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Introduction

Extreme temperature events, such as heat waves, have significant impacts on various domains, such as agriculture,
energy, and public health. Modeling these extreme events accurately is crucial for better understanding their behaviour
and for effective planning and mitigation of the risks associated with them. Extreme value models have shown promising
performance in modeling such types of data. In a spatial context, a max-stable spatial process is considered, and the
models of this process will be in multivariate case [1]. This situation itself poses a challenge because these events follow
multivariate extreme value (MGEV) distributions, and no existing models can capture the dependence structure of these
events. Additionally, ignoring the dependencies among the locations and treating them as independent locations using the
Generalized Extreme Value (GEV) distribution for each location will provide an unreal representation of the events.
Despite the models of the max-stable in the bivariate case existing, the limited number of these models, and the relatively
high number of parameters in most of the models also state as restrictions in the modeling.
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For what is mentioned above, there is a need for a statistical tool that can combine the multivariate extreme-value theory
with models more simple than classical ones, (Smith, Brown-Resnick, and Schlather), so that can be considered
appropriate models for the dependence structure among the locations of the extreme event. Extreme value copula has
gained a lot of attention in recent years for Modeling the dependence structure between extreme random variables. It is
based on the extreme value theory, so these extreme copulas provide a functional link between multivariate distribution
functions and their univariate margins [2, 3]. In spatial extremes, extreme value copulas play a crucial role. They enable
the characterization of the dependence structure of the extreme event occurring at different locations. By considering the
tail behaviour of these events, extreme value copulas can accurately capture the underlying dependence patterns. This, in
turn, leads to improved modeling and analysis of spatial extremes. For examples, see [4], [5], [6], [7], and [8].

The report of the International Organization for Migration (IOM) in the UN concerning climate change published on 11
August 2022 puts Iraq as the fifth-most vulnerable country to climate breakdown, affected by soaring temperatures, and
this requires preparing for assessing the risks associated with this climate change. Choosing a 2m air temperature to
investigate its behaviour in this study was motivated by the outputs of this report. To address this breakdown, one should
first understand the behaviour of the extreme 2m air temperature. This will be done by Modeling this event via the
extreme-value copula. The 2m air temperature was collected from the fifth generation of the European Centre for
Medium-Range Weather Forecasts (ECMWF) atmospheric, land and oceanic climate global dataset ERA5 [9]. This study
is devoted to investigating the behaviour of the two-meter air temperature in Irag through in-depth analysis by extreme-
value copula with Pickands dependence functions. The modeling of this event has been done by following the statistical
inference on extreme-value copulas introduced in [10] and adaptation of extreme-value copula to spatial context by
considering the parameters are functions of distance among the locations. The Composite Maximum Pseudo-Likelihood
estimation method introduced in [11] has been used in the modeling.

The paper is organized as follows: the theoretical concepts of extreme-value copula models, and corresponding Pickands
dependence functions. Furthermore, adapting these concepts to the spatial context has been presented first. Then, the
Composite pseudo-likelihood method is used in the parameters estimation of the copula models presented in Extreme-
Value copula section. Preparing the 2m air temperature in Iraq dataset by pre-processing it (examining the stationary,
isotropy, tail dependencies, and symmetry properties), modeling, and choosing the best-fitted model have been done in
modeling the 2m air temperature in Iraq dataset. Finally, the discussions and conclusions of the main results obtained
were presented.

Extreme-Value Copula

In this section, extreme-value copula models and their extension to spatial context used in modeling the 2m air
temperature have been presented. The extreme-value copula will be defined via Pickands dependence function. Pickands
function is a major and important key in extreme-value copula, so choosing different functions of Pickands leads to
different copula models. Since the dataset that will be discussed in the pre-processing section is symmetric, a symmetric
Pickands function, i.e., symmetric extreme-value, will be the focus of this section. The main fundamental concepts
concerning Copula can be found in [12].

