Thermodynamic functions and IR modes Calculation for newly Azo compounds by Using DFT Model

د. حميدة عيدان سلمان م.م.خضير عبد الحسين م.م. مثنى ناهض علي جامعة كربلاء / كلية التربية / قسم الكيمياء

الخلاصة :-

تضمن البحث اعتماد برنامج كاوس (Gaussian 03) لاستخدام طريقة الحساب التام على وفق نظرية دوال الكثافة (DFT) وبأسلوب (B3LYP) وباستعمال عناصر القاعدة (STO-3G) وذلك لغرض حساب الأبعاد الهندسية (أطوال وزوايا التآصر) عند الشكل الهندسي المتوازن ، الشحنات ، الدوال الثرموديناميكية وكذلك حساب وتصنيف الأنماط الاهتزازية العائدة لطيف الأشعة تحت الحمراء تكافؤياً وتماثلياً وبعدد (3N-6) لاثنتين من جزيئات الآزو الغير محضرة سابقاً (التي يرمز لها الحصار أقاعدة (3N-6) لاثنتين من جزيئات الآزو الغير محضرة سابقاً (التي يرمز لها اختصاراً A) ، كما وتم اعتماد برنامج الموباك (3N-2000) لاستخدام طريقة الحساب التقريبية شبه التجريبية الحتصاراً A) ، كما وتم اعتماد برنامج الموباك (3N-2000) لاستخدام طريقة الحساب التقريبية شبه التجريبية (PM3) لحصاب حرارة التكوين ، عزم ثنائي القطب ، طاقة المدارات (MOPAC 2000) وطاقة التأين . وقد وجد إن المركب (PM3) لحساب حرارة التكوين ، عزم ثنائي القطب ، طاقة المدارات (MOPAC LUMO) وطاقة التأين . وقد وجد إن المركب (B) أكثر استقراراً لكونه يمتلك اقل حرارة تكوين وأيضا اقل التروبي ويكون أسهل تأيأ ، كما تبنائي القطب ، طاقة المدارات (MOO, LUMO) وطاقة التأين . وقد وجد إن المركب (B) أكثر استقراراً لكونه يمتلك اقل حرارة تكوين وأيضا اقل انتروبي ويكون أسهل تأيناً ، كما تبين من خلال ملاحظة النتائج بان (B) أكثر استقراراً لكونه يمتلك اقل حرارة تكوين وأيضا الا انتروبي ويكون أسهل تأيناً ، كما تبين من خلال ملاحظة النتائج بان (A) أكثر استقراراً لكونه يمتلك الما حرارة تكوين وأيضا الا انتروبي ويكون أسهل تأيناً ، كما تبين من خلال ملاحظة النتائج بان (A) أكثر استقراراً لكونه يمتلك المركب (B) تكون أعلى كثافة الكترونية أي أكثر منح للالكترونات لذا نستنتج عند سلوكه كليكاند يكون ذرات النتروجين العائدة للمركب (A) يكون أعلى كثافة الكترونية أي أكثر منح للالكترونات لذا ستنتج عند سلوكه كليكاند يكون معدات أكثر استقرارا .كما أظهرت النتاج بان التردد الأعلى لكلا المركبين (A) يكون للمط الاهتزازي الأساسي لمجموعة إلى معدات أكثر استقرارا .كما أظهرت النتاج بان التردد الأعلى لكلا المركبين (A) يكون لمط الاهتزازي الأساسي المركب (O) -

Abstract

Depended on (Gaussian 03) program for using Density Function Theory calculations (DFT/B3LYP) have been done after complete optimization of geometry on the newly azo (A, B) molecules . The geometric parameter (bond lengths and bond angles) , charge , thermodynamic data and the fundamental vibration frequencies (3N-6) along with their assignments and the corresponding IR absorption intensities for each one of the two molecules where , also, The MOPAC Computational Packages (semi-empirical method , PM3 model) employed through out this study to compute the heats of formations, dipole moments, orbital energies (HOMO, LUMO) and ionization energies . The compound -B is more stability because it has less heats of formation and entropy , and easier ionization than compound-A , the shown results that each one nitrogen atom of compound-B highest electron densities than compound-A . The higher frequencies values for the (O-H) stretch fundamental vibration mode.

Keyword: DFT study, thermodynamic functions, IR studies.

Introduction

Azo compounds, with tow phenyl rings separated by an azo (-N=N-) group, this molecules are a very important in research both fundamental and application.

Azo compounds have been used for a long time as dyes in industry [1]. In addition, azo compounds are used in analytical chemistry as indicators in pH, redox, or complexometric titration [2,3]. Some azo com- pounds have shown a good antibacterial activity [4,5]. The existence of an azo moiety in different types of compounds has caused them to show pesticidal activity [6]. Because of the good thermal stability of azo compound, one of the most important applications of azo compound is in the optical properties in applications such as optical recording medium [7-9], toner [10,11], ink-jet

printing [12,13], and oil-soluble lightfast dyes [14]. Recently, azo metal chelates have also attracted increasing attention due to their interesting electronic and geometrical features in connection with their application for molecular memory storage, nonlinear optical elements, and printing systems [8,10,15]. Metal azo complex dyes are used for DVD-R (digital versatile disc-recordable) as recording layer.

The aim of present work is to report the optimized geometries, heats of formations, dipole moments, orbital energies (HOMO, LUMO), ionization energies, charge, thermodynamic data and the fundamental vibration frequencies (3N-6) along with their assignments and the corresponding IR absorption intensities for each one of the tow molecules (Fig. 1) by calculation based on the (DFT/B3LYP) and (MINDO/3 model).

Fig 1: compounds A and B.

Results and Discussion

For the A and B molecules , the calculated geometric parameters (bond lengths and bond angels), According to the results of the calculated geometric parameters (table.1) , show that each one of a bond length (C_{11} – C_{12} , C_{12} – C_{13}) in compound-A smaller than their identical in compound-B (C_{20} – C_{21} , C_{21} – C_{22}), and the bond angle value which is located the group substituted in compound-A ($<C_{11}C_{12}C_{13}$) bigger than identical in compound-B ($<C_{20}C_{21}C_{22}$), whereas each one of the bond angles values ($<C_{13}C_{12}C_{31}$, $<N_2N_1C_4$) in compound-A smaller than their identical in compound-B ($<C_{22}C_{21}O_{31}$, $<N_2N_1C_3$), and all this might due to Resonance effect of Methoxy group which is stronger pushing of electrons than Methyl group. And the calculated some physical properties; heats of formation (ΔH_f , kcal.mol⁻¹), Dipole moments (μ in Debye), energies (eV) of the High Occupied Molecular Orbital (HOMO) and the Lower Unoccupied Molecular Orbital (LUMO), ionization energies (eV), the shown this results (table.2) that compound-B has lower heat of formation ΔH_f , (kcal/mol), that means it is more stability than compound-A, due to the same previous reason, in addition to that compound-B has highest E_{HOMO} and lowest E_{LUMO} and ionization energy IP, (eV), which indicates that compound-B is easier ionization than compound-A.

