
 1

Abstract

For the modern microprocessors, as

pipelines get deeper, or issuing rate gets higher,

the penalty imposed by branching instructions

gets larger. To reduce this penalty, branch

prediction is used. Branch prediction unit is an

important part of modern processor architectures.

Its responsibility is to predict whether branches

will be taken or not taken before they are

actually executed.

The application of ANNs have been

considered in this work as a good alternative for

solving the problem of branch prediction. Single

and multilayer preceptron neural nets have been

used to design a new branch predictor. The

designed neural nets have been tested for

different applications.

A comparative analysis and study have

been carried out with the other known prediction

techniques. The achieved results show very high

prediction accuracy.

The prediction accuracy rates are

calculated for different types of neural predictors

and conventional predictors. It has been

concluded that the neural predictors are better

than conventional predictors, but in the other

side, when using adaptive techniques, the neural

predictors are comparable to conventional two-

level predictors with the same size of input.

Regarding the same hardware budget, neural

predictors are the best, but they might take more

time for computing branch prediction than

conventional predictors.

1. Introduction

Branch instructions permit a program to

control what instructions are executed. If then,

and looping instructions represent the main

examples of conditional instructions. They test

some conditions, and depending on the outcome,

execution proceeds down one of two possible

paths. Branch instructions have exactly two

possible outcomes: not-taken, the sequential case

in which the program continues executing the

instructions that immediately follow the branch,

and taken, the non-sequential case in which

execution jumps to a target specified in the

branch instruction. The target can lie anywhere

within the program.

Other control flow instructions can

transfer execution to some other program

location but are not conditional. These jump

instructions either jump to the target specified in

the instruction (direct jumps), or jump to a target

that has been computed and whose address is

found in a register (indirect jumps). A procedure

call is an example of the former, and a procedure

return is an example of the latter. As with

branches, some time is required to determine

jump targets. Direct jumps can be resolved early

with proper hardware in the fetch stage to extract

the jump target from the instruction, or the

targets that can be predicted. Indirect jumps

generally cannot be resolved early, and instead

must proceed through the pipeline in order to

read their target from the register file, just like

any other instruction. Fortunately, their targets

can also be predicted.

Neural network based branch prediction unit in

modern microprocessors

Dr. Faiz A. AL – Alawy

Iraqi Commission for Computers and Informatics

 2

The ratio of branches accounts for about

20% from instruction in general programs. This

means on average, each fifth instruction is a

branch, and the majority of branches

(approximately 80%) are conditional [1].

2. Branch Prediction Techniques

Branch prediction techniques are

classified as static or dynamic
 [1, 2].

Static prediction schemes can be

regarded the simpler class. The most

straightforward type is to predict the branch to be

always taken by observing that majority of

branches is taken. Static schemes can also be

based on branch op-codes. Another simple

method is using the direction if the branches to

make a prediction. If the branch is backward,

i.e., the target address (decrementing), it is

predicted to be taken. Otherwise, if the branch is

forward, the prediction is not to be taken. This

strategy tries to take advantage of loops in the

program. It works well for programs with many

looping structures. However, it does not work

well in the case where there are many irregular

branches. Profiling is another static strategy

which uses previous runs of a program to collect

information on the tendencies of a given branch

to be taken or not taken and preset a static

prediction bit in the op-code of the given branch.

Later runs of the program can use this

information to make predictions. This strategy

suffers from the fact that runs of a program with

different input data sets usually result in different

branch behaviors. While dynamic prediction may

change to reflects the time-varying activity of the

program.

The second class is the dynamic branch

prediction, which make use of the information

gathered at run-time to predict branch direction.

There are several dynamic branch predictors in

use or being researched nowadays. Those

include One-Level branch predictors, Two-Level

branch predictors and Hybrid predictors.

(2-1) Branch Target Buffer (BTB)

 It is a cache indexed by instruction

address that stores the target address for the most

recently taken branches. When an instruction is

fetched [3], the same address is offered to BTB,

if there is a match in BTB, the next instruction is

fetched using the target address specified in the

BTB if branch is predicted as taken.

(2-2) One-Level Branch Prediction

The most basic mechanism is a simple table of

binary values, one per branch. This value is

updated to provide the last outcome witnessed

for each branch, and so each time a branch

changes direction from taken to not-taken or

vice-versa a misprediction results. Making the

table entries not-taken outcome decrements the

counter (until it hits 00), and each taken outcome

increments it (until it hits 11). Values of 00 and

01 produce a not-taken prediction, and values of

10 and 11 produce a taken prediction.

(2-3) Two-Level Branch Prediction

More bits can be added to the two-bit

counters, but too many bits make it difficult for

the predictor to learn legitimate changes in

direction. A better refinement is to explicitly

track branch history patterns, and each branch

makes different predictions depending on the

 3

recent history. These predictors are called two-

level predictors. A local history predictor keeps a

table of shift registers, one entry per branch. To

make a prediction, the predictors looks up the

branch’s history and then uses the history to

index the now-familiar table of two-bit counters.