Let X = (X;,-,X,)T be a random vector with multivariate probability distribution function H (x,,-,x,), and

marginals G;,j = 1,---,d. A function C:[0,1]¢ - [0,1] is said to be a multivariate copula C(u,, -, uy) = Pr(U; <
Uy, -+, Uy < uy), with dimension d if and only if

C(ull"'lud) = H(Gl_l(ul):"':Gczl(ud))f (l)

where (uy,--,uy) € [0,1]. The copula C is unique if H is continuous [13]. In extreme value context, let X* =
(X{‘, ---,Xé‘),k = 1,2,--- be a random vector with i.i.d replications and multivariate copula Cy, and let B,, : = (B4, -**, B;)
non-overlapping block maxima, such that B, = maxy—;...,{X*}, and has max-stable copula
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Cp, (uy, -+, uq) = Cx(ui/n' ""ul/n)n' @)

The extreme-value copula C exists if and only if

Cp,(ug, -, uq) > Cuy, "+, uq), as n— oo, 3

such that

C(uy, -, ug) = exp{e(—=Grt(uy), -+, =G (wa))}, (4)

where £ is a max-stable tail dependence measure [10, 14].

Bivariate extreme-value copula via Pickands dependence function

Since the multivariate extreme events have tail dependence, a Pickands dependence function A: [0,1]¢ - [1/d, 1] is the
most reasonable measure able to quantify the dependence strength among the variables [15]. It has the capability on
analyzing rare events, such as extreme weather events. More specifically, Pickands dependence function is considered an
essential tool in bivariate extreme-value copula, because it can reduce the mapping to one dimension, and Copula is fully
characterized in this dimension [13]. Without loss of the generality, we will define A(-) when d = 2. In extreme context,
and under max-stability tail dependence assumption, we can define Pickands dependence function, so that for all u; =

Gi(x;))elo1],j=12

f(_Gl_l(uﬂ: _Gz_l(uz)) ®)
Gl_l(u1) + Gz_l(uz)

A(uli uZ) =

Therefore, in the bivariate case, the extreme-value copula in Equation (4) can be expressed by Pickands dependence
function as follows

Clur,uz) = exp (67 () + 6571 (1)) A, wy)) (6)

By Theorem 2.22 in [10] formula of C in (6) will be

C = G 1 G5t A G (1) !
(uy, uy) = exp | (G (uy) + G31(uy)) [Gl—l(ul)+62‘1(u2)] ' "

or equivalently

_ log(u,)
C(uq,uy) = exp <log(u1u2)A [m]) (8)

Referring that Gj‘l(uj) is the inverse of marginals corresponding to the X;, j = 1,2. Since this study concerns to block
maxima case, then G will follow GEV distribution with location u, scale o, and shape & parameters. A(w) is a convex
function with inequality max{w,1—w} < A(w) <1 ,respectively correspond to complete dependence and
independence. Deferent models of C are determined by models of A. We will present the most common parametric and
symmetric copulas, that will be used in the modeling in this paper.
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Huisler-Reiss copula: the spirit of this model is the standard Gaussian model with correlation function p, which
can introduce via Pickands dependence function, so that

Aw) =1 - W)CD(k(l — w)) + wcb(k(w)), 9
where
1 2 w Uy
k(W)Zz-l'ElOgl_W, W=u1+u2, (10)

and @ is the univariate standard Gaussian distribution. Let p, » 1 as n - oo, then A = /(1 — p,)log(n) €
[0, 00) as n — oo. In this model, 2 will be the parameter of such model, under the assumption that the correlation
between the pairwise (U, U,) increase as the size of sample increase also [16].

Gumbel copula: this model is one of the Archimedean copulas able to evaluate the dependence straight in
asymptotic limits of maxima (upper tail) of the pairwise (U, U,). The Pickands dependence function is

Aw) = [w? + (1 -w)’]?, 6 €[1,0). (1)

The attraction of this model is the domain of the Logistic distribution function [17].

Galambos copula: this model is the negative of Gumbel copula (derived from negative logistic distribution),
e.g., if C; is Gumbel model, and Cj; is the corresponding survival copula, then we can consider Cg(u,u,) is a
distribution function of the pairwise (1 — U;, 1 — U,), so that the corresponding Pickands dependence function
is

AW) =1—[w + (1 -w)°]""%, §€[0,) (12)
t-EV copula: Its so-called t-Extreme Value. This model is derived from Student’s distribution of the pairwise of
(U,,U,), with two parameters correlation coefficient p € [—1,1], and degree of freedom v > 0. The Pickands

dependence function of this model can write as

AW) = (A = w)Tpq (k(1 = w)) + w14 (k(W)), (13)

k(w) = /—ff:z (2]

and T7,,,, is a univariate student’s distribution function with a degree of freedom v. If v — oo, then t-EV weakly
[18].