The results of the calculated thermodynamics data (Table.3), show the entropy value (S^0) less to compound-B, and it has highest heat capacity value, and which agree with the results of the calculated heat of formation, the reason as it is mentioned before.

In a comparison between every nitrogen atom in compound-A with their identical in compound-B is found that all the nitrogen atoms in compound-B (N_1 , N_2 , N_{21} , N_{22}) has lower charge values (highest electronic density) than the nitrogen atoms in compound-A (N_1 , N_2 , N_{16} , N_{17}) (Table.4), the reason of this due to the high pushing of electrons effect of the Methoxy group comparing with Methyl group, so we can conclude compound-B form complexes more stability than compound-A because it has atoms give more electrons.

The compound-A belongs to the C_s symmetry point group and it is has (3N-6=147) fundamental vibration modes, whereas compound-B belong to the C_1 symmetry point group and it is has (3N-6=150) fundamental vibration modes . From the character table, it is shown that all the modes have the (A', A'') symmetry for compound A and the (A) symmetry for compound B. The frequency values for all of these modes along with their assignments and the corresponding IR absorption intensities for the A and B compounds where listed in table 5 and 6 respectively.

From these two tables it was shown that the frequency with the higher value is that of v_1 , (O-H) st.; calculated with about the same value for the tow molecules . The next higher frequency values where these of the (C-H) stretch fundamental vibrations . The (CH₃ st., v_3 , v_{19}) and (CH₃ sciss., v_{29}) frequencies values in compound-A bigger than its identical in compound-B (v_{15} , v_{19}) and (v_{29}) respectively.

Table 1. Calculated geometric parameters (bond lengths in Angstrom and bond angles in degrees) of the Azo compounds .

Geometric	Compound	Geometric Compound	
parameter	-Â-	parameter	- B -
$N_1 - N_2$	1.350	$N_1 - N_2$	1.352
$N_1 - C_4$	1.487	$N_1 - C_3$	1.481
$N_2 - C_3$	1.496	$N_2 - C_4$	1.495
$C_3 - C_5$	1.419	$C_3 - C_{19}$	1.441
$C_3 - C_9$	1.421	$C_3 - C_{23}$	1.418
$C_4 - C_{10}$	1.436	$C_4 - C_5$	1.419
$C_4 - C_{14}$	1.420	$C_4 - C_9$	1.421
$C_{5} - C_{6}$	1.403	$C_{5} - C_{6}$	1.402
$C_5 - H_{32}$	1.099	$C_5 - H_{33}$	1.099
$C_{6} - C_{7}$	1.425	$C_{6} - C_{7}$	1.425
$C_6 - H_{33}$	1.096	$C_6 - H_{34}$	1.096
$C_7 - C_8$	1.428	$C_7 - C_8$	1.428
$C_7 - C_{15}$	1.513	$C_7 - C_{10}$	1.512
$C_8 - C_9$	1.400	$C_8 - C_9$	1.400
$C_8 - H_{34}$	1.096	$C_8 - H_{35}$	1.096
$C_9 - H_{35}$	1.099	$C_9 - H_{36}$	1.099
$C_{10} - C_{11}$	1.423	$C_{10} - C_{11}$	1.426
$C_{10} - O_{29}$	1.408	$C_{10} - C_{15}$	1.428
$C_{11} - C_{12}$	1.408	$C_{11} - C_{12}$	1.401
$C_{11} - H_{36}$	1.099	$C_{11} - H_{37}$	1.096
$C_{12} - C_{13}$	1.423	$C_{12} - C_{13}$	1.420
$C_{12} - C_{31}$	1.539	$C_{12} - H_{38}$	1.098
$C_{13} - C_{14}$	1.400	$C_{13} - C_{14}$	1.421
$C_{13} - H_{37}$	1.097	$C_{13} - N_{16}$	1.465
$C_{14} - H_{38}$	1.099	$C_{14} - C_{15}$	1.400
$C_{15} - C_{16}$	1.426	$C_{14} - H_{39}$	1.098
$C_{15} - C_{20}$	1.428	$C_{15} - H_{40}$	1.096
$C_{16} - C_{17}$	1.401	$N_{16} - N_{17}$	1.364
$C_{16} - H_{39}$	1.096	$N_{17} - C_{18}$	1.452
$C_{17} - C_{18}$	1.420	$C_{18} - C_{24}$	1.431
$C_{17} - C_{40}$	1.098	$C_{18} - C_{28}$	1.460
$C_{18} - C_{19}$	1.421	$C_{19} - C_{20}$	1.413
$C_{18} - N_{21}$	1.465	$C_{19} - O_{29}$	1.408
$C_{19} - C_{20}$	1.400	$C_{20} - C_{21}$	1.422
$C_{19} - H_{41}$	1.098	$C_{20} - H_{41}$	1.098
$C_{20} - H_{42}$	1.096	$C_{21} - C_{22}$	1.428
$N_{21} - N_{22}$	1.364	$C_{21} - C_{31}$	1.416

