiresolution analytic MRA framework, the DWT connects "filter banks" in the discrete time domain and wavelets 

in the continuous time domain[34].  

2.2.2 Building a Hybrid Model BWARIMAX Using Wavelet Denoising 

The main goal of wavelet denoising is to separate the ideal signal components from the noisy signal, which requires an 

estimation of the noise level. The small coefficient that is assumed to be noise is added to the estimated noise level [35]. 

The three main processes of signal denoising based on DWT are signal decomposition, thresholding, and reconstruction of 

the signal, which is then practically reduced from noise [28]. Figure3. illustrates how the process of building the 

BWARIMAX model works depending on wavelet-based denoising  

 

 

 

 

 

 

 

 

 

 

 Figure3.The process of building the BWARIMAX model using wavelet-based denoising 

 
2.2.3 Threshold Choice 

The process of threshold selection is crucial since it has a direct impact on the quality of the output smoothed signal. There 

are several well-known techniques for estimating threshold levels. The performance of four popular criterion threshold 

estimating techniques—Fixed-Form, Minimax, Rigorous SHURE, and Heuristic SHURE—is examined in this research. 

For the stationary two datasets, three bivariate wavelet filters, including the Haar, Daubechies, and Coiflets wavelets, are 

applied. Additionally investigated is the effect of wavelet decomposition level. The following sources can be used by the 

reader to get more information about the four different threshold types and their equations[36][37]. The wavelet 

coefficients of a specific level would either have a hard threshold or a soft threshold depending on how the threshold of that 

level was estimated. Hard thresholding is the practice of setting all elements with absolute values below the threshold to 

zero. By first setting the elements whose absolute values are below the threshold to zero and then reducing the nonzero 

coefficients to zero, soft thresholding is an enlargement of hard thresholding. Discontinuities are produced by the hard 

technique but not by the soft procedure[38]. It was determined that the variance of the soft threshold is lower than that of 

the hard threshold[39]. In this study, we only concentrate on soft thresholding to improve the ARIMAX model of the data. 

All denoising algorithms and thresholding fundamentals are evaluated for their effectiveness in denoising the traffic 

accident data signals using two performance indicators, the Root Mean Squared Error (RMSE) and Akaike's Information 

Criterion (AIC). The following expression can be used to describe the two metrics, respectively[40]. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥 − 𝑥𝑒)2𝑛

𝑖=1

𝑛 − 𝑘
                                                                                                                                                                      (7) 

𝐴𝐼𝐶 = 𝐿𝑛𝜎𝑒
2 +

2𝑘

𝑛
                                                                                                                                                                                   (8) 
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Where 𝑛 stands for the signal's length or sample size, 𝑥 is the actual signal, 𝑥𝑒 is the calculated signal derived from the 

denoised wavelet coefficients, and 𝑘 is the amount of estimated model parameters. 

 
3. Application and Main Results 

3.1 Data Description 

The study data includes a monthly time series of (84) observations representing the number of road accidents and the 

excessive speed in the Kurdistan Region of Iraq during the period starting from January 2015 to December 2021. These 

data have been obtained from the General Traffic Directorate of Erbil Governorate. In order of simplicity, the researcher 

will symbolize the variable number of accidents with the symbol (Y) as the dependent variable or the internal variable and 

the excessive speed variable with the symbol (X) as an independent variable or an external variable. 

It is clear from table1, the statistical measures of the time series, where it is noted that the number of traffic accidents in the 

Kurdistan Region of Iraq during the study period ranged between (87) and (475) accidents, with a mean of (309.700) and a 

standard deviation of (104.329). Excessive speed ranged between (29) and (318) cases with an arithmetic average of 

(171.200) and a standard deviation of (68.943). Figure4 presents the time series of the study variables at their level: 

 

Table 1. Arithmetic description of time series data 

 

Standard deviation Arithmetic mean 
Maximum 

Value 

Minimum 

value 
Time series 

104.329 309.700 475 87 No of accidents Y 

68.943 171.200 318 29 Excessive speed X 

 
 

Figure 4. Monthly time series for the variables Y and X 

 

3.2 Stationarity Test  

The KPSS test (Kwait kowski-Phillips-Schmidt-Shin) is one of the special tests used to determine whether or not the time 

series is stationary. This test determines if the time series is stationary around an average or linear trend or whether it is not 

stationary because of the unit root [41]. The outcomes of the KPSS stationarity test are displayed in Table 2. 
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Table 2. KPSS test results 