These counters now track the taken/not-taken

behavior of branch history patterns, and not the

overall behavior of individual branches. This

permits common patterns, like alternating

branches (TNTN…), to be correctly predicted,

and can also learn irregular patterns that

correspond to some program or input data

behavior (e.g. TTTNTTTN…) [3].

3- Conventional Predictors

Some particular configurations will be

described her in order to be used as a base for the

proposed predictor.

(3-1) Global Adaptive (GA) Predictor

As shown in Figure 1, GAg uses a single

global branch history register (GBHR) that

records the outcome of the last K branches

encountered, and a single global pattern history

table (PHT) containing an array of prediction

counters. To generate a prediction, the k bit

pattern in the first level GBHR is used to index

the array of two-bit saturating prediction

counters in the second level PHT. Each branch

prediction seeks to exploit correlation between

the next branch outcome and the outcome of the

k most recently executed branches. The GBHR

and the prediction counter in the PHT are

updated as soon as the branch is resolved.

Unfortunately, since all the branches in GA

predictor share a common set of prediction

counters in the PHT, the outcome of one branch

may interfere with the prediction of all other

branches. To solve this problem, a two direction

PHT is used and this type is called Gas. The

PHT has its rows indexed by the GBHR and its

columns indexed by the branch address. The

GBHR is n-bits wide register used to address the

rows of the PHT.

Figure 1: Diagram of the GAg predictor.

(3-2) Gshare Predictor

As shown in figure 2, Gshare scheme

attempts to reduce interference by randomizing

the index to second level table through xor-ing

the GBHR with branch addresses, the gshare

scheme can produce new distinct indexing values

for counters, each associated with a static

branch. This xor-ing can reduce interference

between branches while retaining the advantages

of using long GBHR to exploit branch

correlation. However, this scheme offers limited

benefits, because randomization can only

“blindly” separate alised branches.

Consequently, this process may reduce

destructive interference simple by chance.

 4

Figure 2: Diagram of the Gshare predictor.

(3-3) Per-Address Adaptive (PA) Predictor

The architecture of PAg consists of two

tables. The first-level table, called BHT, has

multiple shift-registers. Each of these registers is

used to record past branch outcomes for a single

static branch. The branch outcome patterns

recorded in BHT are then used to index in

second level, which is a single global PHT. Or a

two direction table which is called branch history

table (BHT) as shown in Fig.3 which is known

as PAs.

Figure 3: Diagram of the PAs predictor.

(3-4) Hybrid Predictors

To further improve prediction accuracy,

hybrid branch predictors have recently been

proposed [4, 5, 6, 7]. Within most programs,

some branches are best predicted using global

history, while others are best predicted using

local history. A hybrid branch predictor is

composed of two or more single-scheme

predictors and a mechanism to select among

these predictors.

4-system design

A performance measuring tool, a trace

program (TP) which is written in assembly

language has been designed to operate the

processor in a single step mode through

providing the ability to execute one instruction at

a time. Also, this program is able to test the

contents of registers or memory both before and

after the execution of each instruction.

Five test programs have been organized to be

used as case study to measure the performance

for different branch prediction strategies.

 (4-1) Neural Predictor design.

Single layer and Multi layers perceptron

neural networks have been used to design the

neural predictor.

The neural net is used to replace the PHT (2-bit

counter) for the two-level adaptive predictor.

The input to this net can be either (-1) for not

taken or (1) for taken.

Fig. 4.a shows the block diagram of the

suggested SLP predictor.

 When the actual outcome of branch

becomes known, the training algorithm uses this

outcome with the output to update the weights of

 5

the selected perceptron. These updated weights

are written back to the perceptron table. Weights

updating operation are carried out, only, when

the prediction result is not true.

Fig. 4.b shows the MLP predictor. The

least significant bits of the branch address with

the history register have been used as inputs to

the MLP net.

Bipolar sigmoidal function has been used as

activation function for the neurons.

Fig 4.a: The organization of SLP NNs

Predictor

Fig. 4.b: The organization of MLP NNs

Predictor

The number of the hidden neurons used is half

the number of input neurons.

(4-2) Other implemented alternatives

 Different types of dynamic input

information for the neural predictor have been

tried to implement a new combination of neural

predictors.

These are:

GAs, PAs and GPA with single layer perception

neural networks and also with multi layer

perception.

 (4-3) Estimated hardware budget

 The hardware budget of each

implemented predictor can be estimated

depending on the number of bits for first

level and every weight used in the second

level. For SLP, each weight value is

implemented by a single byte, and for MLP it

is implemented by 4 bytes.

Table 1; summarize the hardware cost for all

discussed prediction techniques.

(4-4) Performance measure

A comparative study between all

predictor types and with the new suggested types

have been carried out using the same five testing

programs.