$N_{21} - H_{48}$	1.451	$C_{22} - C_{23}$	1.400
$C_{22} - C_{23}$	1.431	$C_{22} - H_{42}$	1.094
$C_{23} - C_{24}$	1.460	$C_{23} - H_{43}$	1.099
$C_{23} - C_{28}$	1.392	$C_{24} - C_{25}$	1.392
$C_{24} - C_{25}$	1.099	$C_{24} - H_{44}$	1.099
$C_{24} - H_{43}$	1.429	$C_{25} - C_{26}$	1.429
$C_{25} - C_{26}$	1.097	$C_{25} - H_{45}$	1.097
$C_{25} - H_{44}$	1.392	$C_{26} - C_{27}$	1.392
$C_{26} - C_{27}$	1.099	$C_{26} - H_{46}$	1.099
$C_{26} - H_{45}$	1.442	$C_{27} - C_{28}$	1.442
$C_{27} - C_{28}$	1.097	$C_{27} - H_{47}$	1.097
$C_{27} - H_{46}$	1.364	$C_{28} - O_{30}$	1.364
$C_{28} - O_{30}$	1.027	$O_{29} - H_{48}$	1.027
$O_{29} - H_{47}$	1.100	$O_{31} - C_{32}$	1.476
$O_{30} - H_{48}$	1.103	$C_{32} - H_{50}$	1.106
$C_{31} - H_{49}$	1.103	$C_{32} - H_{51}$	1.110
$C_{31} - H_{50}$	1.095	$C_{32} - H_{52}$	1.110
$C_{31} - H_{51}$	1.092	$O_{30} - H_{49}$	1.095
$< N_2 N_1 C_4$	108.6	$< N_2 N_1 C_3$	109.3
$< N_1 N_2 C_3$	115.7	$< N_1 N_2 C_4$	108.5
$< N_2 C_3 C_5$	125.6	$< N_1 C_3 C_{19}$	115.8
$< N_2 C_3 C_9$	115.8	$< N_1 C_3 C_{23}$	125.6
$< C_5 C_3 C_9$	125.3	$< N_2 C_4 C_5$	115.8
$< N_1 C_4 C_{10}$	118.9	$< N_2 C_4 C_9$	125.4
$< N_1 C_4 C_{14}$	120.5	$< C_{19}C_3C_{23}$	118.6
$< C_{10}C_4C_{14}$	119.0	$< C_3 C_{19} C_{20}$	119.8
$< C_3 C_5 C_6$	120.2	$< C_3 C_{19} O_{29}$	117.2
$< C_3 C_5 H_{32}$	118.6	$< C_3 C_{23} C_{22}$	122.0
$< C_6 C_5 H_{32}$	118.8	$< C_3 C_{23} H_{43}$	117.4
$< C_5 C_6 C_7$	119.5	$< C_5 C_4 C_9$	118.8
<c<sub>5C₆H₃₃</c<sub>	117.5	$< C_4 C_5 C_6$	120.5
$< C_7 C_6 H_{33}$	121.0	$< C_4 C_5 H_{33}$	118.9
$< C_6 C_7 C_8$	117.6	$< C_4 C_9 C_8$	120.3
$< C_6 C_7 C_{15}$	120.6	$< C_4 C_9 H_{36}$	118.6
$< C_8 C_7 C_{15}$	121.4	$< C_6 C_5 H_{33}$	120.5
$< C_7 C_8 C_9$	118.4	$< C_5 C_6 C_7$	121.5
$< C_7 C_8 H_{34}$	120.1	$< C_5 C_6 H_{34}$	118.4
$< C_9 C_8 H_{34}$	117.2	$< C_7 C_6 H_{34}$	120.1
$< C_3 C_9 C_8$	121.4	$< C_6 C_7 C_8$	117.2
$< C_3 C_9 C_{35}$	121.3	$< C_6 C_7 C_{10}$	121.4
$< C_8 C_9 H_{35}$	121.7	$< C_8 C_7 C_{10}$	121.4
$< C_4 C_{10} C_{11}$	119.9	$< C_7 C_8 C_9$	121.7
$< C_4 C_{10} O_{29}$	121.5	$< C_7 C_8 H_{35}$	119.9

$< C_{11}C_{10}O_{29}$	121.4	$< C_7 C_{10} C_{11}$	121.5
$< C_{10}C_{11}C_{12}$	118.4	$< C_7 C_{10} C_{15}$	121.4
$< C_{10}C_{11}H_{36}$	121.2	$< C_9 C_8 H_{35}$	118.4
$< C_{12}C_{11}H_{36}$	123.0	$< C_8 C_9 H_{36}$	121.2
$< C_{11}C_{12}C_{13}$	120.9	$< C_{11}C_{10}C_{15}$	117.1
$< C_{11}C_{12}C_{31}$	119.0	$< C_{10}C_{11}C_{12}$	121.7
$< C_{13}C_{12}C_{31}$	103.0	$< C_{10}C_{11}H_{37}$	120.0
$< C_{12}C_{13}C_{14}$	120.0	$< C_{10}C_{15}C_{14}$	121.8
$< C_{12}C_{13}C_{37}$	119.2	$< C_{10}C_{15}H_{40}$	119.9
$< C_{14}C_{13}C_{37}$	120.7	$< C_{12}C_{11}H_{37}$	118.3
$< C_4 C_{14} C_{13}$	120.1	$< C_{11}C_{12}C_{13}$	120.2
$< C_4 C_{14} H_{38}$	120.6	$< C_{11}C_{12}H_{38}$	120.4
$< C_{13}C_{14}H_{38}$	119.4	$< C_{13}C_{12}H_{38}$	119.4
$< C_7 C_{15} C_{16}$	110.9	$< C_{12}C_{13}C_{14}$	119.2
$< C_7 C_{15} C_{20}$	110.5	$< C_{12}C_{13}N_{16}$	117.2
$< C_{16}C_{15}C_{20}$	110.5	$< C_{14}\overline{C_{13}N_{16}}$	123.6
$< C_{15} C_{16} C_{17}$	120.0	$< C_{13}\overline{C_{14}C_{15}}$	120.0
$< C_{15}C_{16}H_{39}$	121.4	$< C_{13}C_{14}H_{39}$	118.7
$< C_{17}C_{16}H_{39}$	117.1	$< C_{13}N_{16}N_{17}$	113.6
$< C_{16}C_{17}C_{18}$	121.7	$< C_{15}C_{14}H_{39}$	121.3
$< C_{16}C_{17}H_{40}$	120.1	$< C_{14}C_{15}H_{40}$	118.3
$< C_{18}C_{17}H_{40}$	121.8	$< N_{16}N_{17}C_{18}$	109.4
$< C_{17}C_{18}C_{19}$	119.9	$< N_{17}C_{18}C_{24}$	116.4
$< C_{17}C_{18}N_{21}$	118.3	$< N_{17}C_{18}C_{28}$	123.8
$< C_{19}C_{18}N_{21}$	120.2	$< C_{24}C_{18}C_{28}$	119.8
$< C_{18}C_{19}N_{20}$	120.4	$< C_{18}C_{24}C_{25}$	120.7
$< C_{18}C_{19}H_{41}$	119.4	$< C_{18}C_{24}H_{44}$	117.9
$< N_{20}C_{19}H_{41}$	119.2	$< C_{18}C_{28}C_{27}$	117.9
$< C_{15}N_{20}C_{19}$	117.2	$< C_{18}C_{28}C_{30}$	121.9
$< C_{15}N_{20}H_{42}$	123.6	$< C_{20}C_{19}O_{29}$	123.0
$< C_{19} N_{20} H_{42}$	120.0	$< C_{19}\overline{C_{20}C_{21}}$	120.4
$< \overline{C_{18}N_{21}N_{22}}$	118.7	$< C_{18}C_{20}H_{41}$	120.6
$< N_{21}N_{22}C_{23}$	113.5	$< C_{19}O_{29}H_{48}$	103.0
$< N_{22}C_{23}C_{24}$	121.3	$< C_{21}C_{20}H_{41}$	119.0
$< N_{22}C_{23}C_{28}$	118.3	$< C_{20}C_{21}C_{22}$	119.9
$< C_{24}C_{23}C_{28}$	109.4	$< C_{20}C_{21}C_{31}$	113.9
$< C_{23}C_{24}C_{25}$	116.4	$< C_{22}C_{21}C_{31}$	126.2
$< C_{23}C_{24}H_{43}$	123.8	$< C_{21}C_{22}C_{23}$	119.3
$< C_{25}C_{24}H_{43}$	119.8	$< C_{21}C_{22}H_{42}$	120.9
$< C_{24}C_{25}C_{26}$	120.7	$< C_{21}O_{31}C_{32}$	113.1
$< C_{24}C_{25}H_{44}$	117.9	$< C_{23}C_{22}H_{42}$	119.8
$< C_{26}C_{25}H_{44}$	117.9	$< C_{22}C_{23}H_{43}$	120.6
$< C_{25}C_{26}C_{27}$	121.9	$< C_{25}C_{24}H_{44}$	121.4

