On Pair-Wise s*-Compactness in Bitopological **Spaces** ### Sabiha I. Mahmood alzubaidy.sabiha@yahoo.com Al-Mustansiriyah University - College of Science Department of Mathematics **Abstract:** The main goal of this paper is to create special types of compactness on topological spaces (X,τ) and on bitopological spaces (X, τ_1, τ_2) , where we studied the concepts of s*-compactness and pair-wise s*-compactness. Also, we study the characterizations and basic properties of s*-compact spaces and pair-wise s*compact spaces. Key words: s*-compact space, pair-wise s*-open cover, pair-wise s*-clopen set, pair-wise s*-compact space, pair-wise s*-irresolute function, pair-wise s*-continuous function. #### Introduction Levine, N. [1] introduced the concept of semi open sets. Also, Al-Meklafi, S. [2] introduced and investigated s*-closed sets by using the concept of semi-open sets. Khan, M. and et.al.,[3] we can prove that the family of all s*-open subsets of a topological space (X,τ) form a topology on X which is finer than τ . The concept of a bitopological space (X, τ_1, τ_2) was first introduced by Kelly, J. [4], where X is a non-empty set and τ_1, τ_2 are topologies on X. Reilly, I. and Mrsevice, M. [5] introduced the concept of pair-wise compact spaces. Recall that a subset A of a topological space (X,τ) is called a semi-open set if there exists an open subset U of X such that $U \subseteq A \subseteq cl(U)$ [1]. The complement of a semi-open set is said to be semi-closed [1]. An s*-closed set is also called s*g-closed [3], \hat{g} -closed [6] and w-closed [7]. #### 1. Preliminaries ### **Definition**(1.1)[2]: A subset A of a topological space (X,τ) is called an s^* -closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X,τ) . The complement of an s^* -closed set is said to be s^* -open. The class of all s^* -open subsets of (X,τ) is denoted by $S^*O(X,\tau)$. ## **Remarks (1.2):** - i) Every open (closed) set is an s*-open (s*-closed) set respectively, but the converse is not true. - ii) Semi-open sets and s*-open sets are independent. ### **Theorem (1.3)[8]:** A subset A of a topological space (X, τ) is s*-open iff $F \subseteq int(A)$ whenever F is an semi-closed subset of X and $F \subset A$. ## **Definition (1.4):** Let (X, τ) be a topological space and $A \subseteq X$. Then: - i) The s*-closure of A, denoted by s*-cl(A) is the intersection of all s*-closed subsets of X which contains A [3]. - ii) The s*-interior of A, denoted by $s^*-int(A)$ is the union of all s*-open subsets of X which are contained in A [3]. - iii) The semi-closure of A, denoted by scl(A) is the intersection of all semi-closed subsets of X which contains A [1]. ## **Theorem (1.5)[9]:** A topological space (X, τ) is an semi- T_1 -space iff every singleton subset of X is semi-closed. ### Theorem (1.6)[8]: A subset A of a topological space (X, τ) is an s*-closed set iff cl(A) - A contains no non-empty semi-closed set. ### **Proposition (1.7):** - (i) If A is an s*-open set in X and B is an s*-open set in Y. Then $A \times B$ is an s*-open set in $X \times Y$. - (ii) If $A \subseteq X$ and $B \subseteq Y$. Then $A \times B$ is an s*-closed set in $X \times Y$ iff A and B are s*-closed sets in X and Y respectively. #### **Proof:** - (i) Suppose that F is a semi-closed set in $X \times Y$ such that $F \subset A \times B$. By theorem (1.3) we will prove that $F \subset int(A \times B)$. Let $(x, y) \in F$. Then $(x, y) \in scl\{(x, y)\} = scl\{x\} \times scl\{y\} \subset scl(F) = F \subset A \times B$ and it follows that $scl\{x\} \subset A$ and $scl\{y\} \subset B$. Since A and B are s^* -open sets in X and Y respectivey, then by theorem (1.3).get $scl\{x\} \subseteq int(A)$ and $scl\{y\} \subseteq int(B)$. Thus $(x, y) \in scl\{x\} \times scl\{y\} \subseteq int(A) \times int(B) = int(A \times B)$. Hence $F \subset int(A \times B)$. Thus $A \times B$ is an s*-open set in $X \times Y$. - (ii) Suppose that A and B are s*-closed sets in X and Y respectively. To prove that $A \times B$ is an s*-closed set in $X \times Y$. By theorem (1.6) is sufficient to show that $Q = cl(A \times B) - A \times B$ contains no nonempty semi-closed set. Suppose on the contary that $scl(x, y) \subset Q$ for some $(x, y) \in X \times Y$. It follows that $scl(x) \subset cl(A)$ $scl(y) \subseteq cl(B)$. Since cl(A) - A and cl(B) - B contains no non-empty semi-closed set, then by theorem (1.6) $scl(x) \cap A \neq \phi$ and $scl(y) \cap B \neq \phi$. Choose $x' \in scl(x) \cap A$ and $y' \in scl(y) \cap B$. Then $(x', y') \in scl(x', y') = scl\{x'\} \times scl\{y'\}$ $\subset scl\{x\} \times scl\{y\} = scl(x, y) \subset Q$. Thus $(x', y') \notin A \times B$ contradicting the fact that $(x', y') \in A \times B$. Conversely, it is obvious. ### Corollary(1.8): If A and B are subsets of topological spaces (X, τ) and (Y, τ') respectively. Then: - i) $s * \operatorname{int}(A) \times s * \operatorname{int}(B) \subset s * \operatorname{int}(A \times B)$ - ii) $s^*-cl(A) \times s^*-cl(B) = s^*-cl(A \times B)$. #### **Proof:** - (i) Let $(x, y) \in s^* \text{int}(A) \times s^* \text{int}(B) \implies x \in s^* \text{in } A$ and $y \in s^* \text{int}(B)$. Hence there are s^* -open sets U in X and V in Y such that $x \in U \subseteq A$ and $y \in V \subseteq B$. Therefore $(x, y) \in U \times V \subseteq A \times B$. But by proposition ((1.7), (i)), $U \times V$ is an s^* -open set in $X \times Y$. Hence $(x, y) \in s^* \text{int}(A \times B)$, thus $s^* \text{int}(A) \times s^* \text{int}(B) \subset s^* \text{int}(A \times B)$. - (ii) Since s*-cl(A) and s*-cl(B) are s*-closed sets, then by proposition ((1.7),(ii)), $s*-cl(A) \times s*-cl(B)$ is an s*-closed set in $X \times Y$. Since $A \times B \subseteq s*-cl(A) \times s*-cl(B)$, then $s*-cl(A \times B) \subseteq s*-cl[s*-cl(A) \times s*-cl(B)] = s*-cl(A) \times s*-cl(B)$. Hence $s*-cl(A \times B) \subseteq s*-cl(A) \times s*-cl(B)$. By the same way we can prove that $s*-cl(A) \times s*-cl(B) \subseteq s*-cl(A \times B)$. Therefore $s*-cl(A) \times s*-cl(B) = s*-cl(A \times B)$. ### **Definition (1.9):** A function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, τ') is called. - (i) s*-continuous [8] if the inverse image of every open set in Y is s*-open in X. - (ii) s^* -irresolute [6] if the inverse image of every s^* -open set in Y is s^* -open in X. ### **Corollary (1.10):** Let (X,τ) and (Y,τ') be topological spaces. Then the projection functions $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$ are s*-irresolute functions. #### **Proof:** Let U be an s*-open set in X, then $\pi_X^{-1}(U) = U \times Y$. Since U is s*-open in X and Y is s*-open in Y, then by proposition ((1.7),(i)), $U \times Y$ is an s*-open set in $X \times Y$. Thus $\pi_X : X \times Y \to X$ is s*-irresolute. Similarly we can prove that $\pi_Y : X \times Y \to Y$ is s*-irresolute. ### **Definition** (1.11)[8]: A topological space (X, τ) is called an s^*-T_2 -space if for any two distinct points x and y of X, there are two s^* -open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \phi$. ## **Definition** (1.12)[8]: A topological space (X, τ) is called an s*-regular space if for any closed subset F of X and any point x of X which is not in F, there are two s*-open sets U and V such that $x \in U$, $F \subseteq V$ and $U \cap V = \phi$. ## **Definition** (1.13)[10]: Let $(x_d)_{d \in D}$ be a net in a topological space (X, τ) . Then $(x_d)_{d \in D}$ s*-converges to $x \in X$ (written $x_d \xrightarrow{s^*} x$) iff for each s*-neighborhood U of x, there is some $d_0 \in D$ such that $d \ge d_0$ implies $x_d \in U$. Thus $(x_d)_{d \in D}$ s*-converges to x iff it is eventually in every s*-neighborhood of x. The point x is called an s*-limit point of $(x_d)_{d \in D}$. ## **Definition** (1.14)[10]: Let $(x_d)_{d \in D}$ be a net in a topological space (X, τ) . Then $(x_d)_{d \in D}$ is said to have $x \in X$ as an s*-cluster point (written $x_d \stackrel{s^*}{\propto} x$) iff for each s*-neighborhood U of x and for each $d \in D$, there is some $d_0 \ge d$ such that $x_{d_0} \in U$. Thus $(x_d)_{d \in D}$ has x as an s*-cluster point iff $(x_d)_{d \in D}$ is frequently in every s*-neighborhood of x. ### Theorem (1.15)[10]: Let $(x_d)_{d \in D}$ be a net in a topological space (X, τ) and for each d in D let A_d be the set of all points x_{d_0} for $d_0 \ge d$. Then x is an s^* -cluster point of $(x_d)_{d \in D}$ if and only if x belongs to the s^* -closure of A_d for each d in D. ### Theorem (1.16)[10]: Let (X, τ) be a topological space and $A \subseteq X$. If x is a point of X, then $x \in s^* - cl(A)$ if and only if there exists a net $(x_d)_{d \in D}$ in A such that $x_d \xrightarrow{s^*} x$. # 2. s*-compactness In this section we study a new type of compactness (to the best of our knowledge), namely s*-compactness. We will introduce new definitions, theorems, corollaries, remarks and examples. ## **Definition (2.1):** A collection $\{U_{\alpha}\}_{\alpha\in\Lambda}$ of s*-open sets in a topological space (X,τ) is called an s*-open cover of a subset A of X if $A\subseteq\bigcup_{i}U_{\alpha}$. ## **Definition (2.2):** A topological space (X,τ) is said to be s*-compact if every s*-open cover of X has a finite subcover. ## **Definition (2.3):** A subset A of a topological space (X, τ) is said to be s*-compact if every cover of A by s*-open subsets of X has a finite subcover. ### **Theorem (2.4):** Every s*-compact space is a compact space. #### **Proof:** This is obvious since every open set is s*-open. The converse of theorem (2.4) is not true in general. As in the following example: ### **Example (2.5):** Let X be any infinite set with indiscrete topology (X,I), then (X,I) is a compact space, but (X,I) is not s*-compact, since $\{x\}: x \in X\}$ is an s*-open cover of X which has no finite subcover. ### **Examples (2.6):** - i) It is clear that any finite topological space is s*-compact. - ii) Any infinite set X with the co-finite topology $(X, \tau_{cof.