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    The UN's International Organization for Migration (IOM) reported that Iraq is the fifth-

most affected country by soaring temperatures. This requires assessing the risks associated 

by accurately understanding the behaviour of these extreme events. A deep investigation 

of the behaviour of 2m air temperature has been done, by spatially modeling this event 

using extreme value copula with Pickands dependence. The investigation of the 2m 

extreme air temperature in Iraq concluded that the symmetric extreme-value copula 

models are suitable to consider in the modeling. Nine extreme value copula models were 

constructed from one parameter family copulas (Hüsler-Reiss, Gumbel, and Galambos), 

and two parameters model t-EV, after adopting the spatial context. Fifty locations were 

randomly sampled from 1517 locations divided into two parts, 40 for modeling, and 10 for 

validation. The Composite Maximum Pseudo-Likelihood estimation method has been used 

in the modeling. According to the AIC information criterion, we selected 4 models as 

candidates (Hüsler-Reiss A and B; Gumbel, and Galambos). Due to the slight difference in 

the criterion values among the four candidate models, the Kullback-Leibler (KL) 

divergence method between the non-parametric and parametric pairwise extreme-value 

copulas has been evaluated by the validation dataset, to choose the best-fitted model. The 

Hüsler-Reiss A was the best-fitted model, due to the high KL density around zero of all 

the pairwise in the validation dataset. 

Keywords:  
Spatial Extremes  

Extreme Value Copulas  

2 Meter Air temperature 
Pickands dependence function 

 

Correspondence : 

Manaf Hazim Ahmed 

manaf.ahmed@uomosul.edu.iq  

   

DOI: 10.33899/IQJOSS.2023.0181192 , ©Authors, 2023, College of Computer Science and Mathematics, University of Mosul Iraq. 

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). 

 

Introduction 

   Extreme temperature events, such as heat waves, have significant impacts on various domains, such as agriculture, 

energy, and public health. Modeling these extreme events accurately is crucial for better understanding their behaviour 

and for effective planning and mitigation of the risks associated with them. Extreme value models have shown promising 

performance in modeling such types of data. In a spatial context, a max-stable spatial process is considered, and the 

models of this process will be in multivariate case [1]. This situation itself poses a challenge because these events follow 

multivariate extreme value (MGEV) distributions, and no existing models can capture the dependence structure of these 

events. Additionally, ignoring the dependencies among the locations and treating them as independent locations using the 

Generalized Extreme Value (GEV) distribution for each location will provide an unreal representation of the events. 

Despite the models of the max-stable in the bivariate case existing, the limited number of these models, and the relatively 

high number of parameters in most of the models also state as restrictions in the modeling. 
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For what is mentioned above, there is a need for a statistical tool that can combine the multivariate extreme-value theory 

with models more simple than classical ones, (Smith, Brown-Resnick, and Schlather), so that can be considered 

appropriate models for the dependence structure among the locations of the extreme event. Extreme value copula has 

gained a lot of attention in recent years for Modeling the dependence structure between extreme random variables. It is 

based on the extreme value theory, so these extreme copulas provide a functional link between multivariate distribution 

functions and their univariate margins [2, 3]. In spatial extremes, extreme value copulas play a crucial role. They enable 

the characterization of the dependence structure of the extreme event occurring at different locations. By considering the 

tail behaviour of these events, extreme value copulas can accurately capture the underlying dependence patterns. This, in 

turn, leads to improved modeling and analysis of spatial extremes. For examples, see [4], [5], [6], [7], and [8]. 

The report of the International Organization for Migration (IOM) in the UN concerning climate change published on 11 

August 2022 puts Iraq as the fifth-most vulnerable country to climate breakdown, affected by soaring temperatures, and 

this requires preparing for assessing the risks associated with this climate change. Choosing a 2m air temperature to 

investigate its behaviour in this study was motivated by the outputs of this report. To address this breakdown, one should 

first understand the behaviour of the extreme 2m air temperature. This will be done by Modeling this event via the 

extreme-value copula. The 2m air temperature was collected from the fifth generation of the European Centre for 

Medium-Range Weather Forecasts (ECMWF) atmospheric, land and oceanic climate global dataset ERA5 [9]. This study 

is devoted to investigating the behaviour of the two-meter air temperature in Iraq through in-depth analysis by extreme-

value copula with Pickands dependence functions. The modeling of this event has been done by following the statistical 

inference on extreme-value copulas introduced in [10] and adaptation of extreme-value copula to spatial context by 

considering the parameters are functions of distance among the locations. The Composite Maximum Pseudo-Likelihood 

estimation method introduced in [11] has been used in the modeling. 

