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Abstract 

This paper presents an analysis solution for systems of nonlinear partial differential equations using decomposition 

method. Two illustrated examples has been introduced, and the method has shown a high-precision, fast approach to 

solve nonlinear system of PDEs with initial conditions, there is no need to convert the nonlinear terms into the linear 

ones due to the Adomian polynomials, not requiring any discretization or assumption for a small parameter to be 

present in the problem. The steps of the method are easy implemented and high accuracy. 
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1. Introduction 

Systems of partial differential equations 

(PDEs) have been use to described many 

important models in real life, such as 

contamination, distribution of shallow water, 

heat, waves contamination and the chemical 

reaction – distribution model [1-4]. The 

general ideas and key characteristics of these 

systems are generally applicable [5]. In 

recent years, many authors have focused on 

solving non-linear systems of PDEs using 

various methods such that HAM [6], VIM 

[7], DTM [8], HPM [9,10], ADM [11,12], 

coupled Laplace decomposition method 

[13], and semi analytic technique [14]. 

Recently, decomposition method and its 

modifications have been used in wider scope 

to solve different types of PDEs. In 2001 

Wazwaz and Al-sayed [15] presented a 

modification of the ADM for non-linear 

operator, that is replaced the process of 

dividing f into two parts by infinite series of 

components. Another modification is the 

restarted ADM [16]. In 2005, Wazwaz [17] 

found another modification to the ADM to 

overcome the difficulties that arise when the 

equation consist singular points. This 

modification represent useful for similar 

models with singularities. Luo [18] was 

proposed another modification based on 

separates the ADM into two steps and so is 

termed the two steps ADM (TSAMD) the 

purpose behind the proposed scheme is to 

identify the exact solution more readily and 

eliminate some calculations. Here we used 

ADM for solving systems of nonlinear PDEs 

with initial conditions. 

2. Solving System of Nonlinear PDEs by 

ADM 

mailto:luma.n.m@ihcoedu.uobaghdad.edu.iq


MJPS,   VOL.(8),   NO.(2),   2021 

8 
 

This section consist the procedure of the 

ADM to solve system of nonlinear PDEs. 

Firstly writes the system of nonlinear PDEs 

as follows: 

     ( (     ))    (   )

   (     )                                                  ( ) 

     ( (     ))    (   )

   (     )     

with ICs: 

 (     )   (   ) 

 (     )   (   )                               ( ) 

Where           is a linear differential 

operator (   
 

  
 ) , R is a remained of the 

linear operator,           are nonlinear 

operators and   (     )   (     )  are the 

nonhomogeneous part         
   ∫ ( )  

 

 
 

on the system (1), we have: 

 (     )   (   )    
  (  )  

  
   ( (     ))    

  [  (   )]  

 (     )   (   )    
  (  )  

  
   ( (     ))    

  [  (   )]  ( )  

 (     )  (     ) can be represented by 

the decomposition series: 

 (     )  ∑  (     )  

 

   

 

 (     )  ∑  (     )    ( )

 

   

 

  (   )   (   ) are nonlinear terms can 

be represented by Adomain polynomials  

  (   )  ∑  (     )

 

   

 

  (   )  ∑  (     )                    ( )

 

   

 

        
 

  

  

   
( ∑(    ))      

 

   

         ( ) 

 Now substituting equation (4), (5) into 

equation (3), to obtain 

∑   (     )   (   )    
  (  )  

 
   

  
   (  (     ))    

  (∑   )     
 
     

∑   (     )
 
     (   )    

  (  )  

  
   (  (     ))    

  (∑   
 
   ) ( )  

We get recursive relation: 

  (     )   (   )    
  (  ) 

    (     )    
   (  (     ))  

  
  (  )                    ( )  

  (     )   (   )    
  (  ) 

    (     )    
   (  (     ))  

  
  (  )         ( )  

In the next section we give an illustrative 

example   

3. Illustrative Examples  

In this section ADM has been used to solve 

system of nonlinear PDEs 

Example 1 

Consider the following system of 2D, 

nonlinear system of Burgers equation: 

  

  
  

  

  
  

  

  
 
   

   
 
   

   
 

  

  
  

  

  
  

  

  
 
   

   
 
   

   
 

Subject to IC:    (     )           

  (     )       (     )        
 

√ 
) 

Solution Take   
   ∫ ( )  

 

 
; for the 

system, to obtain 
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+  

 (     )        
  *

   

   
 
   

   
 

 
  

  
  

  

  
+  

 (     )  (     ) can be represented by 

the decomposition series 

 (     )  ∑  (     )  

 

   

 

 (     )  ∑  (     )

 

   

 

 
  

  
   