<c25c26h45< th=""><th>121.4</th><th>$< C_{24}C_{25}C_{26}$</th><th>119.7</th></c25c26h45<>	121.4	$< C_{24}C_{25}C_{26}$	119.7
<c<sub>27C₂₆H₄₅</c<sub>	119.7	$< C_{24}C_{25}H_{45}$	120.5
<c<sub>26C₂₇C₂₈</c<sub>	120.5	$< C_{26}C_{25}H_{45}$	119.8
$< C_{26}C_{27}H_{46}$	119.8	$< C_{25}C_{26}C_{27}$	121.5
$< C_{28}C_{27}H_{46}$	121.5	$< C_{25}C_{26}H_{46}$	119.1
$< C_{23}C_{28}C_{27}$	119.1	$< C_{27}C_{26}H_{46}$	119.4
<c<sub>23C₂₈O₃₀</c<sub>	119.4	$< C_{23}C_{27}C_{28}$	120.4
$< C_{27}C_{28}O_{30}$	120.4	$< C_{26}C_{27}H_{47}$	121.3
$< C_{10}C_{29}H_{47}$	121.3	$< C_{28}C_{27}H_{47}$	118.2
$< C_{28}O_{30}H_{48}$	118.2	$< C_{27}C_{28}O_{30}$	120.2
$< C_{12}C_{31}H_{49}$	120.2	$< C_{28}O_{30}H_{49}$	100.5
$< C_{12}C_{31}H_{50}$	100.5	$< O_{31}C_{32}H_{50}$	105.3
$< C_{12}C_{31}H_{51}$	108.5	$< O_{31}C_{32}H_{51}$	112.1
$< H_{49}C_{31}H_{50}$	108.5	$< O_{31}C_{32}H_{52}$	112.1
$< H_{49}C_{31}H_{51}$	107.7	$< H_{50}C_{32}H_{51}$	109.1
		$< H_{50}C_{32}H_{51}$	109.1
		$< H_{51}C_{32}H_{52}$	109.1

Table 2. Calculated heats of formation (in kcal/mole), dipole moments (in Debye), orbital energies (HOMO,LUOMO, in eV) and ionization energies (IP, in eV) for Azo compounds .

Parameter	Compound -A	Compound -B
ΔH _f (kcal/mol)	83.925	54.846
Dipole moment (µ in Debye)	3.524	4.501
HOMO energies (eV)	-8.688	-8.654
LUMO energies (eV)	1.211	1.196
Ionization potential IP, (eV)	8.688	8.653

Thermodynamic Data	Compound -A	Compound –B
U ⁰ (kcal/mol)	277.223	280.237
H ⁰ (kcal/mol)	277.815	280.829
$\frac{\mathbf{S}^{0}}{(\text{kcal mol}^{-1} \text{ deg}^{-1})}$	182.051	181.938
G ⁰ (kcal/mol)	-54000	-53964
A ⁰ (kcal/mol)	-54001	-53965
$\frac{\mathbf{C}_{\mathbf{V}}}{(\text{kcal mol}^{-1} \text{ deg}^{-1})}$	97.107	100.473

Table 3. The calculated standard thermodynamics functions at 298.15° K of the Azo compounds .

Table 4. Calculated charge for the Azo compounds (See Table 1 for numbering).