})$ is s*-compact. #### **Proof:** Let $\{U_{\alpha}\}_{\alpha\in\Lambda}$ be any s*-open cover of $X\Rightarrow X\subseteq\bigcup_{\alpha\in\Lambda}U_{\alpha}$ and U_{α} is an s*-open set in X for each $\alpha\in\Lambda$. Choose $U_{\alpha_0}\in\{U_{\alpha}\}_{\alpha\in\Lambda}$, then $U_{\alpha_0}^c=U'$ is an s*-closed set in X. To prove that U' is closed. Now, let $x\in cl(U')$. Since X is a semi- T_1 -space (because X is a T_1 -space), then by theorem (1.5), $\{x\}$ is a semi-closed set in X, if $x\notin U'$, then $\{x\}\subseteq cl(U')\cap(X-U')=cl(U')-U'$. Hence cl(U')-U' contains a non-empty semi-closed set $\{x\}$. This is a contradiction since U' is s*-closed and according to the theorem (1.6) this is not possible. That is $x\in U'$, it follows that $U_{\alpha_0}^c=U'$ is closed, hence U_{α_0} is open. Therefore $\{U_{\alpha}\}_{\alpha\in\Lambda}$ is an open cover of X. Since X is compact, then $\exists \{U_{\alpha_i}\}_{i=0}^n$ is a finite subcover of $\{U_{\alpha}\}_{\alpha\in\Lambda}$. Thus (X,τ_{cof}) is an s*-compact space. - iii) The real line \Re with usual topology (\Re, μ) is not s*-compact, since it is not compact. - iv) Any infinite set X with discrete topology (X, D) is not s*-compact, since $\{\{x\}: x \in X\}$ is an s*-open cover of X which has no finite subcover. ### **Theorem (2.7):** A topological space (X,τ) is s*-compact if and only if given any family $\{F_{\alpha}\}_{\alpha\in\Lambda}$ of s*-closed subsets of X such that the intersection of any finite number of the F_{α} is non-empty, then $\bigcap F_{\alpha} \neq \emptyset$. ### **Proof:** $\Rightarrow \text{ Suppose that } (X,\tau) \text{ is s*-compact and } \{F_{\alpha}\}_{\alpha\in\Lambda} \text{ be any family of s*-closed subsets of X such that the intersection of any finite number of the } F_{\alpha} \text{ is non-empty. To prove that } \bigcap_{\alpha\in\Lambda} F_{\alpha} \neq \emptyset, \text{ if not } \Rightarrow \bigcap_{\alpha\in\Lambda} F_{\alpha} = \emptyset \Rightarrow (\bigcap_{\alpha\in\Lambda} F_{\alpha})^c = \emptyset^c \Rightarrow \bigcup_{\alpha\in\Lambda} (X-F_{\alpha}) = X. \text{ Set } U_{\alpha} = X-F_{\alpha} \text{ for each } \alpha\in\Lambda\Rightarrow \bigcup_{\alpha\in\Lambda} U_{\alpha} = X \text{ . Each } U_{\alpha} \text{ is the complement of an s*-closed set and hence is s*-open, therefore } \{U_{\alpha}\}_{\alpha\in\Lambda} \text{ is an s*-open cover of X. Since } (X,\tau) \text{ is s*-compact } \Rightarrow \exists \{U_{\alpha_i}\}_{i=1}^n \text{ is a finite subcover of } \{U_{\alpha}\}_{\alpha\in\Lambda} \Rightarrow X = \bigcup_{i=1}^n U_{\alpha_i} X$ $$\bigcap_{i=1}^{n} F_{\alpha_i} = \phi$$, this is a contradiction. Thus $$\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$$. Conversely, to prove that (X,τ) is s^* -compact. Let $\{U_\alpha\}_{\alpha\in\Lambda}$ be any s^* -open cover of $X\Rightarrow X=\bigcup_{\alpha\in\Lambda}U_\alpha$ and U_α is an s^* -open set in X for each $\alpha\in\Lambda\Rightarrow X^c=(\bigcup_{\alpha\in\Lambda}U_\alpha)^c\Rightarrow \phi=\bigcap_{\alpha\in\Lambda}U_\alpha^c$, where $U_\alpha^c=F_\alpha$ is an s^* -closed set in X for each $\alpha\in\Lambda\Rightarrow \{F_\alpha\}_{\alpha\in\Lambda}$ is a family of s^* -closed subsets of X such that $\bigcap_{\alpha\in\Lambda}F_\alpha=\phi$. Hence we can find finitely many of the F_{α} , say $F_{\alpha_1}, F_{\alpha_2}, \dots, F_{\alpha_n}$ such that $\bigcap_{i=1}^n F_{\alpha_i} = \phi \quad \Rightarrow \quad \bigcup_{i=1}^n U_{\alpha_i} = X \quad \Rightarrow \quad \{U_{\alpha_i}\}_{i=1}^n \quad \text{is a finite sub cover of}$ $\{U_{\alpha}\}_{\alpha \in \Lambda}$. Thus (X, τ) is an s*-compact space. ### **Theorem (2.8):** Any s*-closed subset of an s*-compact space (X, τ) is s*-compact. #### **Proof:** Let (X,τ) be an s*-compact space and A be any s*-closed subset of X. To prove that A is s*-compact. Let $\{U_{\alpha}\}_{\alpha\in\Lambda}$ be any cover of A by s*-open subsets of $X \Rightarrow A \subseteq \bigcup_{\alpha\in\Lambda} U_{\alpha}$. Since A is s*-closed in X, then A^c is s*-open in X. Since $A \subseteq \bigcup_{\alpha\in\Lambda} U_{\alpha} \Rightarrow A \cup A^c \subseteq \bigcup_{\alpha\in\Lambda} U_{\alpha} \cup A^c \Rightarrow X \subseteq \bigcup_{\alpha\in\Lambda} U_{\alpha} \cup A^c \Rightarrow \{\{U_{\alpha}\}_{\alpha\in\Lambda}, A^c\}$ is an s*-open cover of X. Since X is s*-compact, then $\exists \{\{U_{\alpha_i}\}_{i=1}^n, A^c\}$ is a finite sub cover of X. Since $A \cup A^c = X & A \cap A^c = \phi \Rightarrow A \subseteq \bigcup_{i=1}^n U_{\alpha_i} \Rightarrow \{U_{\alpha_i}\}_{i=1}^n$ is a finite sub cover of $\{U_{\alpha}\}_{\alpha\in\Lambda}$. Thus A is s*-compact in X. ## **Theorem (2.9):** Any s*-compact subset of an s*- T_2 -space (X, τ) is s*-closed. ### **Proof:** Let A be any s*-compact subset of an s*- T_2 -space X. To prove that A is s*-closed. Let $x \in A^c$, then $\forall y \in A \Rightarrow y \notin A^c \Rightarrow x \neq y$. Since X is an s*- T_2 -space, then by definition (1.11) there are two s*-open sets U_x and V_y of x and y respectively such that $U_x \cap V_y = \phi$. Hence $A \subseteq \bigcup_{y \in A} V_y \Rightarrow \{V_y\}_{y \in A}$ is an s*-open cover of A. But A is s*-compact, and then $\exists \{V_{y_i}\}_{i=1}^n$ is a finite subcover of $\{V_y\}_{y \in A}$. Now, let Journal of Al Rafidain University College $V = V_{y_1} \cup \ldots \cup V_{y_n}$ and $U = U_{x_1} \cap \ldots \cap U_{x_n}$, then U and V are s*-open since there are respectively the union and finite intersection of s*-open sets. Furthermore, $A \subseteq V$ and $x \in U$ since x belongs to each U_{x_i} . Since $U_{x_i} \cap V_{y_i} = \phi$, $\forall i = 1, \ldots, n$ $\Rightarrow U \cap V_{y_i} = \phi$, $\forall i = 1, \ldots, n$. Hence $U \cap V = \phi$. Since $A \subseteq V$, then $U \cap A = \phi$, therefore $x \in U \subseteq A^c$, thus A^c is s*-open. Hence A is s*-closed. #### **Remark (2.10):** If a topological space (X, τ) is not s*- T_2 -space, then s*-compact subset in general is not s*-closed. As in the following example: ### **Example:** Let $X = \{a,b,c\}$ & $\tau = \{\phi, X, \{a\}\}$. Since $S*O(X,\tau) = \{\phi, X, \{a\}\}$, then (X,τ) is not $s*-T_2$ -space. Observe that $\{a\}$ is s*-compact, but is not s*-closed. ## Corollary (2.11): A subset of an s*-compact s*- T_2 -space (X, τ) is s*-compact iff it is s*-closed. #### **Proof:** It is obvious. ## Corollary (2.12): Any s*-compact s*- T_2 -space (X, τ) is an s*-regular space. #### Proof: Let $x \in X$ and A be a closed subset of X such that $x \notin A$. Hence A is an s*-closed subset of X such that $x \notin A$. Since X is s*-compact, then by theorem (2.8), A is s*-compact and $x \notin A$. Hence, $\forall y \in A \Rightarrow y \notin A^c \Rightarrow x \neq y$. Since X is an s*- T_2 -space, then by definition (1.11) there are two s*-open sets U_x and V_y of x and y respectively such that $U_x \cap V_y = \phi$. Hence $A \subseteq \bigcup_{y \in A} V_y \implies \{V_y\}_{y \in A}$ is an s*-open cover of A. But A is s*-compact, then $\exists \{V_{y_i}\}_{i=1}^n$ is a finite—sub cover—of $\{V_y\}_{y \in A}$. Now, let $V = V_{y_1} \cup \ldots \cup V_{y_n}$ and $U = U_{x_1} \cap \ldots \cap U_{x_n}$, then U and V are s*-open since there are respectively the union and finite intersection of s*-open sets. Furthermore, $A \subseteq V$ and $x \in U$ since x belongs to each U_{x_i} . Since $U_{x_i} \cap V_{y_i} = \phi$, $\forall i = 1, \ldots, n$. Hence $U \cap V = \phi$. Therefore by definition (1.12), (X, τ) is an s*-regular space. #### **Theorem (2.13):** - (i) The s*-continuous image of an s*-compact space is compact. - (ii) The s*-irresolute image of an s*-compact space is s*-compact. ### **Proof:** (i) Let $f: X \to Y$ be an s*-continuous function from an s*-compact space (X,τ) into a topological space (Y,τ') . To prove that f(X) is compact. Let $\{U_{\alpha}\}_{\alpha\in\Lambda}$ be any open cover of $f(X) \Rightarrow f(X) \subseteq \bigcup_{\alpha\in\Lambda} U_{\alpha}$, where U_{α} is open in Y for each $\alpha \in \Lambda \Rightarrow X \subseteq \bigcup_{\alpha\in\Lambda} f^{-1}(U_{\alpha})$. Since f is s*-continuous and U_{α} is open in Y for each $\alpha \in \Lambda$, then by definition ((1.9),(i)) $f^{-1}(U_{\alpha})$ is s*-open in X for each $\alpha \in \Lambda$, hence $\{f^{-1}(U_{\alpha})\}_{\alpha\in\Lambda}$ is an s*-open cover of X. Because (X,τ) is s*-compact, then $\{f^{-1}(U_{\alpha})\}_{\alpha\in\Lambda}$ has a finite subcover of X, that is $X \subseteq \bigcup_{i=1}^n f^{-1}(U_{\alpha_i})$. Hence $f(X) \subseteq \bigcup_{i=1}^n f(f^{-1}(U_{\alpha_i})) \subseteq \bigcup_{i=1}^n U_{\alpha_i} \Rightarrow \{U_{\alpha_i}\}_{i=1}^n$ is a finite subcover of $\{U_{\alpha}\}_{\alpha\in\Lambda}$. Thus f(X) is a compact set in Y. (ii) Let $f: X \to Y$ be an s*-irresolute function from an s*-compact space (X,τ) into a topological space (Y,τ') . To prove that f(X) is s*-compact. Let $\{U_{\alpha}\}_{\alpha\in\Lambda}$ be any cover of f(X) by s*-open subsets of $Y \Rightarrow f(X) \subseteq \bigcup_{\alpha\in\Lambda} U_{\alpha}$, where U_{α} is s*-open in Y for each $\alpha \in \Lambda$. Hence $X \subseteq \bigcup_{\alpha\in\Lambda} f^{-1}(U_{\alpha})$. Since f is s*-irresolute and U_{α} is s*-open in Y for each $\alpha \in \Lambda$, then by definition ((1.9),(ii)) $f^{-1}(U_{\alpha})$ is s*-open in X for each $\alpha \in \Lambda$, hence $\{f^{-1}(U_{\alpha})\}_{\alpha\in\Lambda}$ is an s*-open cover of X. Because X is s*-compact, then $\{f^{-1}(U_{\alpha})\}_{\alpha\in\Lambda}$ has a finite subcover of X, that is $X \subseteq \bigcup_{i=1}^n f^{-1}(U_{\alpha_i})$. Hence $f(X) \subseteq \bigcup_{i=1}^n f(f^{-1}(U_{\alpha_i})) \subseteq \bigcup_{i=1}^n U_{\alpha_i}$. So, $\{U_{\alpha_i}\}_{i=1}^n$ is a finite subcover of $\{U_{\alpha}\}_{\alpha\in\Lambda}$. Thus f(X) is an s*-compact set in Y. ## **Corollary (2.14):** If $X \times Y$ is s*-compact space, then each of X and Y are s*-compact space. #### **Proof:** By corollary (1.10) the projection functions $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ are s*-irresolute functions and by theorem ((2.13),(ii)) X and Y are s*-compact spaces. ## **Theorem (2.15):** The union of two s*-compact subsets of a topological space (X, τ) is s*-compact. #### **Proof:** Let A and B be s*-compact sets. To prove that $A \cup B$ is s*-compact. Let $\{U_{\alpha}\}_{\alpha \in \Lambda}$ be any cover of $A \cup B$ by s*-open subsets of $$X\Rightarrow A\cup B\subseteq\bigcup_{lpha\in\Lambda}U_lpha$$. Since $A\subseteq A\cup B$ and $B\subseteq A\cup B$, then $\{U_lpha\}_{lpha\in\Lambda}$ is an s*-open cover of A and B respectively. Since A and B are s*-compact sets, then there exist finitely members of Λ say $lpha_1,lpha_2,....,lpha_n$ such that $A\subseteq\bigcup_{i=1}^nU_{lpha_i}$, and finitely members of Λ say $lpha_1,lpha_2,....,lpha_m$ such that $B\subseteq\bigcup_{j=1}^mU_{lpha_j}$. It follows that $A\cup B\subseteq\bigcup_{k=1}^{n+m}U_{lpha_k}$. Thus $A\cup B$ is s*-compact. #### **Corollary (2.16):** The union of any finite collection of s*-compact subsets of a topological space (X, τ) is s*-compact. #### **Proof:** It is obvious. Now, we need the following theorem. ### **Theorem (2.17):** A net $(x_d)_{d \in D}$ in a topological space (X, τ) has x as an s*-cluster point iff it has a subnet which s*-converges to x. ### **Proof:** Let x be an s*-cluster point of (x_d) . Define $M = \{(d,U): d \in D, U \text{ is an s*-nhood of x such that } x_d \in U \}$. Order M as follows: $(d_1,U_1) \leq (d_2,U_2)$ iff $d_1 \leq d_2$ and $U_2 \subseteq U_1$. It is clear that M is a directed set. Define $\varphi: M \to D$ by: $\varphi(d,U) = d$. Then φ is increasing and cofinal in D, so φ defines a subnet of (x_d) . Let U_0 be an s*-nhood of x. Since x is an s*-cluster point of (x_d) , then $\exists d_0 \in D$ such that $x_{d_0} \in U_0$. Hence $(d_0,U_0) \in M$ and moreover $(d,U) \geq (d_0,U_0)$ implies $U \subseteq U_0$, so that $(x \circ \varphi)(d,U) = x(d) = x_d \in U \subseteq U_0$. It follows that the subnet defined by φ s*-converges to x. Conversely, suppose $\varphi: M \to D$ defines a subnet of (x_d) which s*-converges to x. To prove that x is an s*-cluster point of (x_d) . Let U be any s*-nhood of x and $d_0 \in D$. Since φ is cofinal in D, then there is some $m_0 \in M$ such that $\varphi(m_0) \geq d_0$. Since the subnet $(x_{\varphi(m)})$ of (x_d) is s*-converges to x, then there is also some $m_u \in M$ such that $m \geq m_u$ implies $x_{\varphi(m)} \in U$. Since M is a directed set, then there is $m^* \in M$ such that $m^* \geq m_0$ and $m^* \geq m_u$. Since φ is increasing and $m^* \geq m_0$, then $\varphi(m^*) \geq \varphi(m_0)$, hence $\varphi(m^*) = d^* \geq d_0$ and $x_{d^*} = x_{\varphi(m^*)} \in U$. Thus for each s*-nhood U of x and each $d_0 \in D$, there is some $d^* \geq d_0$ such that $x_{d^*} \in U$. It follows that x is an s*-cluster point of (x_d) . ### **Theorem (2.18):** A topological space (X,τ) is s*-compact if and only if every net in X has an s*-cluster point. ### Proof: Let (X,τ) be an s*-compact space and let (x_d) be a net in X. For each d in D, let $M_d = \{x_{d_0} : d_0 \ge d\}$. Since D is directed by \ge , then the collection $\{M_d : d \in D\}$ has the finite intersection property. Hence $\{s*-cl(M_d): d \in D\}$ also has the finite intersection property. It follows from theorem (2.7) that $\bigcap \{s*-cl(M_d): d \in D\} \ne \emptyset$. Let $x \in \bigcap \{s*-cl(M_d): d \in D\}$, then $x \in s*-cl(M_d) \ \forall \ d \in D$. Hence by the theorem (1.15) x is an s*-cluster point of (x_d) . Conversely, suppose that every net in X has an s*-cluster point and let Ω be a collection of s*-closed subsets of X with the finite intersection property. Let $\Omega' = \{D: D \text{ is the intersection of a finite subcollection of } \Omega' \}$. Since the intersection of every two members of Ω' is a member of Ω' , then (Ω',\subseteq) is a directed set by inclusion. Since each D is non-empty, then there is a point x_D in D. Now define the function $x:\Omega'\to X$ by: $x(D)=x_D \ \forall \ D\in\Omega'$. Then $(x_D)_{D\in\Omega'}$ is a net in X. By hypothesis, $(x_D)_{D\in\Omega'}$ must has an s*-cluster point say x_0 and by theorem (2.17) there is a subnet (x_{DU}) of $(x_D)_{D\in\Omega'}$ which s*-converges to x_0 . Let E be an arbitrary member of Ω' , then for each $D\geq E$ in Ω' , we have $x(D)=x_D\in D\subseteq E$. Hence $(x_D)_{D\in\Omega'}$ is eventually in the s*-closed set E. Since (x_{DU}) is a subnet of $(x_D)_{D\in\Omega'}$, then (x_{DU}) is also eventually in E and by theorem (1.16), we get $x_0\in s^*-cl(E)=E$. Since E is an arbitrary and $\Omega\subseteq\Omega'$, then we have $x_0\in \Omega'\subseteq\Omega$. Hence $\Omega\neq \emptyset$ and by theorem (2.7) (X,τ) is an s^* -compact space. ## 3. Pair-Wise s*-Compactness In this section we study a new type of compactness (to the best of our knowledge), namely pair-wise s*-compactness. We will introduce new definitions, theorems, corollaries, remarks and examples. ## **Definition (3.1)[4]:** A triple (X, τ_1, τ_2) consists of a non-empty set X with two topologies τ_1 and τ_2 on X is said to be bitopological space. ## **Definition (3.2)[11]:** A subset A of a bitopological space (X, τ_1, τ_2) is said to be pair-wise clopen set if A is τ_1 -open and τ_2 -closed or A is τ_1 -closed and τ_2 -open, that is $(A \in \tau_1 \land A^c \in \tau_2)$ or $(A^c \in \tau_1 \land A \in \tau_2)$. ## **Definition (3.3)[12]:** Let (X, τ_1, τ_2) and (Y, τ_1', τ_2') be two bitopological spaces, then the topology W_1 whose base is $E_1 = \{U \times V : U \in \tau_1 \text{ and } V \in \tau_1'\}$ and the topology W_2 whose base is $E_2 = \{U' \times V' : U' \in \tau_2 \text{ and } V' \in \tau_2'\}$ are called the product topologies for $X \times Y$ and $(X \times Y, W_1, W_2)$ is called the product bitopological space of two bitopological spaces X and Y. ### **Definition (3.4)[4]:** A bitopological space (X, τ_1, τ_2) is called a pair-wise T_2 -space if for any two distinct points x and y of X, there are a τ_1 -open set U and a τ_2 -open set V such that $x \in U$, $y \in V$ and $U \cap V = \phi$. ### **Definition (3.5)[5]:** Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X. By a pair-wise open cover of A, we mean a subcollection of the family $\tau_1 \cup \tau_2$ which contains at least one non-empty element of τ_1 and at least one non-empty element of τ_2 and it covers A. ### **Definition (3.6)[5]:** A bitopological space (X, τ_1, τ_2) is said to be pair-wise compact space if every pair-wise open cover of X has a finite subcover. ## **Definition (3.7):** Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X. By a pair-wise s*-open cover of A, we mean a subcollection of the family $\tau_1 - S * O(X) \cup \tau_2 - S * O(X)$ which contains at least one non-empty element of $\tau_1 - S * O(X)$ and at least one non-empty element of $\tau_2 - S * O(X)$ and it covers A. ## **Definition (3.8):** A bitopological space (X, τ_1, τ_2) is said to be pair-wise s*-compact space if every pair-wise s*-open cover of X has a finite subcover. ## **Theorem (3.9):** Every pair-wise s*-compact space is a pair-wise compact space. The converse of theorem (3.9) is not true in general as shown by the following example: ### **Example (3.10):** The bitopological space (N, I, D) (where N is the set of all natural numbers, and I, D are the indiscrete and discrete topologies on N respectively) is a pair-wise compact space, but is not pair-wise s*-compact, since $\{\{x\}: x \in N\}$ is a pair-wise s*-open cover of N which has no finite subcover. ### **Remark (3.11):** Let (X, τ_1, τ_2) be a bitopological space. If (X, τ_1) and (X, τ_2) are s*-compact spaces, then (X, τ_1, τ_2) need not be a pair-wise s*-compact space. As in the following example: ### **Example (3.12):** Let $X = \Re$ and $\tau_1 = \{U \subseteq \Re : 0 \notin U\} \cup \{\Re\}$ and $\tau_2 = \{U \subseteq \Re : 1 \notin U\} \cup \{\Re\}$. It is clear that $\{\{x\} : x \in \Re\}$ is a pair-wise s*-open cover of \Re (since $\{\{x\} : x \in \Re\}$ is a pair-wise open cover of \Re) which has no finite subcover. Therefore (\Re, τ_1, τ_2) is not a pair-wise s*-compact space, while (\Re, τ_1) and (\Re, τ_2) are s*-compact spaces. ## **Proposition (3.13):** Let (X, τ_1, τ_2) be a bitopological space. If $\tau_1 - S * O(X)$ is a subfamily of $\tau_2 - S * O(X)$ and (X, τ_2) is an s*-compact space or $\tau_2 - S * O(X)$ is a subfamily of $\tau_1 - S * O(X)$ and (X, τ_1) is an s*-compact space, then (X, τ_1, τ_2) is a pair-wise s*-compact space. #### **Proof:** Suppose that $\tau_1 - S * O(X)$ is a subfamily of $\tau_2 - S * O(X)$ and (X, τ_2) is an s*-compact space. Then $\tau_1 - S * O(X) \cup \tau_2 - S * O(X) = \tau_2 - S * O(X)$, that is every pairwise s*-open cover of X is an s*-open cover with respect to τ_2 . But every s*-open cover of X with respect to τ_2 has a finite subcover, it follows that every pair-wise s*-open cover of X has a finite subcover. Hence (X, τ_1, τ_2) is a pair-wise s*-compact space. Similarly we can prove the second case. ### **Definition**(3.14): A subset A of a bitopological space (X, τ_1, τ_2) is said to be pairwise s*-clopen set if $(A \in \tau_1 - S * O(X) \wedge A^c \in \tau_2 - S * O(X))$ or $(A^c \in \tau_1 - S * O(X) \wedge A \in \tau_2 - S * O(X))$. ### **Remark**(3.15): If (X, τ_1, τ_2) is a bitopological space. Then every pair-wise clopen subset of X is a pair-wise s*-clopen set. But the converse is not true by the following example: ### **Example**(3.16): Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\}\}$ and $\tau_2 = I = \{X,\phi\}$, then $\tau_1 - S * O(X) = \{X,\phi,\{a\}\}$ and $\tau_2 - S * O(X) = \{X,\phi,\{a\},\{c\},\{c\}\},\{a,c\},\{b,c\}\}$. $\{a\}$ is a pair-wise s*-clopen subset of X, since $\{a\} \in \tau_1 - S * O(X)$ and $\{a\}^c = \{b,c\} \in \tau_2 - S * O(X)$. But $\{a\}$ is not a pair-wise clopen set, since $\{a\} \in \tau_1$, but $\{a\}^c = \{b,c\} \notin \tau_2$. ## **Proposition (3.17):** A pair-wise s*-clopen subset of a pair-wise s*-compact space is a pair-wise s*-compact set. #### **Proof:** Let A be a pair-wise s*-clopen subset of a pair-wise s*-compact space (X, τ_1, τ_2) and $\{U_\alpha\}_{\alpha \in \Lambda}$ be any pair-wise s*-open cover of A. It follows by definition (3.14) that A^c is a member of the family $\tau_1 - S * O(X) \cup \tau_2 - S * O(X)$. Then $\{\{U_\alpha\}_{\alpha \in \Lambda}, A^c\}$ is a pairwise s*-open cover of X which is a pair-wise s*-compact space, then there exist finitely many elements $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that $$X = (\bigcup_{i=1}^{n} U_{\alpha_i}) \cup A^c$$. Since $A \cup A^c = X$ & $A \cap A^c = \phi$, $\operatorname{then} A \subseteq \bigcup_{i=1}^n U_{\alpha_i} \text{ . Therefore } \{U_{\alpha_i}\}_{i=1}^n \text{ is a finite subcover of } \{U_{\alpha}\}_{\alpha \in \wedge}.$ Thus A is a pair-wise s*-compact subspace of X. ### Corollary (3.18): A pair-wise clopen subset of a pair-wise s*-compact space is a pair-wise s*-compact set. ### **Corollary (3.19):** A pair-wise s*-clopen (resp. pair-wise clopen) subset of a pair-wise s*-compact space is a pair-wise compact set. ### **Definition (3.20):** Let (X, τ_1, τ_2) and (Y, τ_1', τ_2') be two bitopological spaces. Then a function $f: X \to Y$ is said to be: - (i) Pair-wise s*-irresolute if $f^{-1}(U) \in \tau_1 S * O(X)$ for each $U \in \tau_1' S * O(Y)$ and $f^{-1}(V) \in \tau_2 S * O(X)$ for each $V \in \tau_2' S * O(Y)$. - (ii) Pair-wise s*-continuous if $f^{-1}(U) \in \tau_1 S * O(X)$ for each $U \in \tau_1'$ and $f^{-1}(V) \in \tau_2 S * O(X)$ for each $V \in \tau_2'$. - (iii) Pair-wise s*-open if $f(U) \in \tau'_1 S * O(Y)$ for each $U \in \tau_1 S * O(X)$ and $f(V) \in \tau'_2 S * O(Y)$ for each $V \in \tau_2 S * O(X)$. ## **Proposition (3.21):** Let $(X \times Y, W_1, W_2)$ be the product bitopological space of bitopological spaces (X, τ_1, τ_2) and (Y, τ_1', τ_2') . Then the biprojection functions $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ are pair-wise s*-irresolute. #### **Proof:** Let $U \in \tau_1 - S * O(X)$ and $V \in \tau_2 - S * O(X)$, then $\pi_X^{-1}(U) = U \times Y$ and $\pi_X^{-1}(V) = V \times Y$. Since