  

  
      

  

  
  

  

  
  are nonlinear 

terms can be represented by Adomian 

polynomials as: 

 
  

  
 ∑         

  

  

 

   

  ∑  

 

   

 

and  

 
  

  
 ∑  

 

   

   
  

  
  ∑  

 

   

 

∑   (     )  
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    ∑   
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∑   (     )  
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 ∑   
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       + 
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       +   

   

       

     
  *

    
   

 
    
   

       + 

       
  *

    
   

 
    
   

       +   

   

The Adomian polynomials for the nonlinear 

term  
  

  
   

  

  
  are computed by: 

     
   

  
               

   

  
   

   

  
     

          
   
  
          

   
  

   
   
  
  

and  
  

  
  

  

  
 are computed by: 
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   ∫[ (   )  (   )]  
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   (   )( )      
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  *
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   (   
      )(  )  (    )(   )

 (   )(    ) 

       
       

   ∫[ (   
      )  (     

 

 

     )]   

   ∫[    
                ]  

 

 

 

       
  

      
       

      
       

 (     )                   

 (     )                   

                  

 (     )                    

                

        

 (     )  (   )(           )

    (           ) 

That is closed to the exact solution: 

 (     )  (   ) (
 

     
)

    (
 

     
)

 
       

     
 

 (     )                   

 (     )                   

                  

 (     )  (                  

               

  )  (         

       ) 

 (     )  (   )(             

  )     (         

      ) 

That is closed to the exact solution: 

 (     )  (   ) (
 

     
)

 (   ) (
 

     
)

 
       

     
 

 Example 2  

Consider a system of      order nonlinear 

PDE 

                            

Subject to ICs:    (   )         ( )      (   )  

      ( ) 

Solution                                

Take   
   ∫ ( )  

 

 
 for the system, we 

obtain   

 (   )   (   )    
  [    ] 

 (   )   (   )

   
  [             ] 

 (   )         ( )    
  [    ] 

 (   )        ( )

   
  [             ] 

 

 (   )  (   ) can be represented by the 

decomposition series 

 (   )  ∑  (   )  

 

   

 

 (   )  ∑  (   )

 

   

 

        and     are nonlinear terms can be 
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represented by Adomian polynomials:  

    ∑    
 
        ∑   

 
     

and      ∑   
 
    

∑  (   )

 

   

        ( )    
  [ ∑  

 

   

]   

∑  (   )

 

   

       ( )    
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 ∑  
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 ( ) 

     
  [   ] 

       
  [   ]            

         ( ) 

     
  * 

    
   

      + 

       
  * 

    
   

      +      

The Adomian polynomials for the nonlinear 

term      are computed by: 

                           

And    ,     are computed by: 

                               

                               

     
  [   ] 

          (      ( ))(      ( )     ( )) 

       ( )     ( ) 

     
  [ (      ( )     ( ))] 

   ∫(

 

 

     ( )     ( ))    
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 ( ))  
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      + 
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        ( )    ( )  

         (      
 ( ))(       ( )     ( )) 

        ( )     ( )         
 (       ( )     ( ))(      ( )) 

        ( )     ( ) 

 

     
  [
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] 
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   ∫(

 

 

      ( )    ( ))   

   (      ( )    ( ))  
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  *

       ( )         ( )     ( )  

      ( )    ( )          ( )     ( ) 

        ( )         ( )          ( )     ( ) 

+  

     
  [        ( )         ( )    ( ) ] 



MJPS,   VOL.(8),   NO.(2),   2021 

14 
 

     
  [      ( ) (     ( )       ( ))] 

     
  [      ( ) (     ( )       ( ))] 
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     ( )
 

 

     ( )
)+ 
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    (  )  

 

 
)] 

   ∫(     
 ( )(    (  )   ) )

 

 

   

    
 

 
     ( )(      (  ))   

and so on 

 (   )  ∑  (   )  

 

   

            

 (   )        ( )  (     ( )     ( ))  

 (      ( )(      (  )))      

 (   )  ∑  (   )  

 

   

            

 (   )       ( )  (     ( )    ( ))  

 
 

 
(      (  ))     ( )      

That is closed to  

 (   )        (   )     

 (   )       (   ) 

This is exact solution. 

4. Conclusions 

In this article, decomposition method is used 

to solve system of nonlinear PDEs to get 

exact analytical solution, where numerical 

method are used to solved the same 

examples but cannot be getting exact 

analytical solution. Moreover, the 

convergence concept of the decomposition 

series was thoroughly investigated to 

confirm the rapid convergence of the 

resulting series. So, this approach is very 

efficient, easy implementation and rapid 

convergence to the exact solutions.  
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