where

(14)

2
v(1-p)

converges to Hisler -Reiss copula with parameter 1 =
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Adaptation of extreme-value copula to spatial context

In the previous section, the extreme-value copula and corresponding Pickands dependence functions are presented in
general concepts. In this part adaptation of these concepts to spatial extremes will be done. Let {Y*(s)}¢es, S © R%,
d =1, and k = 1,2, be an i.i.d replications of spatial process. Let a,,(s) > 0 and b, (s), a,b € R? be two continuous
sequences, if there exist

Y*(s) — b,(s
k=1,~-)‘(,n %}SES - {X(S)}SES' as n— o, (15)
with non-degenerate marginals, then X : = {X(s)},es iS @ max-stable process, such that X ~ G(u(s). o(s), E(s)), where G
refer to GEV distribution with location u, scale o, and shape ¢ parameters [19]. The max-stable spatial process X(s) is
said to be strictly stationary, if Vs € S,8 € R%, u(sy) = -+ = u(sg) = u, 6(s;) = - =0(sz) = o, and £(s;) = --- =
&(sz) = &. And X(s) is isotropic if the covariance for each (s,t) € §,S < R? depends only on the distance, such that
cov(s,t) =p(h), h=||s—t||]. In what follow in this paper, the max-stable spatial process X(s) will be under
assumptions of stationarity and isotropy properties.

When the focus is on extreme values, it is necessary to use more suitable tools for analyzing the spatial dependence of
extremes. Since our aim is modeling using the Extreme-Value Copula concept via Pickands dependence function, we
present the concepts in a spatial context. Let (U(s),U(s + h)) be a pairwise of spatial process with unit uniform
distribution separated by the distance h, such that for all s € S, U(s) = Gy(s) o(s),6¢s) (X (). The bivariate extreme-value
copula corresponding to the pairwise is

Cn(ug,u) = Pr(U(s) Sug, U(s+h) Suy) uy,u, €[0,1]

log(u,
= exp (log(uluz)Ah [lo(g)?u% ) (16)

The Pickands dependence function A4, (-) is a function that evaluates the dependence strength between (U(s), U(s + h))
separated by distance h. Concerning Husler-Reiss Pickands function, the spatial aspect will be included, so that, the

parameter A in Equation (10), will be A, = /(1 - p(h))logn, where p(h) is the spatial isotropic correlation function.

Many models of correlation function exist, such as exponential, power exponential, and many others. As well as for p in
t-EV copula model [20]. Concerning Gumbel and Galambos copula models, respectively with parameters 6 and &, the
same consideration will be made. The fact that, the dependence strength of each pairwise in (U(s),U(s +h)) are
varying, and since U(s) is isotropic, which means this varying will be according to the distance. And most of the time
this dependence strength decreases as h increases. Therefore, using this fact, we will consider the parameters 8 and § to
be the trend across distance. Such that, 8,, = Bh, as well as for &, = Sh, where g is a coefficient of trending.

Composite Maximum Pseudo-Likelihood

A parametric estimation such as the Maximum Pseudo-Likelihood MPL method showed as a useful tool for estimating
copula parameters, especially when the marginals are unknown [21]. Since just the bivariate extreme copula models exist,
the composite likelihood is a reasonable method for estimating spatial extreme models [22, 23]. The combination of the
two likelihood methods composites and pseudo was defined in [11], named Composite Pseudo-Likelihood CPL. This
method is very suitable when using the copula concept in modeling spatial extremes. For that, this method was used in the
Modeling of the extreme 2m air temperature event.