U is $\tau_1 - S * O(X)$ and Y is $\tau_1' - S * O(Y)$, then by proposition ((1.7),(i)) $U \times Y$ is $W_1 - S * O(X \times Y)$. Again since V is $\tau_2 - S * O(X)$ and Y is $\tau_2' - S * O(Y)$, then by proposition ((1.7),(i)) $V \times Y$ is $W_2 - S * O(X \times Y)$. Thus π_X is a pair-wise s*-irresolute function. Similarly π_Y is also a pair-wise s*-irresolute function. ### **Theorem (3.22):** - i) The pair-wise s*-irresolute image of a pair-wise s*-compact space is a pair-wise s*-compact. - ii) The pair-wise s*-continuous image of a pair-wise s*-compact space is a pair-wise compact. #### **Proof:** - i) Let $f:(X,\tau_1,\tau_2) \to (Y,\tau_1',\tau_2')$ be a pair-wise s*-irresolute function and X is a pair-wise s*-compact space. To prove that f(X) is pair-wise s*-compact. Let $\{U_\alpha\}_{\alpha\in\Lambda}$ be any pair-wise s*-open cover of f(X), that is $f(X)\subseteq\bigcup_{\alpha\in\Lambda}U_\alpha$. Since f is pair-wise s*-irresolute, so $\{f^{-1}(U_\alpha)\}_{\alpha\in\Lambda}$ is a pair-wise s*-open cover of X which is a pair-wise s*-compact space, then there exist finitely many elements $\alpha_1,\alpha_2,\ldots,\alpha_n$ such that $X\subseteq\bigcup_{i=1}^n f^{-1}(U_{\alpha_i})$. Hence $f(X)\subseteq\bigcup_{i=1}^n U_{\alpha_i}$, thus f(X) is a pair-wise s*-compact set. - ii) The prove is similar to part (i) hence is omitted. ### **Corollary (3.23):** Let $(X \times Y, W_1, W_2)$ be the product bitopological space of bitopological spaces (X, τ_1, τ_2) and (Y, τ_1', τ_2') . If $X \times Y$ is a pair-wise s*-compact space, then each of the spaces X and Y is a pair-wise s*-compact space. #### Proof: By proposition (3.21) the biprojection functions $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$ are pair-wise s*-irresolute and by theorem ((3.22),(i)), we get X and Y are pair-wise s*-compact spaces. ### **Definition (3.24):** A bitopological space (X, τ_1, τ_2) is called a pair-wise s*- T_2 -space if for any two distinct points x and y of X, there are a τ_1 - s*-open set U and a τ_2 -s*-open set V such that $x \in U$, $y \in V$ and $U \cap V = \phi$. ### **Remark (3.25):** Every pair-wise T_2 -space is a pair-wise s*- T_2 - space, but the converse is not true in general. As in the following example. ## **Example (3.26):** Let $X = \{a,b\}$ and $\tau_1 = \tau_2 = I = \{X,\phi\}$. Then $\tau_1 - S * O(X) = \tau_2 - S * O(X) = \{X,\phi,\{a\},\{b\}\}$. It is clear that (X,τ_1,τ_2) is a pair-wise s^*-T_2 -space, but is not a pair-wise T_2 -space. ## **Remark (3.27):** A pair-wise s*-compact subset of a pair-wise s*- T_2 -space need not to be pair-wise s*-clopen set. As in the following example. ## **Example (3.28):** Let $X = \{a,b,c\}$ and $\tau_1 = \{X,\phi,\{a,b\}\}$ and let $\tau_2 = \{X,\phi,\{b,c\}\}$. Then $\tau_1 - S * O(X) = \{X,\{a\},\{b\},\{a,b\},\phi\}$ and $\tau_2 - S * O(X) =$ $\{X,\{b\},\{c\},\{b,c\},\phi\}$. It is clear that (X,τ_1,τ_2) is a pair-wise s^*-T_2 -space. But $A = \{a,c\}$ is a pair-wise s^* -compact subset of X, but it is not a pair-wise s^* -clopen set. To define a pair-wise s*-regular space we introduce the following definition. #### **Definition (3.29):** Let (X, τ_1, τ_2) be a bitopological space. Then τ_i (i = 1,2) is called s*-regular with respect to τ_j $(j = 1,2, i \neq j)$ if for each point x in X and each τ_i -closed set F such that $x \notin F$, there exist a τ_i -s*-open set U and a τ_i -s*-open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \phi$. ### **Definition (3.30):** A bitopological space (X, τ_1, τ_2) is called a pair-wise s*-regular space if and only if τ_1 is s*-regular with respect to τ_2 and τ_2 is s*-regular with respect to τ_1 . ## **Remark (3.31):** A pair-wise s*-compact pair-wise s*- T_2 -space need not to be pair-wise s*-regular space. As in the following example. ## **Example (3.32):** Let $X = \{a,b,c\}$ and $\tau_1 = \{X,\phi,\{b,c\}\}$ and let $\tau_2 = \{X,\phi,\{b,c\},\{a\}\}$. Then $\tau_1 - S*O(X) = \{X,\phi,\{b\},\{c\},\{b,c\}\}$ and $\tau_2 - S*O(X) = \{X,\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}\}$. It is clear that (X,τ_1,τ_2) is a pair-wise s*-compact pair-wise s*- T_2 -space, but is not pair-wise s*-regular, since $\{a\}$ is a τ_2 -closed set in X and $b \notin \{a\}$, but for each τ_2 -s*-open set U with $b \in U$, there is no τ_1 -s*-open set containing $\{a\}$ whose intersection with U is empty. ### **Theorem (3.33):** A bitopological space (X, τ_1, τ_2) is pair-wise s*-regular iff for each $x \in X$ and each τ_1 -open set U of x, there exists a τ_1 -s*-open set W of x such that $x \in W \subseteq s^*-cl_{\tau_2}(W) \subseteq U$ and for each τ_2 -open set V of x, there exists a τ_2 -s*-open set H of x such that $x \in H \subseteq s^*-cl_{\tau_1}(H) \subseteq V$. #### **Proof:** Suppose that (X, τ_1, τ_2) is pair-wise s*-regular and let $x \in X$ and U be a τ_1 -open set such that $x \in U$, it follows that $x \notin U^c$ where U^c is a τ_1 -closed set. But τ_1 is s*-regular with respect to τ_2 , then there exists a τ_1 -s*-open set W and a τ_2 -s*-open set V such that $x \in W$ and $U^c \subseteq V$ and $V \cap W = \phi$. Hence, we get $V^c \subseteq U$ and $W \subseteq V^c$ which is a τ_2 -s*-closed set. Thus $x \in W \subseteq s^*$ - $cl_{\tau_2}(W) \subseteq U$. Similarly, we can prove that for each τ_2 -open set V of x, there exists a τ_2 -s*-open set H of x