 

Critical values for a significant level 

of 
10pct 5pct 2.5pct 1pct 

Critical values 0.347 0.463 0.574 0.739 

Time series 
Value of            

test statistic 
After the first difference 

Y 0.155 No need 

X 0.206 No need 

It is clear from table2 that the results of the KPSS test indicate that the time series of the number of road accidents is static 

at all levels, as the value of the test statistic is (0.155), which is less than all the given critical values. Also, from the other 

side, the result of the KPSS test indicates the static of the excessive speed time series, as the value of the test statistic KPSS 

is equal to (0.206), which is less than all the given critical values. The two series are stationary and do not need to take any 

differences. 

 

3.3 Building ARIMA Model 
In order to construct a suitable ARIMA model, the following steps should be followed : 

1.Model Recognition Stage: For the purpose of seeking the stationarity of the time-series, the two functions representing 

autocorrelation ACF and partial autocorrelation PACF have been employed and relying on them to specify the order of the 

ARIMA models regarding each time series. as shown in figures 5,6 and table3.  Selected alternatives for ARIMA models 

and the statistical criteria used to determine the best model. It is clear from table3, that the first stationary time series for 

the number of road accidents takes the model ARIMA (1,0,0) out of a total of 42 possible models, especially in comparison 

with the three closest alternative models. Also, the second stationary series of excessive speed takes the model ARIMA 

(1,0,0) out of a total of 42 possible models, especially when compared with the three nearest alternative models.  

 

 

 
Figure 5. Time Series(Y) Interpretation of ACF and PACF Plots 
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Figure 6. Time Series(X) Interpretation of ACF and PACF Plots 

 

 Table 3. presents the model chosen for the two-time series in comparison with the three closest alternative models 

 

Series Model 
Criteria 

AIC RMSE 

Y 

 

ARIMAX (1,0,0) 935.11 60.660 

ARIMAX (0,0,1) 974.18 76.791 

ARIMAX (0,0,2) 955.58 67.809 

ARIMAX (0,0,3) 952.05 65.635 

X 

ARIMAX (1,0,0) 855.36 37.707 

ARIMAX (0,0,1) 895.79 48.105 

ARIMAX (0,0,2) 879.43 43.077 

ARIMAX (0,0,3) 871.15 40.50 

2. Models Estimation Stage: The proposed ARIMA models were estimated based on the ACF and PACF functions of the 

stationary time series. The comparison is done for the possible alternatives of the different models for each series 

independently to get the best model. Table4 shows the best two models ARIMA (1,0,0) and ARIMA (1,0,0) with their 

estimated parameters. All parameters are significant at the 0.05 level. 

 

Table 4. Results of estimating the best model for the variables Y and X 

 

Time Series 

 
Selected Model Parameters Standard Error Z-Value Pr(>|Z|) 

No. road 

Accidents Y 

 

ARIMA (1,0,0) 

AR1=0.803 

 
0.062 12.904 <2.2e-16*** 

 

Mean=307.139 

 

32.161 9.550 <2.2e-16*** 

Excessive Speed 

X 

 

ARIMA (1,0,0) 

Mean= 166.798 

 
23.026 7.244 4.364e-13*** 

 

AR1= 0.830 

 

0.059 14.195 <2.2e-16*** 

3. Model Diagnosis Stage: By testing the residuals of the X and Y time-series and the ACF, PACF functions through 

figures7 and 8, it is noted that the standard residuals are randomly scattered around the zero line, and most autocorrelation 
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values of the ACF and PACF are within confidence limits or critical lines. Besides this, the Ljung_Box test value for the 

number of road accidents series is (Q*(Y) =12.139) with (p_value=0.669), and the Ljung_Box test for the series excessive 

speed is (Q(X)=12.132) with (p_value=0.669), and these values are greater than the significance level of 0.05. These 

results confirm the quality and suitability of estimated ARIMA models for time series data.    

 
 

Figure 7. Standard residuals and ACF, PACF functions for the variable Y 

 

 
 

Figure 8. Standard residuals and the PACF, ACF functions for the variable X 

 

3.4 Building ARIMAX Model 

As mentioned in the theoretical section of this paper, the ARIMAX models represent an extended version of the ARIMA 

model that contains other independent (predictive) exogenous variables. ARIMAX models are similar to multiple 

regression models except that allow taking advantage of the autocorrelation that may be present in the regression residuals. 