94



Iragi Journal of Statistical Sciences, Vol. 20, No. 2, 2023, Pp (90-103)

Given a max-stable dataset {X*(s)}ses ith i.i.d k = 1,--,7n replicates, and let {U*(s)}ses = Gp(e)5()2¢s) (X*(5)) is
pseudo max-stable spatial process. The Composite pseudo-likelihood function is given by

n d
L) = ) > loge(@ (s, (T¥ ()5 ), an

k=1'i<j

where ¢ denoted to the likelihood contribution function of the pairwise (ui,uj) at the replication k. In this study c used as
bivariate density of the corresponding extreme-value copula defined in Equation (16). Let the compact set of the
parameters ¥ of ¢ is denoted by @. The estimation of 1 can be achieved by maximizing £, so that

Y= maxL (). (18)

Since the i.i.d achieved on copula when the marginals are known, such as in this case, the pairwise pseudo-likelihood
estimator ¢ has asymptotic normality as n — oo, with mean i and covariance matrix of sandwich form

JT WK @)1 (@), where

0L(Y) ILW)

°L(Y)
oy oy’

, and J(Y) =-E [W

K(¢)=E[

respectively are the variance of the score function, and the expected information matrix are computed from Equation
(17). For more details about asymptotic behaviour, see [11], [24], and [25]. The estimation J of /(1) can be readily
obtained from the Hessian provided by the optimization algorithm, and K of K (1) by the empirical variance of the score
contribution of each observation [26]. The selected model will be according to the corresponding minimum of CLIC* =
(D —1)7CLIC, where D is the number of locations in the dataset, and

CLIC = —2{£() — tr (K (B) ()}, (19)

is the Composite Likelihood Information Criterion. CLIC™ is very closely to Akaike Information Criterion AIC, so for
simplicity in computations, we shall use AIC instead of CLIC*. See [23] and [26].

Modeling the 2m air temperature in Iraq dataset
Data description and pre-processing

The goal of this section is to model the extreme 2m air temperature in Irag. The hourly 2m air temperature was collected
from the fifth generation of atmospheric land and oceanic climate global dataset ERAS5, produced by the European Centre
for Medium-Range Weather Forecasts ECMWEF. This dataset was collected for the region with a longitude range of 37.5
to 49 degrees, a latitude range of 27.5 to 38 degrees, and a grid spacing of 11 km during the summer season (June, July,
and August) for the years from 1981 to 2022, at times from 11:00H to 17:00H. This collection of data resulted 41 x 37 =
1517 grids and 90528 hourly observations for each grid. Mathematically, let {Y*(s)}ses, S € R?, |S| = 1517, and
k =1,---,90528 be a spatial process represent the 2m air temperature. To ensure the block maxima be i.i.d, a monthly
block maxima B3, was proposed. So that for a non-overlapping replication

{X()}ses = kg;gio{Y"(s)},
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where {X(s)}ses IS a spatial extreme process, for each marginal of s follows GEV distribution, and the amount 7 x 30
represents respectively the number of hours per day times the number of days per month.

To examine the stationarity of the dataset, the GEV’s parameters u(s), o(s), and &(s) are estimated for each location
s € § of X(s) using the maximum likelihood estimation method. The grids in the three panels in Figure 1 represent the
estimated location fi(s), scale 6(s), shape &(s) parameters for each s € S, |S| = 1517. Noting that, all the computational
process in this study has been done by R program with main package ‘copula’ version 1.1-2, and others.

Location parameters i(s)

Scale parameters 5(s)

N
Shape parameters x(s)
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Figure 1: The panels respectively represent the estimated parameters fi(s), scale 6(s), shape £(s) for each grid of the
dataset s € S, |S| = 1517

It is clear that each of the three estimated parameters for each grid is approximately equal, especially in the red region for
A, green in &; and red for & excluding the northeast of Irag, due to the mountains. That means and from the definition of
strictly spatial stationarity, we can consider the dataset has spatial stationary property. In the following step the spatial
extreme dataset {X (s)}ses Will transform into [0,1], such that for each s € §

{17(5)}565 = Gﬁ(s),a(s),z(s) (X(S)).

where G is the GEV distribution. In what follows, we shall deal with U(s) instead of X(s). It is known the dependence
structure pattern of the events is essential in modeling extreme events. This structure distinguishes between the models
corresponding to asymptotic dependence/ independence structures. So, in the next step, examine the dataset for which the
dependence structure belongs to asymptotic dependence or independence. This examination will by empirical upper and
lower tails dependence measures [27],

1—2u+Cg (u,u)
1-u

(20)

1]

¥(s,t) = lim
u-1"