such that $x \in H \subseteq s^*$ - $cl_{\tau_1}(H) \subseteq V$. Conversely, to prove that (X, τ_1, τ_2) is pair-wise s*-regular i.e. τ_1 is s*-regular with respect to τ_2 and τ_2 is s*-regular with respect to τ_1 . Let $x \in X$ and F be a τ_1 -closed set in X such that $x \notin F$, it follows that $x \in F^c$ which is a τ_1 -open set. By hypotheses there exist a τ_1 -s*-open set W of x such that $x \in W \subseteq s*-cl_{\tau_2}(W) \subseteq F^c$. Hence $x \in W$ and $F \subseteq [s*-cl_{\tau_2}(W)]^c$ which is a τ_2 -s*-open set and $W \cap [s*-cl_{\tau_2}(W)]^c = \phi$. Thus τ_1 is s*-regular with respect to τ_2 . Similarly, we can prove that τ_2 is s*-regular with respect to τ_1 . ## **Definition (3.34):** Let (X, τ_1, τ_2) be a bitopological space. Then τ_i (i = 1,2) is called s*-normal with respect to τ_j $(j = 1,2, i \neq j)$ if for each τ_i -closed set F_1 and each τ_j -closed set F_2 such that $F_1 \cap F_2 = \phi$, there exist a τ_i - s*-open set U and a τ_j -s*-open set V such that $F_2 \subseteq U$, $F_1 \subseteq V$ and $U \cap V = \phi$. ### **Definition(3.35):** A bitopological space (X, τ_1, τ_2) is called a pair-wise s*-normal space iff τ_1 is s*-normal with respect to τ_2 and τ_2 is s*-normal with respect to τ_1 . ### **Theorem (3.36):** A bitopological space (X, τ_1, τ_2) is pair-wise s*-normal iff for each τ_1 -open set U and each τ_2 -closed set F_1 such that $F_1 \subseteq U$, there exists a τ_1 -s*-open set W such that $F_1 \subseteq W \subseteq s*-cl_{\tau_2}(W) \subseteq U$ and for each τ_2 -open set V and each τ_1 -closed set F_2 such that $F_2 \subseteq V$, there exists a τ_2 -s*-open set H such that $F_2 \subseteq H \subseteq s*-cl_{\tau_1}(H) \subseteq V$. #### **Proof:** Suppose that (X, τ_1, τ_2) is pair-wise s*-normal and let U be a τ_1 open set and F_1 be a τ_2 -closed set such that $F_1 \subseteq U$, it follows that $U^c \cap F_1 = \phi$, where U^c is a τ_1 -closed set. But τ_1 is s*-normal with respect to τ_2 , then there exists a τ_1 -s*-open set W and τ_2 -s*open set V such that $F_1 \subseteq W$ and $U^c \subseteq V$ and $W \cap V = \phi$. Hence, we get $V^c \subseteq U$ and $W \subseteq V^c$ which is τ_2 -s*a Thus $F_1 \subseteq W \subseteq s^* - cl_{\tau_2}(W) \subseteq U$. Similarly, we can closed set. prove that for each τ_2 -open set V and each τ_1 -closed set F_2 such that $F_2 \subseteq V$, there exists a τ_2 -s*-open set H such that $F_2 \subseteq H \subseteq s * -cl_{\tau_1}(H) \subseteq V$. Conversely, to prove that (X, τ_1, τ_2) is pair-wise s*-normal i.e. τ_1 is s*-normal with respect to τ_2 and τ_2 is s*-normal with respect to τ_1 . Let F_1 be a τ_1 -closed set and F_2 be a τ_2 -closed set such that $F_1 \cap F_2 = \phi$, it follows that $F_2 \subseteq F_1^c$ which is a τ_1 -open set. By hypotheses there exist a τ_1 -s*-open set W such that $F_2 \subseteq W \subseteq s^* - cl_{\tau_2}(W) \subseteq F_1^c$. Hence $F_2 \subseteq W$ and $F_1 \subseteq [s^* - cl_{\tau_2}(W)]^c$ which is a τ_2 -s*-open set and $W \cap [s^* - cl_{\tau_2}(W)]^c = \phi$. Thus τ_1 is s*-normal with respect to τ_2 . Similarly, we can prove that τ_2 is s*-normal with respect to τ_1 . ### References - [1] Levine N., "Semi-open sets and semi-continuity in topological spaces", Amer.Math. Monthly,70, 36-41,1963. - [2] Al-Meklafi S., "On new types of separation axioms", M.Sc. Thesis, College of Education, AL-Mustansiriya University, 2002. - [3] Khan M., Noiri T. and Hussain M., "On s*g-closed sets and s*-normal spaces", JNSMAC, 48 (1,2), 31-41, 2008. - [4] Kelly J.C.,"Bitopological spaces", proceedings, London, Math. Soc.,13, 71-89, 1963. - [5] Reilly I.L. and Mrsevice M., "Covering and connectedness properties of a topological space and its associated topology of α -subsets", Indian J. Pure. Appl. Math., 27 (10), 995-1004, 1996. - [6] Veerakumar M.K., " \hat{g} -closed sets and G \hat{L} C-functions", Indian J. Math., 43 (2), 231-247, 2001. - [7] Sundaram P. and Sheik John M., "On w-closed sets in topology", Acta Ciencia Indica Math. 4, 389–392, 2000. - [8] Mahmood S. I. and Ibraheem A. M., "S*-Separation Axioms", Iraqi Journal of Science, University of Baghdad, 51(1), 145-153, 2010. - [9] Maheshwari S. N. and Prasad R., "Some new separation axioms", annales, Soc. Scient Bruxelles, 89, 395-402, 1975. - [10] Mahmood S.I., "On s*-convergence nets and filters", J. of Al-Rafidain University, College for sciences, 30,102-121, 2012. - [11] AL-Maleki N.J., "Some kinds of weakly connected and pairwise connected space", M. Sc. Thesis, College of Education (Ibn IA-Haitham), University of Baghdad, 2005. - [12] Suaad G., "On semi-P-compact spaces", M.Sc. Thesis, College of Education (Ibn IA-Haitham), University of Baghdad, 2006. # حول ثنائي *s - متراص في الفضاءات التبولوجية الثنائية أ. م. صبيحة إبراهيم محمود alzubaidy.sabiha@yahoo.com الجامعة المستنصرية - كلية العلوم - قسم الرياضيات #### المستخلص الهدف الرئيسي من هذا البحث هو استنباط انواع خاصة من التراص على الفضاء التبولوجي (X, τ_1, τ_2) والفضاء التبولوجي الثنائي (X, τ_1, τ_2) حيث درسنا مفهوم التراص من النوع -*s والتراص الثنائي من النوع -*s . كذلك درسنا المكافئات والخواص الأساسية للفضاءات المتراصة - *s و الفضاءات الثنائية المتراصة - *s. الكلمات الرئيسية:الفضاء المتراص- $*_8$ ، الغطاء المفتوح الثنائي – $*_8$ ، المجموعة المغلقة - المفتوحة الثنائية – $*_8$ ، الفضاء الثنائي المتراص – $*_8$ ، الدالة المحيرة الثنائية – $*_8$.