A- COMP	OUND			B-COMP	OUND		
Atom	Charge	Atom	Charge	Atom	Charge	Atom	Charge
Symb.		Symb.		Symb.		Symb.	
N ₁	-0.1191	C ₂₇	-0.0986	N ₁	-0.1212	C ₂₇	-0.0987
N_2	-0.1282	C_{28}	0.0979	N_2	-0.1337	C_{28}	0.0977
C ₃	0.0554	O_{29}	-0.1939	C ₃	0.0300	O_{29}	-0.1939
C_4	0.0356	O_{30}	-0.2282	C_4	0.0554	O ₃₀	-0.2285
C ₅	-0.0735	C ₃₁	-0.2230	C_5	-0.0746	O ₃₁	-0.1570
C ₆	-0.0761	H ₃₂	0.0908	C_6	-0.0765	C ₃₂	-0.1220
C ₇	-0.0015	H ₃₃	0.0805	C ₇	-0.0027	H ₃₃	0.0895
C_8	-0.0749	H_{34}	0.0807	C_8	-0.0753	H_{34}	0.0797
C ₉	-0.0766	H ₃₅	0.1037	C ₉	-0.0774	H_{35}	0.0800
C ₁₀	0.0898	H_{36}	0.0682	C ₁₀	0.0009	H_{36}	0.1031
C ₁₁	-0.1125	H ₃₇	0.0781	C ₁₁	-0.0740	H ₃₇	0.0835
C ₁₂	0.0147	H ₃₈	0.1015	C ₁₂	-0.0762	H_{38}	0.0889
C ₁₃	-0.0921	H ₃₉	0.0837	C ₁₃	0.0669	H_{39}	0.1022
C ₁₄	-0.0738	H_{40}	0.0892	C ₁₄	-0.0765	H_{40}	0.0835
C ₁₅	0.0007	H_{41}	0.1025	C ₁₅	-0.0733	H_{41}	0.0767
C ₁₆	-0.0737	H_{42}	0.0837	N ₁₆	-0.1764	H_{42}	0.0785
C ₁₇	-0.0761	H_{43}	0.0905	N ₁₇	-0.1079	H_{43}	0.1026
C ₁₈	0.0674	H_{44}	0.0792	C ₁₈	0.0182	H_{44}	0.0903
C ₁₉	-0.0763	H_{45}	0.0834	C ₁₉	0.0922	H_{45}	0.0790
C ₂₀	-0.0730	H_{46}	0.0860	C_{20}	-0.1262	H_{46}	0.0831
N ₂₁	-0.1765	H_{47}	0.2047	C ₂₁	0.0939	H_{47}	0.0858
N ₂₂	-0.1076	H_{48}	0.2463	C ₂₂	-0.1148	H_{48}	0.2052
C ₂₃	0.0184	H_{49}	0.0802	C ₂₃	-0.0700	H_{49}	0.2463
C ₂₄	-0.0683	H_{50}	0.0860	C ₂₄	-0.0684	H_{50}	0.0964
C ₂₅	-0.0936	H_{51}	0.0860	C ₂₅	-0.0938	H_{51}	0.0887
C ₂₆	-0.0677			C ₂₆	-0.0679	H ₅₂	0.0887

Table 5. The calculated fundamental vibration frequencies (v in cm⁻¹) along with their assignments and the corresponding infrared absorption intensities (ir intensities in km. mol⁻¹) for the A molecule .

No. of	Freq.	Intensity	Assignments
Freq.	cm ⁻¹	km mol ⁻¹	
			In plane, A'
ν_1	3714	5.6618	(O-H) st.
ν_2	3485	0.2568	Ring (C-H) st.
v ₃	3484	1.4594	CH ₃ st.
ν_4	3482	20.3900	Ring (C-H) st.
ν_5	3479	16.1540	Hydroxybenzene (C-H) st.
ν_6	3479	4.9932	Ring (C-H) st.
ν_7	3476	1.5379	Ring (C-H) st.
ν_8	3472	9.7005	Hydroxymethylbenzene (C-H) st.
v ₉	3469	10.1187	Hydroxybenzene (C-H) st.
v_{10}	3466	5.5586	Ring (C-H) st.
v_{11}	3463	4.1486	Ring (C-H) st.
v_{12}	3459	0.2515	Ring (C-H) st.
v_{13}	3458	2.6425	Ring (C-H) st.
v_{14}	3456	2.1345	Hydroxymethylbenzene (C-H) st.
v_{15}	3456	7.9894	Hydroxybenzene (C-H) st.
v_{16}	3454	0.2343	Ring (C-H) st.
v_{17}	3447	2.4926	Hydroxybenzene (C-H) st.
v_{18}	3434	0.8622	Ring (C-H) st.
v_{19}	3303	0.5035	CH ₃ st.
v_{20}	2619	81.1289	(O-H) st.
v_{21}	1881	104.8377	δ (O-H) + Ring (δ CCC)
v ₂₂	1738	100.3480	δ-Hydroxybenzene
v ₂₃	1732	65.2590	δ -Hydroxymethylbenzene + δ -Ring
v_{24}	1731	5.0362	δ -Ring + δ -Hydroxymethylbenzene
v ₂₅	1722	33.1666	δ (O-H) + Ring (δ CCC)
v_{26}	1710	2.5669	Ring (δCH)
v ₂₇	1695	2.0157	Ring (δCH)
v_{28}	1677	21.4059	δ-Ring
V ₂₉	1672	22.2003	CH ₃ scis.
v_{30}	1637	37.2929	δ-Hydroxybenzene
v ₃₁	1634	3.4880	δ-Ring
v ₃₂	1625	3.7556	δ-Hydroxymethylbenzene
V ₃₃	1600	55.1361	δ-Ring
v_{34}	1579	68.7489	δ-Hydroxybenzene
V ₃₅	1543	65.7152	δ -Hydroxymethylbenzene + δ -Ring
v_{36}	1535	46.8499	δ -Hydroxybenzene + δ -Ring
v ₃₇	1532	16.9868	δ -Hydroxybenzene + δ -Ring
ν_{38}	1491	50.6271	δ-Ring
V ₃₉	1466	36.6582	$\delta(\text{O-H}) + \delta$ -Ring
ν_{40}	1435	20.8787	δ -Hydroxybenzene + δ (N=N)
ν_{41}	1415	14.3420	δ -Ring + δ (N=N)