This process is done to improve prediction accuracy after obtaining the ARIMA model for the number of road accidents Y, 

as well as the ARIMA model for the excessive speed X. Figure9 shows the errors resulting from the regression with the 

errors resulting from the ARIMA model. 
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Figure 9. The combined regression errors and ARIMA model errors for the variables Y and X 

 
Now it is required to find a suitable model to predict the number of monthly accidents with the presence of an external 

variable (excessive speed). The researcher used the statistical program (R) to build this model. Out of a total of (42) 

possible models, based on the AIC statistical criterion's lowest value, the ARIMAX (3,0,0) model was chosen.  which is 

equal to (762.75), and the root mean square error criterion RMSE, which is equal to (20.941). Table5. shows the parameter 

values and their standard errors for the estimated model:  

 

 

Table 5. ARIMAX (3,0,0) Model Summary 

 

Parameter Estimate Standard Error Z—Value Pr(>|Z|) 

AR (1) 0.242 0.107 2.269 0.023* 

AR (2) 0.355 0.103 3.461 0.0005*** 

AR (3) 0.281 0.116 2.418 0.016* 

Mean 68.428 19.272 3.551 0.0004*** 

X reg 1.482 0.050 29.616 <2.2e-16*** 

of the estimated Table5 clearly shows the statistical significance  of parameters for both parts (ARIMA and regression) 

which supports the strength of this model. Figure10 shows the residuals and the location of the values of the 

autocorrelation coefficients. 
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Figure 10. Residual from regression with ARIMA (3,0,0) error 

Figure10 shows that the residuals fluctuate around the zero line. Also, the all values of the autocorrelation coefficients fall 

within the confidence interval. Furthermore, most of the residual’s values fall within the standard curve. Beside this, the 

value of the Ljung_Box statistical test is equal to (Q*=6.747) with a degree of freedom of (13) and the (P_value=0.874). 

which is another indicator of the randomness of the time series and the efficiency of this model. The equation of the 

ARIMAX model can be presented as the following: 

𝑌𝑡 = 1.482𝑋𝑡 + 𝜂𝑡                                                                                                                                                                                     (9) 

𝜂𝑡 = 0.242𝜂𝑡−1 + 0.355𝜂𝑡−2 + 0.281𝜂𝑡−3 + 𝜀𝑡 

𝜀𝑡~𝑁𝐼𝐷(0 ,466.3) 

 

3.5 ARIMAX Models Using Bivariate Wavelet Filter  

After finding a suitable ARIMAX model for the number of monthly traffic accidents data in the presence of the exogenous 

variable (excessive speed) the researcher will try to use some of the wavelet filters as one of the proposed methods to 

reduce the impact of noise or contamination of the time series data using the program MATLAB. Forecasting will be 

carried out after reconstructing classically the ARIMAX model. Some wavelet filters were used such as: Haar, Daubeties, 

Coiflets, and at the same time some thresholding methods were used, including the Fixed Form threshold, Rigorous SURE, 

Heuristic SURE, and Minimax threshold with the use of soft and hard function. Figure11 shows the wavelet filter Coiftets 

level 3 with the Fixed Form threshold rule and soft threshold rule. 

 

 
 

Figure 11. Coiflets level 3 bivariate wavelet with Fixed Form thresholding and soft rules for (Y, X) data 
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After the time series data have been converting from the time domain to the frequency domain. and using the wavelet 

filters, the noise reduction process was done by filtering. Then, re-converting the signal from the frequency domain to time 

domain, obtaining new filtered data, and reconstructing the ARIMAX model. Table6 shows the original model before 

filtering and a group of the best-selected models after using wavelet filters. Some thresholding methods are used according 

to the soft and hard threshold rule and the values of the statistical criteria are obtained. 

 

Table 6. Comparison among the original model and the selected models after filtering for (Y, X) data. 