The paper is organized as follows: the theoretical concepts of extreme-value copula models, and corresponding Pickands 

dependence functions. Furthermore, adapting these concepts to the spatial context has been presented first. Then, the 

Composite pseudo-likelihood method is used in the parameters estimation of the copula models presented in Extreme-

Value copula section. Preparing the 2m air temperature in Iraq dataset by pre-processing it (examining the stationary, 

isotropy, tail dependencies, and symmetry properties), modeling, and choosing the best-fitted model have been done in 

modeling the 2m air temperature in Iraq dataset. Finally, the discussions and conclusions of the main results obtained 

were presented. 

Extreme-Value Copula  

In this section, extreme-value copula models and their extension to spatial context used in modeling the 2m air 

temperature have been presented. The extreme-value copula will be defined via Pickands dependence function. Pickands 

function is a major and important key in extreme-value copula, so choosing different functions of Pickands leads to 

different copula models. Since the dataset that will be discussed in the pre-processing section is symmetric, a symmetric 

Pickands function, i.e., symmetric extreme-value, will be the focus of this section. The main fundamental concepts 

concerning Copula can be found in [12]. 

Let   (       )
  be a random vector with multivariate probability distribution function  (       ) , and 

marginals            . A function   ,   -  ,   - is said to be a multivariate copula  (       )    (   

          ), with dimension   if and only if 

 

 

 
 (       )   (  

  (  )     
  (  ))              (1) 

where (       )  ,   - . The copula   is unique if   is continuous [13]. In extreme value context, let    

(  
      

 )         be a random vector with i.i.d replications and multivariate copula   , and let     (       ) 

non-overlapping block maxima, such that              * 
 +, and has max-stable copula 
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       (2) 

 

The extreme-value copula   exists if and only if 

    (       )   (       )   s          (3) 

such that 

  (       )     * (   
  (  )      

  (  ))+      (4) 

 

where   is a max-stable tail dependence measure [10, 14].  

 

Bivariate extreme-value copula via Pickands dependence function 

Since the multivariate extreme events have tail dependence, a Pickands dependence function   ,   -  ,     - is the 

most reasonable measure able to quantify the dependence strength among the variables [15]. It has the capability on 

analyzing rare events, such as extreme weather events. More specifically, Pickands dependence function is considered an 

essential tool in bivariate extreme-value copula, because it can reduce the mapping to one dimension, and Copula is fully 

characterized in this dimension [13]. Without loss of the generality, we will define  ( ) when    . In extreme context, 

and under max-stability tail dependence assumption, we can define Pickands dependence function, so that for all    

  (  )  ,   -,       

 

  (     )  
 (   

  (  )    
  (  ))

  
  (  )    

  (  )
  

(5) 

 

Therefore, in the bivariate case, the extreme-value copula in Equation (4) can be expressed by Pickands dependence 

function as follows 

  (     )     .(  
  (  )    

  (  )) (     )/ (6) 

By Theorem 2.22 in [10] formula of   in (6) will be 

  (     )     ((  
  (  )    

  (  )) *
  
  (  )

  
  (  )    

  (  )
+)  (7) 

or equivalently 

  (     )     (   (    ) *
   (  )

   (    )
+)  (8) 

Referring that   
  (  ) is the inverse of marginals corresponding to the         . Since this study concerns to block 

maxima case, then   will follow GEV distribution with location  , scale  , and shape   parameters.  ( ) is a convex 

function with inequality    *     +   ( )    ,respectively correspond to complete dependence and 

independence. Deferent models of   are determined by models of  . We will present the most common parametric and 

symmetric copulas, that will be used in the modeling in this paper. 
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1. Hüsler-Reiss copula: the spirit of this model is the standard Gaussian model with correlation function  , which 

can introduce via Pickands dependence function, so that 

  ( )  (   ) ( (   ))    ( ( ))  (9) 

 

  where 

  ( )  
 

 
 
 

 
   

 

   
    

  
     

  (10) 

   

  and   is the univariate standard Gaussian distribution. Let      as    , then   √(    )   ( )  
,   ) as    . In this model,   will be the parameter of such model, under the assumption that the correlation 

between the pairwise (     ) increase as the size of sample increase also [16].  