v_{42}	1403	9.3215	δ-Ring
v_{43}	1394	64.1438	δ-Hydroxymethylbenzene
ν_{44}	1385	24.3654	δ-Hydroxymethylbenzene
v_{45}	1380	5.4003	δ -Ring + δ (N=N)
v_{46}	1353	7.4277	δ-Ring
v_{47}	1349	63.7841	δ-Ring
ν_{48}	1339	6.4088	δ -Ring + δ (N=N)
v_{49}	1336	141.6631	Ring $(\delta CCC) + \delta(O-H) + \delta(N=N)$
v_{50}	1329	35.1281	δ -Ring + δ (N=N) + δ (O-H)
ν_{51}	1316	55.2878	δ -Ring + δ (N=N) + δ (O-H)
v_{52}	1300	63.5003	δ -Hydroxybenzene + δ -Ring
v_{53}	1288	25.1431	Ring $(\delta CH) + \delta(O-H)$
v_{54}	1279	24.3582	δ -Ring + δ (O-H)
v_{55}	1257	27.9144	δ -Ring + δ (O-H)
v_{56}	1251	116.6396	δ -Ring + δ (O-H)
v_{57}	1235	2.1758	δ-Ring
ν_{58}	1229	24.9266	δ-Hydroxymethylbenzene
v ₅₉	1207	189.7887	δ -Hydroxybenzene + δ (N=N)
v_{60}	1202	50.8668	δ -Ring + δ (O-H)
v_{61}	1190	3.6971	δ-Ring
v_{62}	1183	265.7362	δ -Hydroxybenzene + δ (N=N)
v_{63}	1176	8.2524	Ring (δCH)
ν_{64}	1151	53.0147	Ring $(\delta CH) + \delta(C-N) + \delta(O-H)$
v ₆₅	1100	20.1831	$\rho CH_3 + \delta (O-H) + Ring (\delta CH)$
v_{66}	1084	13.5376	Ring (δCH)
v_{67}	1081	11.2942	δ-Ring
ν_{68}	1064	2.0926	δ-Ring
v_{69}	1052	17.0718	δ-Ring
v_{70}	997	1.8548	δ -CH ₃ + Ring (δ CH)
v_{71}	993	5.7769	$\delta(N=N) + Ring (\delta CH) + \delta(O-H)$
v ₇₂	936	3.3940	$\delta(N=N) + Ring (\delta CH)$
v_{73}	905	25.7455	Ring (δCCC) + Ring (δCH) + $\delta(N=N)$
v_{74}	838	35.7639	Ring $(\delta CH) + \delta(N=N)$
v_{75}	805	1.0317	Ring $(\delta CH) + \delta(O-H) + \delta(N=N)$
v_{76}	757	3.3802	Ring (δ CCC) + δ -CH ₃
v_{77}	747	12.8726	$\operatorname{Ring}\left(\delta C H\right) + \delta - C H_{3}$
v_{78}	678	0.4546	Ring (δCH)
V ₇₉	677	0.6464	δ -Ring + δ (O-H)
v_{80}	658	0.0053	δ-Ring
ν_{81}	608	13.1065	Ring (δCH)
v ₈₂	586	19.2956	δ -Ring + δ (N=N) + δ (O-H)
v ₈₃	577	19.0588	δ -Ring + δ (O-H) + δ (N=N)
v ₈₄	548	25.5553	$\delta(\text{O-H}) + \delta(\text{N=N}) + \delta$ -Ring
v ₈₅	529	5.1969	δ -CH ₃ + δ -Ring + δ (O-H)
v_{86}	515	5.4754	$\operatorname{Ring}\left(\delta CH\right) + \delta(O-H)$
ν_{87}	487	2.7418	$\delta(\text{O-H}) + \text{Ring}(\delta \text{CH})$
v_{88}	454	12.3881	Ring $(\delta CH) + \delta(O-H) + \delta-CH_3$

	1		
v ₈₉	407	3.4041	δ -Ring + δ (O-H)
v_{90}	384	1.3995	δ -Ring + δ -CH ₃
v_{91}	306	0.7707	δ -CH ₃ + δ -Ring + δ (O-H)
v ₉₂	294	2.9114	δ -CH ₃ + δ -Ring + δ (O-H)
V ₉₃	230	1.1195	$\delta(\text{O-H}) + \delta$ -Ring
v_{94}	212	2.2970	Ring $(\delta CH) + \delta(O-H)$
V ₉₅	128	0.9081	δ (O-H) + δ -Ring
v_{96}	117	0.3728	δ -Ring + δ -CH ₃
v_{97}	55	0.1792	δ -Ring + δ (O-H)
v_{98}	26	0.2116	δ -CH ₃ + δ (O-H) + δ -Ring
		0	ut of plane, A″
V ₉₉	1669	3.9395	ωCH ₃
ν_{100}	1565	9.5390	ωCH ₃
ν_{101}	1184	85.5990	γ(O-H)
v_{102}	1142	6.5679	τCH ₃
ν_{103}	1045	0.1767	Ring (γCH)
ν_{104}	1040	0.0104	Ring (γCH)
v_{105}	1033	0.2637	Ring (γCH)
v_{106}	1030	0.6673	Ring (γCH)
ν_{107}	1020	0.3843	Ring (γCH)
ν_{108}	1015	0.5004	γ-Ring
ν_{109}	1014	0.5891	Ring (γCH)
v_{110}	904	2.5361	Ring (γCH)
v_{111}	900	1.3292	Ring (γCH)
v_{112}	896	0.1268	Ring (γCH)
v_{113}	888	0.1573	Ring (γCH)
ν_{114}	878	3.8539	Ring (γCH)
v_{115}	870	54.2377	Ring (γCH)
v_{116}	864	13.2858	Ring (γCH)
v_{117}	796	30.6621	Ring (γCH)
v_{118}	774	0.0555	Ring (γCH)
v_{119}	760	8.0183	γ-Ring
v_{120}	751	0.2556	Ring $(\gamma CH) + \gamma - CH_3$
v_{121}	744	0.0159	γ-Ring
v_{122}	600	0.0840	Ring (γ CH) + τ CH ₃
v_{123}	574	0.0073	Ring (γCH)
v_{124}	559	0.0587	Ring (γCH)
v_{125}	528	2.5374	γ-Ring
v_{126}	498	46.2411	γ(O-H)
v ₁₂₇	477	18.3269	γ (O-H) + γ -Ring
v_{128}	461	13.8353	γ-Ring
v_{129}	424	0.4870	Ring (γCH)
v_{130}	413	0.5130	Ring (γCH)
v_{131}	410	0.9710	γ-Ring
v_{132}	362	0.8974	γ -Ring + γ -CH ₃ + γ (O-H)
v_{133}	330	1.0525	γ (N=N) + Ring (γ CH) + γ (O-H)
v_{134}	302	0.3722	$\gamma(N=N) + \gamma$ -Ring

v_{135}	217	0.9940	$\gamma(N=N) + \gamma$ -Ring
v_{136}	215	0.0225	γ-Hydroxymethylbenzene
v_{137}	207	0.0118	γ-Hydroxybenzene
v_{138}	169	0.0015	γ (N=N) + γ -CH ₃ + Ring (γ CH) + γ (O-H)
v_{139}	140	0.0175	$\gamma(N=N) + Ring (\gamma CH)$
v_{140}	91	0.1485	$\gamma(N=N) + Ring (\gamma CH)$
v_{141}	64	0.9724	γ -CH ₃ + Ring (γ CH)
v_{142}	35	0.1163	Ring (γ CH) + γ -CH ₃
v_{143}	29	0.0766	Ring (γCH)
v_{144}	13	0.0776	τCH ₃
v_{145}	11	0.1011	γ (O-H) + Ring (γ CH)
v ₁₄₆	10	0.1550	γ-CH ₃
v_{147}	6	0.0218	Ring (γCH)

Where; st. stretching; δ , in plane binding; γ , out of plane binding; scis., scissoring; ρ , rock; τ , twist; ω , waging.

Fig.2: The vibration spectrum of the compound-A.