Prediction accuracy represents one of the most

important measures for the predictors. It can be

computed as follows: -

 Figure 5 shows the average of the

prediction accuracy rates achieved for different

configurations of neural network predictors and

conventional predictors. When using the global

information, neural predictors performs better

than the conventional one, but for per-address

predictors all the predictors have, nearly, the

same performances.

 6

Fig. 5 Comparison of Neural and conventional

predictors with the same cost of hardware.

(4-6) Hybrid predictors

In this work two types of predictors, Gshare and

neural, for the same history length have been

combined to get one predictor, This hybrid

predictor is tested as a dynamic predictor for

PHT with 1024 entry of two-bit saturating

counters.

Fig. 6 shows how this combination of Gshare

and MLP can improve the performance of the

MLP alone in a percentage higher than the

Gshere when it is combined with the SLP.

Fig.6 Performances, when using hybrid

predictors

(5) Conclusions

It can be concluded that:

1) For non-adaptive mechanisms with the

same history register length the performance

of neural net predictor is better than the

performance of conventional predictor. The

neural net predictor is better than

conventional predictor with global

information, but the conventional predictor is

better than neural net predictor with local

information.

2) Neural predictors can handle more

history of branches than the conventional.

3) Predictors with SLP can out perform

others with MLP. That means that there is no

i j k

First

level
Cost

Second

level
Cost

AV.occur

act

G(A)g-4K bits 11 11 11 2048x2 4096 93.079

G(A)g-8K bits 12 12 12 4096x2 8192 93.531

G(A)s-4K bits 2 9 9 9 512x4x2 4096 93.332

G(A)s-8K bits 2 10 10 10 1024x4x2 8192 93.767

P(A)g-4K bits 2 11 4x11 44 2048x2 4096 94.110

P(A)g- 8K bits 2 12 4x12 48 4096x2 8192 93.813

P(A)s-4K bits 2 2 9 4x9 36 512x4x2 4096 93.785

P(A)s-8K bits 2 2 10 4x10 40 1024x4x2 8192 94.023

G(A)slp-4K bits 6 7 7 7 64x8x8 4096 93.621

G(A)slp-8K bits 6 15 15 15 64x16x8 8192 94.538

P(A)slp-4K bits 6 2 7 4x7 28 64x8x8 4096 94.107

P(A)slp-8K bits 6 2 15 4x15 60 64x16x8 8192 94.300

GP(A)slp- 4K bits 6 2 7 3+4x4 19 64x8x8 4096 94.300

GP(A)slp-8K bits 6 2 15 5+4x10 45 64x16x8 8192 93.813

G(A)mlp-4K bits
8 7 7 7

(16x7+8)

x32
3840 94.479

G(A)mlp-8K bits
8 13 13 13

(22x10+1

1)x32
7392 92.894

P(A)mlp-4K bits
8 2 7 4x7 28

(16x7+8)

x32
3840 93.612

P(A)mlp-8K bits
8 2 13 4x13 52

(22x10+1

1)x32
7392 93.749

GP(A)mlp-4K bits
8 2 7 3+4x4 19

(16x7+8)

x32
3840 93.732

GP(A)mlp-8K bits
8 2 13 3+4x10 43

(22x10+1

1)x32
7392 93.188

Table 1: The cost of hardware for neural and

conventional predictors.

 7

need to more compicated design in order to

get higher accuracy.

4) The operation of MLP predictor is more

time consuming than the SLP, it takes more

time to predict, and also it takes more time

for weights adjustment operation.

1) D. Sima, T. Fountain and P. Kacsuk.

“Advances Computer Architecture”, A

design space approach. Addison Wesley,

1998.

2) A. Malishevky, D. Beck, A. Schmid and

E. Landry, “Dynamic Branch Prediction”.

Htt:/www.ece.orst.edu/~benl/projects/branch-

pred/

3) T. Yeh and Y. Patt, “A Comprehensive

Instruction Fetch Mechanism for a Processor

Supporting Speculative Execution”. In

Proceedings of the 25
th

 International

Symposium Microsrchitecture, Portland,

Oregon, November, 1992.

4) Scoot Mcfarling. “Combining Branch

Predictors”. Technical Report TN-36, Digital

Western Researcg Laboratory, June 1993.

5) P.-Y. Chang, E. Hao, T.-Y. Yeh and Y.N

Patt. “Branch Classification: a New

Mechanism for Improving Branch Predictor

Performance. In proceedings of the 27
th

Annual ACM/IEEE International

Symposium on Microarchitecture, PP. 22-31,

1994.

6) P.-Y. Chang, E. Hao, and Y.N. Patt.

“Alternative Implementations of Hybrid

Branch Predictors”. In proceddings of the

28
th

 Annual International Symposium on

Computer Architecture, June 1995.

7) M. Evers, P.-Y. Chang and Y.N. Patt.

“Using hybrid branch predictors to improve

branch prediction accuracy in the presence if

context switches”. In proceedings of the 23
rd

International Conference on Computer

Architecture, May 1996. References