2. Gumbel copula: this model is one of the Archimedean copulas able to evaluate the dependence straight in 

asymptotic limits of maxima (upper tail) of the pairwise (     ). The Pickands dependence function is 

  ( )  ,   (   ) -       ,   )  (11) 

 

The attraction of this model is the domain of the Logistic distribution function [17]. 

3. Galambos copula: this model is the negative of Gumbel copula (derived from negative logistic distribution), 

e.g., if    is Gumbel model, and  ‾  is the corresponding survival copula, then we can consider  ‾ (     ) is a 

distribution function of the pairwise (         ), so that the corresponding Pickands dependence function 

is 

  ( )    ,    (   )  -        ,   ) (12) 

 

4. t-EV copula: Its so-called t-Extreme Value. This model is derived from Student’s distribution of the pairwise of 

(     ), with two parameters correlation coefficient   ,    -, and degree of freedom    . The Pickands 

dependence function of this model can write as 

  ( )  (   )    ( (   ))       ( ( ))  (13) 

 

where 

  ( )  √
   

    
0(
 

   
)   1  

(14) 

 

 

and      is   univ ri te student’s distribution function with a degree of freedom  . If    , then t-EV weakly 

converges to Hüsler -Reiss copula with parameter   √
 

 (   )
 [18].  
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Adaptation of extreme-value copula to spatial context 

In the previous section, the extreme-value copula and corresponding Pickands dependence functions are presented in 

general concepts. In this part adaptation of these concepts to spatial extremes will be done. Let *  ( )+   ,    
 , 

   , and         be an i.i.d replications of spatial process. Let   ( )    and   ( ),      
  be two continuous 

sequences, if there exist 

 

 *    
       

  ( )    ( )

  ( )
+    * ( )+      s      (15) 

with non-degenerate marginals, then    * ( )+    is a max-stable process, such that    ( ( )  ( )  ( )), where   

refer to GEV distribution with location  , scale  , and shape   parameters [19]. The max-stable spatial process  ( ) is 

said to be strictly stationary, if          ,  (  )     (  )   ,  (  )     (  )   , and  (  )    
 (  )   . And  ( ) is isotropic if the covariance for each (   )         depends only on the distance, such that 

   (   )   ( ) ,          . In what follow in this paper, the max-stable spatial process  ( )  will be under 

assumptions of stationarity and isotropy properties. 

 

When the focus is on extreme values, it is necessary to use more suitable tools for analyzing the spatial dependence of 

extremes. Since our aim is modeling using the Extreme-Value Copula concept via Pickands dependence function, we 

present the concepts in a spatial context. Let ( ( )  (   ))  be a pairwise of spatial process with unit uniform 

distribution separated by the distance  , such that for all    ,  ( )    ( )  ( )  ( )( ( )). The bivariate extreme-value 

copula corresponding to the pairwise is 

 

 

  (     )    ( ( )      (   )    )       ,   -

    (   (    )  *
   (  )

   (    )
+)  

 (16) 

 

The Pickands dependence function   ( ) is a function that evaluates the dependence strength between ( ( )  (   )) 

separated by distance  . Concerning Husler-Reiss Pickands function, the spatial aspect will be included, so that, the 

parameter   in Equation (10), will be    √(   ( ))    , where  ( ) is the spatial isotropic correlation function. 

Many models of correlation function exist, such as exponential, power exponential, and many others. As well as for   in 

t-EV copula model [20]. Concerning Gumbel and Galambos copula models, respectively with parameters   and  , the 

same consideration will be made. The fact that, the dependence strength of each pairwise in ( ( )  (   ))  are 

varying, and since  ( ) is isotropic, which means this varying will be according to the distance. And most of the time 

this dependence strength decreases as   increases. Therefore, using this fact, we will consider the parameters   and   to 

be the trend across distance. Such that,      , as well as for      , where   is a coefficient of trending. 