Table 6. The calculated fundamental vibration frequencies (v in cm⁻¹) along with their assignments and the corresponding infrared absorption intensities (ir intensities in km. mol⁻¹) for the B molecule .

No. of	Freq.	Intensity	Assignments			
freq.	cm ⁻¹	km mol ⁻¹				
	In plane, A					
ν_1	3715	6.8100	(O-H) st.			
v_2	3491	8.6613	Ring (C-H) st.			
ν_3	3485	0.3448	Ring (C-H) st.			
ν_4	3482	19.6165	Ring (C-H) st.			
v_5	3479	15.9420	Ring (C-H) st.			
ν_6	3478	5.0684	Ring (C-H) st.			
v_7	3476	1.7122	Ring (C-H) st.			
ν_8	3469	10.0212	Ring (C-H) st.			
v ₉	3466	5.3720	Ring (C-H) st.			
v_{10}	3463	3.6000	Ring (C-H) st.			
v_{11}	3461	3.9941	Ring (C-H) st.			
v_{12}	3459	0.3190	Ring (C-H) st.			
v ₁₃	3457	2.8060	Ring (C-H) st.			
v_{14}	3455	7.6612	Ring (C-H) st.			
v_{15}	3449	0.3516	CH ₃ st.			
v_{16}	3447	2.5007	Ring (C-H) st.			
v_{17}	3446	4.7832	Ring (C-H) st.			
v_{18}	3409	3.7062	CH ₃ st.			
v_{19}	3255	18.7841	CH ₃ st.			
v_{20}	2617	83.3689	(O-H) st.			
v_{21}	1882	106.1954	δ(O-H)			
v_{22}	1738	99.4511	δ-Hydroxybenzene			
v_{23}	1732	17.0723	Ring (δCH)			
v_{24}	1720	350.9322	Ring (δ CH) + Ring (CCC) st. + δ (O-H)			
v_{25}	1710	27.1434	Ring (δCH)			
v_{26}	1706	56.9708	δ (O-H) + Ring (CCC) st.			
v_{27}	1695	8.2097	Ring $(\delta CH) + \delta(O-H)$			
v_{28}	1677	24.4626	δ-Ring			
v ₂₉	1652	38.3161	CH ₃ scis.			

v ₃₀	1642	5.0202	CH ₃ scis.
v ₃₁	1637	37.5624	δ-Hydroxybenzene
v ₃₂	1634	0.8109	Ring (δCH)
V ₃₃	1622	56.5582	δ-Hydroxymethylbenzene
v_{34}	1600	57.5817	Ring (δCH)
V ₃₅	1579	68.3842	δ-Hydroxybenzene
v_{36}	1569	72.3193	CH ₃ scis.
v_{37}	1546	70.6883	δ-Hydroxymethylbenzene
v_{38}	1536	46.2466	δ -Hydroxybenzene + δ -Ring
V ₃₉	1533	18.6818	δ -Hydroxybenzene + δ -Ring
v_{40}	1492	46.2417	Ring (δCH)
v_{41}	1458	55.7358	δ (O-H) + Ring (δ CH) + δ -CH ₃
v_{42}	1434	20.4117	δ-Hydroxybenzene
v_{43}	1415	0.6730	Ring (δ CH) + δ (N=N)
v_{44}	1404	144.4004	Ring $(\delta CH) + \delta(N=N) + \delta(O-H)$
v_{45}	1398	178.3608	δ-Hydroxymethylbenzene
v_{46}	1385	19.0405	δ -Hydroxybenzene + δ (N=N)
v_{47}	1378	17.1190	Ring (δ CH) + δ (N=N)
v_{48}	1354	34.2971	Ring (δ CH) + δ (N=N)
v_{49}	1349	67.4009	Ring (δ CH) + δ (N=N)
v_{50}	1346	322.2940	δ -Hydroxymethylbenzene + δ (N=N)
v ₅₁	1339	14.5917	Ring (δ CH) + δ (N=N)
v_{52}	1329	21.9933	Ring (δ CH) + δ (N=N)
v ₅₃	1316	59.0833	δ -Ring + δ (N=N)
v_{54}	1300	82.3882	Ring (δCH)
v ₅₅	1287	125.6677	Ring $(\delta CH) + \delta - OCH_3 + \delta(O-H)$
v_{56}	1279	20.0249	Ring $(\delta CH) + \delta - OCH_3 + \delta(O-H)$
v_{57}	1260	54.5446	Ring $(\delta CH) + \delta(O-H) + \delta - OCH_3$
v_{58}	1255	176.2497	Ring $(\delta CH) + \delta(O-H) + \delta-CH_3$
v ₅₉	1253	8.2539	Ring $(\delta CH) + \delta - CH_3 + \delta(O-H)$
v_{60}	1235	1.4897	Ring (δCH)
v_{61}	1229	7.7699	$\rho CH_3 + Ring (\delta CH)$
v ₆₂	1208	215.1202	Ring (δ CH)
v ₆₃	1202	23.0639	Ring $(\delta CH) + \delta(O-H)$
v_{64}	1190	4.7917	Ring (δ CH)
v_{65}	1183	263.0470	$Ring (\delta CH) + \delta (N=N)$