 

RMSE AIC Model 

20.941 762.75 
ARIMAX (3,0,0) 

Original 

7.451 591.38 

ARIMAX (3,0,0) 

Using Fixed Form1 

Coiflet 3_Soft 

10.880 654.03 

ARIMAX (3,0,0) 

Using Rigorous SURE 

Daubechies 2 Soft 

14.579 702.08 

ARIMAX (3,0,0) 

Using Heuristic SURE 

Coiflet 3 Soft 

14.988 706.63 

ARIMAX (3,0,0) 

Using Minimax 

Coiflet 3 Soft 

Through table 6, we see that the values of the statistical criteria for the models that were built after filtering the data were 

mostly better than the original model and that the best case was through the BWARIMAX (3,0,0) model using Fixed Form 

thresholding method and depending on wavelet function Coiflit3 with a base soft rule, which has a minimum (AIC 

=591.38) and (RMSE =7.451).  Table7 shows the values and std. error of the parameters for the chosen model  

 

Table 7. BWARIMAX (3,0,0) Model Summary  

 

Pr.(>|Z|) Z—value Std Error Estimate Parameter 

<2.2e-16*** 15.790 0.107 1.691 AR1 

4.964e-10*** -6.220 0.189 -1.175 AR2 

0.0003*** 3.623 0.121 0.439 AR3 

0.002** 3.072 18.591 57.115 Mean 

<2.2e-16*** 31.361 0.049 1.540 XReg. 

The equation of the denoised ARIMAX model can be presented as the following: 

𝑌𝑡 = 1.540𝑋𝑡 + 𝜂𝑡                                                                                                                                                                                    (10) 

𝜂𝑡 = 1.691𝜂𝑡−1 − 1.175𝜂𝑡−2 + 0.439𝜂𝑡−3 + 𝜀𝑡 

𝜀𝑡 ∽ 𝑁𝐼𝐷(0 , 59.03) 

 

3.5.1 Forecasting Depending on the Denoised ARIMAX 

This stage uses the estimated denoised ARIMAX model to predict new values for time series data. Table8 shows the 

forecasted values of the number of traffic accidents for the next twenty-four months  from January 2022 to December 2023  

depending on the denoised ARIMAX model. 
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Table 8. Forecasted values of the number of traffic accidents depending on BWARIMAX (3,0,0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4. Conclusions 

In this paper, the issue of the possibility of improving the traditional ARIMAX model based on the bivariate wavelet 

analysis method was mentioned. A proposed model was applied to the monthly data that represents the number of traffic 

accidents. Based on the results of the statistical analysis, the following can be concluded: 

1- The hybrid model BWARIMAX (3,0,0) represents the optimal reliable model for predicting the number of traffic 

accidents.  

2- The Fixed-Form threshold level was determined better than the other thresholds used in the analysis. 

3- Among the wavelet family group used in the analysis, the Coiflet wavelet of order 3 gave the best result. 

4- The soft rule threshold was better than the hard rule to obtain the best result. 

5- Depending on the selected BWARIMAX (3,0,0) model, a slight decrease will happen in the number of traffic accidents 

in 2023 compared to 2022. 
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الإنحدار الذاتي والمتوسط المتحرك -ثنائية المتغير  مويجةبنموذج )ال والمتمثلة تبحث هذه الدراسة في فائدة الطريقة المحسنة المدمجة :الخلاصة
في التنبؤ بحوادث   ARIMAXللتنبؤ بحوادث المرور الشهرية. تم إثبات زيادة أداء نماذج  ( BWARIMAX بوجود متغير خارجي التكاملي

القائم على المويجة. النهج الموضح في هذه الورقة يحدد أفضل نوع  MRAالمرور على الطرق بشكل كبير من خلال التحليل متعدد التصاميم 
وبالتالي زيادة دقة التنبؤ بشكل كبير. أظهر  MRAتوليفة من تحويل المويجات ، والدوال المويجية ، وعدد مستويات التحليل المستخدمة في 

  BWARIMAX نموذجتحليل الدراسة تفوق الطريقة المقترحة وأشار إلى أنه يمكننا الحصول على مزيد من المعلومات من السلسلة عند استخدام 
الأصلي في التنبؤ. إلى جانب ذلك ، بعد العديد من الاختبارات التجريبية مع العديد من العائلات  ARIMAXوهذا يؤدي إلى تحسين نموذج 
  Coiflet مناسبة جدًا عند تقليل الضوضاء من البيانات ، ومن بينهما كان أداء مويجة Coifletو  Daubechiesالمويجىة ، تبين أن المويجتين 

 أفضل.  3من الرتبة 
 .، السلسلة الزمنية ، المويجة ثنائية المتغير ARIMAXالحوادث المرورية ، السرعة الزائدة ،  : الكلمات المفتاحية
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