Composite Maximum Pseudo-Likelihood 

A parametric estimation such as the Maximum Pseudo-Likelihood MPL method showed as a useful tool for estimating 

copula parameters, especially when the marginals are unknown [21]. Since just the bivariate extreme copula models exist, 

the composite likelihood is a reasonable method for estimating spatial extreme models [22, 23]. The combination of the 

two likelihood methods composites and pseudo was defined in [11], named Composite Pseudo-Likelihood CPL. This 

method is very suitable when using the copula concept in modeling spatial extremes. For that, this method was used in the 

Modeling of the extreme 2m air temperature event.  
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Given a max-stable dataset *  ( )+    with i.i.d         replicates, and let * ̂ ( )+      ̂( )  ̂( )  ̂( )( 
 ( )) is 

pseudo max-stable spatial process. The Composite pseudo-likelihood function is given by 

  ( )  ∑∑   

 

   

 

   

 ( ̂ (  ) ( ̂
 (  )  )  (17) 

where   denoted to the likelihood contribution function of the pairwise (     ) at the replication  . In this study   used as 

bivariate density of the corresponding extreme-value copula defined in Equation (16). Let the compact set of the 

parameters   of   is denoted by  . The estimation of   can be achieved by maximizing  , so that 

 

  ̂     
   
 ( )  (18) 

 

Since the i.i.d achieved on copula when the marginals are known, such as in this case, the pairwise pseudo-likelihood 

estimator  ̂  has asymptotic normality as    , with mean   and covariance matrix of sandwich form 

   ( ) ( )   ( ), where 

  ( )   *
  ( )

  

  ( )

   
+        ( )    *

   ( )

     
+  

 

respectively are  the variance of the score function, and the expected information matrix are computed from Equation 

(17). For more details about asymptotic behaviour, see [11], [24], and [25]. The estimation  ̂ of  ( ) can be readily 

obtained from the Hessian provided by the optimization algorithm, and  ̂ of  ( ) by the empirical variance of the score 

contribution of each observation [26]. The selected model will be according to the corresponding minimum of       
(   )      , where    is the number of locations in the dataset, and 

        * ( ̂)    ( ( ̂) ( ̂)
  
)+, (19) 

is the Composite Likelihood Information Criterion.       is very closely to Akaike Information Criterion AIC, so for 

simplicity in computations, we shall use AIC instead of      . See [23] and [26]. 

 

Modeling the 2m air temperature in Iraq dataset 

Data description and pre-processing 

The goal of this section is to model the extreme 2m air temperature in Iraq. The hourly 2m air temperature was collected 

from the fifth generation of atmospheric land and oceanic climate global dataset ERA5, produced by the European Centre 

for Medium-Range Weather Forecasts ECMWF. This dataset was collected for the region with a longitude range of 37.5 

to 49 degrees, a latitude range of 27.5 to 38 degrees, and a grid spacing of 11 km during the summer season (June, July, 

and August) for the years from 1981 to 2022, at times from 11:00H to 17:00H. This collection of data resulted       
     grids and       hourly observations for each grid. Mathematically, let *  ( )+   ,     ,         , and 

            be a spatial process represent the 2m air temperature. To ensure the block maxima be i.i.d, a monthly 

block maxima       was proposed. So that for a non-overlapping replication 

* ( )+       
       

*  ( )+  

 



Iraqi Journal of Statistical Sciences, Vol. 20, No. 2, 2023, Pp (90-103) 
 

96 

 

where * ( )+    is a spatial extreme process, for each marginal of   follows GEV distribution, and the amount      

represents respectively the number of hours per day times the number of days per month. 

 

To ex mine the st tion rity of the d t set, the GEV’s p r meters  ( )  ( ), and  ( ) are estimated for each location 

    of  ( ) using the maximum likelihood estimation method. The grids in the three panels in Figure 1 represent the 

estimated location  ̂( ), scale  ̂( ), shape  ̂( ) parameters for each             . Noting that, all the computational 

process in this study has been done by R program with main p ck ge ‘copul ’ version 1.1-2, and others. 