And

= . C~S,t (u! u)
x(s,t) = Jim, —

(21)

where C,, is the empirical Copula, so that Cs,(u,u) = Pr(U(s) < u,U(t) < u), and (s,t) € S. For more details, see
[10]. The threshold was chosen to be u = 0.975 to ensure there are data for computation. The pairwise evaluation of
¥(s,t) and ¥(s, t) of the dataset represented respectively by the first and second panels in Figure 2. From these panels,
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the dataset seems to have an upper tail dependence structure, due to ¥(s,t) € (0,1], as well as for (s, t). So, we can
consider the block maxima U(s) has an asymptotic dependence structure, and this leads to consider extreme copula
models. To verify if the dependence structure of the dataset is present in extreme, furthermore, the exchangeability (have
symmetric distribution) between the pairwise locations (s, t), a test hypothesis corresponding to these two assumptions
has been made, (see Figure 3). Once again, the northeastern region of Iraq does not appear a tail dependence structure,
and this is clear on the top and right sides of the two panels. From this result, this region will be excluded definitely from
the modeling.

Upper tail dependence coefficient c; Lower tail dependence coefficient T; ;

1500 | pEEmm 1500

1000 PP 1000

Locations
Locations

o 500 1000 1500 0 500 1000 1500
Locations Locations

Figure 2: Empirical pairwise upper (s, t) and lower ¥ (s, t) tail dependence measures, respectively represented by the

left and right panels. Each grid in the panels represents the corresponding tail dependence strength between the pairwise
(06©.00). .0 €s.

Regarding the pairwise extreme-value dependency, 100 locations sampled form § = 1517 for this purpose. The p-value
test with @ = 0.05 will be done between the empirical pairwise copula E(U(s), U(t)) and extreme-value copula with the
non-parametric estimate of Pickands dependence function A(-) under the hypothesis

Hy:CeC* vs Hy:CgCr,

where C* : = C(u,v) = (uv)*™, A(w) is a Pickands dependence function of w = log(v)/log(uv) [28]. The p-value
statistics is illustrated in the lift penal in Figure 3. The blue fill represents that the p-value test cannot reject #. In other

words, the pairwise ((7 (s), U (t)), (s,t) € S has extreme-value copula. As illustrated in the left panel, the test in most of

the pairwise failed to reject H,, so we can consider extreme-value models in modeling the dataset. To ensure this
property exists in modeling, the pairwise locations rejected #, will be excluded from the selection of locations for
modeling.

To test the exchangeability between the pairwise (17 (), U (t)) (symmetry radial of the underlying multivariate copula),

p-value statistics will be used based on empirical copula [29]. The assumption of the symmetry copula will be under the
hypothesis

}[O:C:CT VS }[1:C¢C,

where C is the survival of C. The right panel in Figure 3 appears that the majority cannot reject H,. Then we can consider
the extreme-value and symmetric models.
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Test of Pairwise Extreme—-Value Dependence Test of Exchangeability for a Pairwise Copula

100 100

75

p>a

. Accept Hy

Reject Hy

p>a

. Accept Hy

Reject Hy

50

Sample of locations
Sample of locations
@

g

25

0 25 75 100 0 25 75 100

50 50
Sample of locations Sample of locations

Figure 3: The panels represent the p-value test with @ = 0.05 for extreme value dependence and the exchangeability

(symmetry) of the copula dataset. The left panel, represent the pairwise (ﬁ(s), ﬁ(t)), (s,t) € § has extreme-value

dependence after collecting randomly 100 locations among § = 1517 location; while the right panel represents the which
pairwise have symmetric copula model.

Copula models proposed for modeling 2m air temperature dataset

By adopting the results obtained in the pre-processing section, the locations implemented in the modeling will be
randomly selected from § = 1517 locations to ensure consistency with the outcomes of the previous section: The
northeast region of Iraq will be excluded from the Modeling, due to the spatial non-stationary with the remaining region.
In other words, the GEV marginals of this region have different behaviour from others; the process U(s) at location s
which does not have extreme-value dependences; and also, does not have symmetric copula will be excluded from the
modeling also. The 2m air temperature spatial process U(s) in 50 locations have been randomly selected, 40 for
modeling and 10 for validation. The latter locations will not be used in modeling. Most of these locations are in Iraq and
small numbers are sited around the border of the west and south of Irag, which have the same behavior as the majority of
locations. The coordinates of the selected locations are pointed out in Figure 4.