     

 
Figure 1: The panels respectively represent the estimated parameters  ̂( ), scale  ̂( ), shape  ̂( ) for each grid of the 

dataset              

 

It is clear that each of the three estimated parameters for each grid is approximately equal, especially in the red region for 

 ̂, green in  ̂; and red for  ̂ excluding the northeast of Iraq, due to the mountains. That means and from the definition of 

strictly spatial stationarity, we can consider the dataset has spatial stationary property. In the following step the spatial 

extreme dataset * ( )+    will transform into ,   -, such that for each     

 

* ̂( )+      ̂( )  ̂( )  ̂( )( ( ))  

 

where   is the GEV distribution. In what follows, we shall deal with  ̂( ) instead of  ( ). It is known the dependence 

structure pattern of the events is essential in modeling extreme events. This structure distinguishes between the models 

corresponding to asymptotic dependence/ independence structures. So, in the next step, examine the dataset for which the 

dependence structure belongs to asymptotic dependence or independence. This examination will by empirical upper and 

lower tails dependence measures [27],  

  ̃(   )     
    

      ̃   (   )

   
  (20) 

And 

  ‾̃(   )     
    

 ̃   (   )

 
  (21) 

where  ̃    is the empirical Copula, so that  ̃   (   )    ( ̂( )     ̂( )   ), and (   )   . For more details, see 

[10]. The threshold was chosen to be         to ensure there are data for computation. The pairwise evaluation of 

 ̃(   ) and  ‾̃(   ) of the dataset represented respectively by the first and second panels in Figure 2. From these panels, 
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the dataset seems to have an upper tail dependence structure, due to  ̃(   )  (   -, as well as for  ‾̃(   ). So, we can 

consider the block maxima  ̂( ) has an asymptotic dependence structure, and this leads to consider extreme copula 

models. To verify if the dependence structure of the dataset is present in extreme, furthermore, the exchangeability (have 

symmetric distribution) between the pairwise locations (   ), a test hypothesis corresponding to these two assumptions 

has been made, (see Figure 3). Once again, the northeastern region of Iraq does not appear a tail dependence structure, 

and this is clear on the top and right sides of the two panels. From this result, this region will be excluded definitely from 

the modeling. 

 

 

Figure 2: Empirical pairwise upper  ̃(   ) and lower  ‾̃(   ) tail dependence measures, respectively represented by the  

 

 

left and right panels. Each grid in the panels represents the corresponding tail dependence strength between the pairwise 

. ̂( )  ̂( )/, (   )   . 

Regarding the pairwise extreme-value dependency,     locations sampled form        for this purpose. The  -value 

test with        will be done between the empirical pairwise copula  ̃( ( )  ( )) and extreme-value copula with the 

non-parametric estimate of Pickands dependence function  ̂( ) under the hypothesis 

 

      
  vs       

   

where      (   )  (  ) ( ),  ( ) is a Pickands dependence function of      ( )    (  ) [28].  The  -value 

statistics is illustrated in the lift penal in Figure 3. The blue fill represents that the p-value test cannot reject   . In other 

words, the pairwise . ̂( )  ̂( )/, (   )    has extreme-value copula. As illustrated in the left panel, the test in most of 

the pairwise failed to reject   , so we can consider extreme-value models in modeling the dataset. To ensure this 

property exists in modeling, the pairwise locations rejected    will be excluded from the selection of locations for 

modeling. 

To test the exchangeability between the pairwise . ̂( )  ̂( )/ (symmetry radial of the underlying multivariate copula), 

 -value statistics will be used based on empirical copula [29]. The assumption of the symmetry copula will be under the 

hypothesis 

      ‾ vs       ‾  

where  ‾ is the survival of  . The right panel in Figure 3 appears that the majority cannot reject   . Then we can consider 

the extreme-value and symmetric models. 
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Figure 3: The panels represent the  -value test with        for extreme value dependence and the exchangeability  

(symmetry) of the copula dataset. The left panel, represent the pairwise . ̂( )  ̂( )/ , (   )    has extreme-value 

dependence after collecting randomly 100 locations among        location; while the right panel represents the which 

pairwise have symmetric copula model.  

 

Copula models proposed for modeling 2m air temperature dataset 

By adopting the results obtained in the pre-processing section, the locations implemented in the modeling will be 

randomly selected from        locations to ensure consistency with the outcomes of the previous section: The 

northeast region of Iraq will be excluded from the Modeling, due to the spatial non-stationary with the remaining region. 