Locations chosen for modeling and validation

=

37.59

35.07

Latitude
w
N
[4;]

30.04

27.5 g g i i
375 40.0 425 45.0 475

Longitude

Figure 4: The coordinates of the selected locations of modeling and validation. The red dots represent the locations that
will use in the modeling, while the green one will be for validation

According to the results of the preprocessing, a symmetric extreme-value Copula model is proposed with different
Pickands dependence functions. One parameter extreme copula family (Hisler-Reiss, Gumbel, and Galambos), and two
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parameters family, such as t-EV defined respectively in Equations (10), (12), (13) and (14) are chosen for modeling.
Traditionally, in one-parameter models, the tail dependence strength between two extreme random variables is controlled
by this parameter. To extend this concept to spatial context, should this parameter be varying across the distance h =
||s — t|| between the pairwise locations (s,t) € §, so that these parameters measure the tail dependence strength between

(X(s), X(s + h)) or equivalently (17(5), U(s + h)) separated by the distance h, under isotropy assumption. Due to the

dependence strength varying with each pairwise separated by a distance h, the parameters will consider as a function of
distance. So, models A will consider the parameter varying across the distance with coefficient 8; model B, the parameter
varying across h according to exponential dependence strength; models C will be according to power exponential; and
model D with Cauchy. So that the proposed models will be

1.  Husler-Reiss A with parameter, A = gh, § > 0.

2. Husler-Reiss B with parameter, 2> = (1 — p(h))logn, where p(h) = exp(—h/a), and, o > 0.

3. Hisler-Reiss C with parameter, 22 = (1 — p(h))logn, where p(h) = exp(—(h/0)%), and 0,8 > 0.

4. Hisler-Reiss D with parameter, A2 = (1 — p(h) )logn, where, p(h) = 1 — (1 + (h/0)?)%), and 0,5 > 0.
5. Gumbel with parameter, 8 = Bh, 8 > 0.

6.  Galambos with parameter, 6 = Sh, § > 0.

7.  tEV Awith p(h) = exp(—h/a),and, o > 0.

8. t-EV Bwith p(h) = exp(—(h/0)%),and 5,8 > 0.

9. tEVCwithp(h) =1-(1+ (h/0)?)?%),and o, > 0.

Due to no extreme-value models with d > 2 exist in spatial context, all models considered with d = 2, and therefore the
estimation of the parameter’s models will be by Composite Pseudo Likelihood CPL method previously introduced.
Usually, Composite likelihood method is used for estimating parameters for the spatial extreme process. Table 1 shows
the estimated parameters, log-likelihood amount, and model selecting criterion (Akaike information criterion AIC)
corresponding to each model proposed.

Table 1: Show the estimated parameters, log-likelihood, and Akaike information criterion AIC for the models proposed

Copula model Estimated parameters log-likelihood AIC
B G é D log#(8)

Husler-Reiss A 1.406670 15.89644 -3.53219

Husler-Reiss B 0.839202 15.79983 -3.519998
Husler-Reiss C 71.5492  0.120000 16.00407 -1.545686
Husler-Reiss D 0.01508 0.105000 15.96269 -1.540508
Gumbel 1.888350 15.78417 -3.518015
Galambos 2.350493 15.74095 -3.512531
t-EV A 0.38663 2.838140 15.68348 -1.505216
t-EV B 0.15070 0.336934 3.219790 15.83652 0.4753627
t-EVC 0.10200 1.800157 1.083037 15.47631 0.5213791
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The AIC information criterion in Table 1 indicates that the best four fitted models are Hiisler-Reiss A, B, Gumbel, and
Galambos. The slight difference in the criterion values of AIC among the four candidate models made us consider the
model which will represent the 2m air temperature has minimum divergence between the non-parametric and parametric
of the estimated bivariate extreme-value copulas. This divergence test will apply to the validation dataset using the
Kuiback-Lebler KL method. For more information see, [10]. Each pairwise of the validation dataset, the KL divergence
between the four estimated models and the model with non-parametric Pickands function A(-) have been done. Figure 5
shows that the Husler-Reiss A model has a divergence density of the pairwise of the validation dataset with more skew to
lift (to zero) than the three candidate models. In other words, the divergence between the non-parametric and estimated
Hisler-Reiss A copula is the minimum. For that, now we can consider the Husler-Reiss A copula as the best extreme-
value copula model to represent the 2m air temperature event in Irag, and they can adapt it in further studies.