In other words, the GEV marginals of this region have different behaviour from others; the process  ̂( ) at location   
which does not have extreme-value dependences; and also, does not have symmetric copula will be excluded from the 

modeling also. The 2m air temperature spatial process  ̂( )  in    locations have been randomly selected, 40 for 

modeling and 10 for validation. The latter locations will not be used in modeling. Most of these locations are in Iraq and 

small numbers are sited around the border of the west and south of Iraq, which have the same behavior as the majority of 

locations. The coordinates of the selected locations are pointed out in Figure 4. 

 

 
Figure 4: The coordinates of the selected locations of modeling and validation. The red dots represent the locations that 

will use in the modeling, while the green one will be for validation  

 

According to the results of the preprocessing, a symmetric extreme-value Copula model is proposed with different 

Pickands dependence functions. One parameter extreme copula family (Hüsler-Reiss, Gumbel, and Galambos), and two 
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parameters family, such as t-EV defined respectively in Equations (10), (12), (13) and (14) are chosen for modeling. 

Traditionally, in one-parameter models, the tail dependence strength between two extreme random variables is controlled 

by this parameter. To extend this concept to spatial context, should this parameter be varying across the distance   
        between the pairwise locations (   )   , so that these parameters measure the tail dependence strength between 

( ( )  (   )) or equivalently . ̂( )  ̂(   )/ separated by the distance  , under isotropy assumption. Due to the 

dependence strength varying with each pairwise separated by a distance  , the parameters will consider as a function of 

distance. So, models A will consider the parameter varying across the distance with coefficient  ; model B, the parameter 

varying across   according to exponential dependence strength; models C will be according to power exponential; and 

model D with Cauchy. So that the proposed models will be 

1. Hüsler-Reiss A with parameter,          . 

2. Hüsler-Reiss B with parameter,    (   ( ))    , where  ( )     (    ), and,    . 

3. Hüsler-Reiss C with parameter,    (   ( ))    , where  ( )     ( (   ) ), and      . 

4. Hüsler-Reiss D with parameter,    (   ( ))    , where,  ( )    (  (   ) ) ), and      . 

5. Gumbel with parameter,     ,    . 

6. Galambos with parameter,     ,    . 

7. t-EV A with  ( )     (    ), and,    . 

8. t-EV B with  ( )     ( (   ) ), and      . 

9. t-EV C with  ( )    (  (   ) ) ), and      . 

 

Due to no extreme-value models with     exist in spatial context, all models considered with    , and therefore the 

estimation of the p r meter’s models will be by Composite Pseudo Likelihood CPL method previously introduced. 

Usually, Composite likelihood method is used for estimating parameters for the spatial extreme process. Table 1 shows 

the estimated parameters, log-likelihood amount, and model selecting criterion (Akaike information criterion AIC) 

corresponding to each model proposed. 

Table 1: Show the estimated parameters, log-likelihood, and Akaike information criterion AIC for the models proposed 

 

Copula model Estimated parameters log-likelihood AIC  

 ̂  ̂  ̂  ̂     ( ̂)  

Hüsler-Reiss A 1.406670    15.89644 -3.53219  

Hüsler-Reiss B  0.839202   15.79983 -3.519998  

Hüsler-Reiss C  71.5492 0.120000  16.00407 -1.545686  

Hüsler-Reiss D  0.01508 0.105000  15.96269 -1.540508  

Gumbel 1.888350    15.78417 -3.518015  

Galambos 2.350493    15.74095 -3.512531  

t-EV A  0.38663  2.838140 15.68348 -1.505216  

t-EV B  0.15070 0.336934 3.219790 15.83652 0.4753627  

t-EV C  0.10200 1.800157 1.083037 15.47631 0.5213791  
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The AIC information criterion in Table 1 indicates that the best four fitted models are Hüsler-Reiss A, B, Gumbel, and 

Galambos. The slight difference in the criterion values of AIC among the four candidate models made us consider the 

model which will represent the 2m air temperature has minimum divergence between the non-parametric and parametric 

of the estimated bivariate extreme-value copulas. This divergence test will apply to the validation dataset using the 

Kuiback-Lebler KL method. For more information see, [10]. Each pairwise of the validation dataset, the KL divergence 

between the four estimated models and the model with non-parametric Pickands function  ̂( ) have been done. Figure 5 

shows that the Hüsler-Reiss A model has a divergence density of the pairwise of the validation dataset with more skew to 

lift (to zero) than the three candidate models. In other words, the divergence between the non-parametric and estimated 

Hüsler-Reiss A copula is the minimum. For that, now we can consider the Hüsler-Reiss A copula as the best extreme-

value copula model to represent the 2m air temperature event in Iraq, and they can adapt it in further studies. 

 

 
Figure 5: The densities of the Kuiback-Lebler divergence of the four candidate models (Hüsler-Reiss A, Hüsler-Reiss B,  

Gumbel, and Galambos) with the non-parametric extreme-value copula, which implemented on the validation dataset 

 

 
Discussion and Conclusion  

Ir q’s 2m extreme  ir temper ture d t set * ( )+    has been investigated to analyze its behaviour. The monthly block 

maxima have been adopted in this study, so that resulted from this block maxima procedure marginals having GEV 

distribution with location  ( ),  ( ), and  ( ) parameters. The parameters of GEV for each marginal (location)    , 

         have been estimated by the maximum likelihood method. The estimated parameters  ̂( ),  ̂( ), and ̂( ) 
appeared slightly varying in their amounts for most of the locations, except the northeast region. So, we can consider the 

events as stationary after excluding the northeast of Iraq region, due to the mountains which caused the spatial process 

 ( ) has non-stationary behaviour in this region. These estimated marginals are also used to transform  ( ) to a pseudo 

format,  ̂( )    ( )̂  ̂( )  ̂( )( ( )), that will be used in the modeling. Examining the pseudo dataset has asymptotic 

dependence /independence behaviour has been done by the upper tail  ̃(   ), and lower tail  ‾̃(   ) measures using 

empirical copula. The dataset showed that has asymptotic dependence property. After examining the pseudo spatial 

dataset that has heavy tail dependence property, the next test is to see whether the dataset belongs to an extreme-value 

copula and it is symmetric (exchangeable). For the first one,  -value with        test was used between the empirical 

copula and extreme-value copula with non-parametric estimated Pickands dependence function. This test was under 

hypotheses       
  vs       

 , where      (   )  (  ) ( ),  ( ) is a Pickands dependence function of 

     ( )    (  ) . The statistics  -value falls to reject   . The symmetry (symmetry radial of the underlying 

multivariate copula) test is also done by  -value under the hypothesis       ‾ vs       ‾ , where  ‾  is the 

survival of  . The statistics  -value also falls to reject   . 

0

2000

4000

6000

0e+00 3e−04 6e−04 9e−04

Kullback−Leibler Divergence Value 

d
e
n

s
it
y

Husler−Reiss A

0

2500

5000

7500

10000

0e+00 2e−04 4e−04 6e−04

Kullback−Leibler Divergence Value 
d

e
n

s
it
y

Husler−Reiss B

0

2000

4000

0e+00 1e−04 2e−04 3e−04 4e−04

Kullback−Leibler Divergence Value 

d
e

n
s
it
y

Gumbel

0

2000

4000

6000

0e+00 1e−04 2e−04 3e−04 4e−04 5e−04

Kullback−Leibler Divergence Value 

d
e

n
s
it
y

Galambos



Iraqi Journal of Statistical Sciences, Vol. 20, No. 2, 2023, Pp (90-103) 
 

101 

 

The investigation of the 2m extreme air temperature in Iraq above, concluded that symmetric extreme-value copula 

models are suitable to consider in modeling. Nine Copula models were constructed from one parameter family copulas 

(Hüsler-Reiss, Gumbel, and Galambos), and two parameters model, which is the t-EV copula after adopting the spatial 

context. Such that, and regarding the Hüsler-Reis model, four models were considered. The first model A, when   trend 

with  , such that      ; the second B, third C, and forth D, we used the spirit of its parameter 

   √(   ( ))   ( ), where  ( ) is a spatial and isotropic auto-correlation function, and           is a distance 

between the pairwise locations (   )   . The auto-correlation functions   have been chosen to be exponential,  ( )  

   (    ) ,    ; power exponential  ( )     ( (   ) ) ,      , and Cauchy  ( )    (  (   ) ) ) , 

     . These models of   used also in t-EV copula to construct three additional models, named t-EV A, B, and C. 

Finally, for Gumbel and Galambos models, the same consideration in Hüsler -Reiss A model has been used, such that 

their parameters respectively expressed by      , and      . 