Husler-Reiss A Husler-Reiss B
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Figure 5: The densities of the Kuiback-Lebler divergence of the four candidate models (Hisler-Reiss A, Hiisler-Reiss B,

Gumbel, and Galambos) with the non-parametric extreme-value copula, which implemented on the validation dataset

Discussion and Conclusion

Iraq’s 2m extreme air temperature dataset {x(s)}ses has been investigated to analyze its behaviour. The monthly block
maxima have been adopted in this study, so that resulted from this block maxima procedure marginals having GEV
distribution with location u(s), o(s), and &(s) parameters. The parameters of GEV for each marginal (location) s € S,
|S| = 1571 have been estimated by the maximum likelihood method. The estimated parameters fi(s), 6(s), andé(s)
appeared slightly varying in their amounts for most of the locations, except the northeast region. So, we can consider the
events as stationary after excluding the northeast of Iraq region, due to the mountains which caused the spatial process
X (s) has non-stationary behaviour in this region. These estimated marginals are also used to transform X (s) to a pseudo
format, U(s) = Gﬁ@,a(s),g(s)(x (s)), that will be used in the modeling. Examining the pseudo dataset has asymptotic

dependence /independence behaviour has been done by the upper tail ¥(s,t), and lower tail ¥(s,t) measures using
empirical copula. The dataset showed that has asymptotic dependence property. After examining the pseudo spatial
dataset that has heavy tail dependence property, the next test is to see whether the dataset belongs to an extreme-value
copula and it is symmetric (exchangeable). For the first one, p-value with @ = 0.05 test was used between the empirical
copula and extreme-value copula with non-parametric estimated Pickands dependence function. This test was under
hypotheses H,:C € C* vs H;:C & C*, where C* : = C(u,v) = (uv)*™, A(w) is a Pickands dependence function of
w = log(v) /log(uv). The statistics p-value falls to reject #,. The symmetry (symmetry radial of the underlying
multivariate copula) test is also done by p-value under the hypothesis H,:C =C vs 3;:C # C, where C is the
survival of C. The statistics p-value also falls to reject 7¢,,.
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The investigation of the 2m extreme air temperature in Iraq above, concluded that symmetric extreme-value copula
models are suitable to consider in modeling. Nine Copula models were constructed from one parameter family copulas
(Husler-Reiss, Gumbel, and Galambos), and two parameters model, which is the t-EV copula after adopting the spatial
context. Such that, and regarding the Hisler-Reis model, four models were considered. The first model A, when A trend
with h, such that 4, = Bh; the second B, third C, and forth D, we used the spirit of its parameter

Ay = \/(1 — p(h))log(n), where p(h) is a spatial and isotropic auto-correlation function, and h = ||s — t|| is a distance

between the pairwise locations (s,t) € §. The auto-correlation functions p have been chosen to be exponential, p(h) =
exp(—h/c), o > 0; power exponential p(h) = exp(—(h/0)?), 6,6 >0, and Cauchy p(h) =1— (1 + (h/0)»?%),
g,6 > 0. These models of p used also in t-EV copula to construct three additional models, named t-EV A, B, and C.
Finally, for Gumbel and Galambos models, the same consideration in Husler -Reiss A model has been used, such that
their parameters respectively expressed by 8,, = Bh, and 6, = Sh.

A sample of 50 locations was randomly selected from |§| = 1517 locations divided into two parts, 40 for Modeling, and
10 for validation, after excluding the northeast region in Iraq from the sampling. The composite pseudo-likelihood
estimation method is used to model the extreme event. According to the AIC information criterion, we selected 4 models
as candidates. Which are: Husler-Reiss A and B; Gumbel, and Galambos. Due to the slight difference in the criterion
values among the four candidate models, we implemented the KL divergence method between the four estimated models
with the model having a non-parametric estimated Pikands dependence function. This divergence test was implemented
on the validation dataset to choose the best-fitted model. The Husler -Reiss A wined in this competition, due to the
density around zero of all the pairwise in the validation dataset being high.
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