A sample of    locations was randomly selected from          locations divided into two parts,    for Modeling, and 

   for validation, after excluding the northeast region in Iraq from the sampling. The composite pseudo-likelihood 

estimation method is used to model the extreme event. According to the AIC information criterion, we selected   models 

as candidates. Which are: Husler-Reiss A and B; Gumbel, and Galambos. Due to the slight difference in the criterion 

values among the four candidate models, we implemented the KL divergence method between the four estimated models 

with the model having a non-parametric estimated Pikands dependence function. This divergence test was implemented 

on the validation dataset to choose the best-fitted model. The Hüsler -Reiss A wined in this competition, due to the 

density around zero of all the pairwise in the validation dataset being high. 
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 نمذجة درجة حرارة الههاء المتطرفة على ارتفاع مترين في العراق باستخدام نماذج كهبيهلا للقيم المتطرفة 
 

 زيد طارق  صالح الخالدي  مناف حازم احمد مطرود  و 
 

 جامعة المؽصل، المؽصل، العراق كمية عمؽم الحاسؽب والرياضيات، ،قدػ الإحراء والمعمؽماتية
( التابعة للأمػ المتحدة أن العراق ىؽ البمد الخامس الأكثر تأثرًا بارتفاع درجات الحرارة. IOMاظيرت تقارير منعمة اليجرة الدولية ): الخلاصة

ذلغ يتطمب معالجة  وغيرىا فأنية، الاقترادية جولما ليذا الارتفاع في درجات الحرارة مؼ تأثير سمبي عمى جميع قطاعات الحياة منيا البايمؽ 
فيػ دقيق لدمؽك الكيػ المتطرفة ليذا الحدث. في ىذه الدراسة، تػ إجراء تحقيق عميق حؽل سمؽك المخاطر الناتجة مؼ ىذا الارتفاع مؼ خلال 

أذ تػ  للارتباط. Pickandsدوال عمى  المتطرفة بالاعتمادمتر في العراق باستخدام نماذج كؽبيؽلا لمكيػ  2حرارة اليؽاء المتطرفة عند مدتؽى 
أسفر التحقيق في ىذه الحدث أن  المؽاقع.ر المدافة بيؼ المؽاقع، اي تػ اعتبارىا دوال لممدافة بيؼ افتراض ان معممات ىذه النماذج تتغير بتغي

-Hüsler)في تمثيل سمؽك درجات حرارة اليؽاء المتطرفة. وعميو تػ بناء تدع نماذج وىػ  ملائمة أكثرالمتطرفة ىي  المتماثمة لمكيػنماذج كؽبيؽلا 
Reiss A and B; Gumbel, and Galambos)  ذوات معممة واحدة، بالإضافة إلى نمؽذج يحتؽي عمى معممتيؼ، وىؽt-EV.  05تػ اختيار 

الباقية لغرض التحقق.  55ومنيا لغرض النمذجة  05جزئيؼ،  المؽاقع إلىمؽقعًا بحيث تػ تقديػ ىذه  5051مؽقعًا عذؽائيًا مؼ العراق مؼ بيؼ 
نماذج كنماذج مرشحة  0تػ اختيار  ،AICالمعيار عمى  وبناءً ( في النمذجة. Composite pseudo-likelihoodتػ استخدام طريقة تقدير )

تػ  المرشحة،النماذج الأربع  بيؼ AIC(. نعرًا لمفرق الطفيف في قيػ المعيار Galambosو ،Gumbel؛ Bو Hüsler-Reiss Aوىػ )
 معمميكؽبيؽلا الغير  النمؽذجالتقارب بيؼ  لكياس Kullback-Leibler   المكياسالنماذج المرشحة الاربعة عؼ طريق  اضافي بيؼاجراء تقييػ 

 KLنعرًا لارتفاع كثافة  ملائمة، أكثر Hüsler-Reiss Aمع النماذج الاربعة المقدرة باستخدام بيانات التحقق. بعد الاختبار تبيؼ ان نمؽذج 
 بيؼ المؽاقع. لجميع الازواجحؽل الرفر 

 .بيكاندز للارتباط، منر درجات حرارة اليؽاء فؽق الارض  2، كؽبيؽلا لمكيػ المتطرفة، المكاني  لمكيػ  المتطرفة لاحراء :ةمفتاحيالكلمات ال

 

 

 

 

 
 

 