v_{66}	1176	11.9002	Ring (δCH)
v_{67}	1169	0.5088	ρCH ₃
v_{68}	1152	182.5279	Ring (δ CH) + δ -CH ₃ + δ (N=N)
v_{69}	1106	1.9090	Ring (δ CH) + δ -OCH ₃
v_{70}	1085	13.8510	Ring (δCH)
v_{71}	1082	11.0273	δ-Ring
v_{72}	1064	2.1092	Ring (δCH)
v_{73}	1052	17.2218	Ring (δCH)
v_{74}	993	6.2278	$\delta(N=N) + \delta$ -Ring
v_{75}	983	1.4661	Ring (δ CH) + δ -OCH ₃
v_{76}	938	1.3653	$\delta(N=N) + Ring (\delta CH)$
v_{77}	905	26.4107	Ring (δ CH) + δ (N=N)
v_{78}	837	28.6560	δ -Ring + δ (O-H) + δ (N=N)
v_{79}	805	1.3245	δ -Hydroxybenzene + δ (N=N)
ν_{80}	755	1.4680	Ring (δ CH) + δ -CH ₃ + δ -Ring
ν_{81}	742	2.7973	Ring (δ CH) + δ -CH ₃ + δ -Ring
v_{82}	678	0.3494	δ-Ring
v_{83}	674	1.5239	δ -Ring + δ -OCH ₃
ν_{84}	658	0.1021	δ-Ring
v_{85}	606	3.4171	δ -Ring + δ -OCH ₃ + δ (N=N)
v_{86}	602	16.1252	δ -OCH ₃ + δ (O-H) + δ (N=N)
ν_{87}	580	15.6587	δ -OCH ₃ + Ring (δ CH)
ν_{88}	576	39.4576	$\delta(N=N) + Ring (\delta CH)$
ν_{89}	545	27.9798	$\delta(\text{O-H}) + \delta(\text{N=N})$
v_{90}	510	5.2071	δ (O-H) + Ring (δ CH) + δ -Ring
v_{91}	487	18.6077	$\delta(\text{O-H}) + \delta(\text{N=N})$
v_{92}	475	15.9346	$\delta(N=N) + \delta$ -Hydroxybenzene + δ -Ring
v_{93}	420	2.0345	δ -Ring + δ (N=N) + δ -OCH ₃
v_{94}	382	0.2506	δ -Hydroxymethylbenzene + δ -Hydroxybenzene
v_{95}	372	1.0273	$\delta(\text{O-H}) + \delta - \text{OCH}_3 + \delta(\text{N=N})$
v_{96}	300	2.3671	δ -Ring + δ (N=N) + δ (O-H)
V ₉₇	256	6.0527	δ -OCH ₃ + δ (O-H) + δ (N=N)
V ₉₈	225	0.1372	$\delta(\text{O-H}) + \delta(\text{N=N}) + \delta-\text{CH}_3 + \delta-\text{Ring}$
V99	204	1.9504	δ -OCH ₃ + δ -Ring
v_{100}	127	1.1673	$\delta(O-H) + \delta(N=N) + \delta$ -Ring
v_{101}	108	0.2443	$\delta(N=N) + \delta$ -Ring

v_{102}	53	0.1812	$\delta(N=N) + \delta$ -Ring			
v_{103}	24	0.3455	δ -CH ₃ + δ (N=N)			
Out of plane, A						
v_{104}	1184	85.5512	γ(O-H)			
v_{105}	1044	0.1772	Hydroxybenzene (γCH)			
v_{106}	1040	0.0114	Ring (γCH)			
v_{107}	1033	0.2541	Ring (γCH)			
v_{108}	1020	0.7150	Ring (γCH)			
v_{109}	1017	0.4961	Ring (γCH)			
v_{110}	1015	0.5149	Hydroxybenzene (γ CH) + Ring (γ CH)			
v_{111}	1014	0.6262	Hydroxybenzene (γ CH) + Ring (γ CH)			
v_{112}	900	1.3185	Hydroxybenzene (γCH)			
v_{113}	896	0.0322	Ring (γCH)			
v_{114}	888	0.0279	Ring (γCH)			
v_{115}	878	3.9176	Ring (γCH)			
v_{116}	875	19.2015	Ring (γCH)			
v_{117}	866	54.4395	Ring (γCH)			
v_{118}	836	15.1374	Ring (γCH)			
v_{119}	796	30.7789	Ring (γCH)			
v_{120}	773	0.0644	Ring (γCH)			
v_{121}	759	8.0894	Ring (γCH)			
v_{122}	749	0.8838	Ring (γCH)			
v_{123}	738	1.8192	Ring (γCH)			
v_{124}	625	0.0895	$\gamma(O-H) + Ring (\gamma CH)$			
v_{125}	575	0.0006	Ring (γCH)			
v_{126}	559	0.0828	Ring (γCH)			
v_{127}	528	2.6384	Ring (γCH)			
v_{128}	497	54.6243	γ(O-H)			
v_{129}	477	11.4285	$\gamma(O-H) + Ring(\gamma CH)$			
v_{130}	461	10.3663	γ (O-H) + Ring (γ CH)			
v_{131}	426	0.0632	Ring (γCH)			
v ₁₃₂	417	0.0038	Ring (γCH)			
v ₁₃₃	412	0.0086	Ring (γCH)			
v_{134}	371	0.3130	γ-Ring			
v ₁₃₅	331	2.1893	γ-Hydroxybenzene			
v_{136}	306	1.8112	$\gamma(N=N) + \gamma$ -OCH ₃ + γ -Ring			

v_{137}	248	0.7030	τCH ₃
v_{138}	227	0.8850	$\tau CH_3 + \gamma$ -Hydroxymethoxybenzene
v_{139}	216	1.3273	$\gamma(N=N) + \gamma$ -Hydroxybenzene + γ -CH ₃ + γ -Ring
v_{140}	206	0.1348	γ -Hydroxybenzene + γ -Ring + γ (N=N) + γ -CH ₃
v_{141}	169	1.0167	$\gamma(N=N) + \tau CH_3$
v_{142}	143	0.0216	$\gamma(N=N) + \gamma$ -Ring
v_{143}	100	1.9120	γ -OCH ₃ + γ (N=N) + γ -Ring
v_{144}	89	0.0167	γ -OCH ₃ + γ -Ring
v_{145}	60	0.7371	γ -OCH ₃ + γ -Ring
v_{146}	35	0.0549	γ-Ring
v_{147}	29	0.1373	γ-Ring
v_{148}	12	0.0000	γ (O-H) + γ -Ring
v_{149}	10	0.1983	γ -OCH ₃ + γ -Ring
v_{150}	6	0.0220	γ-Ring

Fig.3: The vibration spectrum of the compound-B.

Acknowledgment

Thanks to Mr. A. Neama Algreaty and assit lecture M. Adnan Alshamary.

References

- [1] K. Hansongnern, S. Tempiam, J.C. Liou, F.L. Laio, T.H. Lu, Anal. Sci.; 19,x13 (2003).
- [2] P.L. Coort, M. Johansson, Electroanalysis; 12,565 (2000).
- [3] D. Choi, S.K. Lee, T.D. Chung, H. Kim, Electroanalysis; 12, 477 (2000).
- [4] P. Alka, P. Vinod, V.S. Jolly, Orient. J. Chem.; 10 (1),73 (1994).
- [5] A. Halve, A. Goyal, Orient. J. Chem.; 12 (1)87 (2001).
- [6] S. Samadhiya, A. Halve, Orient. J. Chem.; 17 (1)119 (2001).
- [7] H.E. Katz, K.D. Singer, J.E. Sohn, C.W. Dirk, L.A. King, and H.M. Gordon; J. Am. Chem. Soc.; 109 (21), 6561 (1987).
- [8] T. Abe, S. Mano, Y. Yamada, and A. Tomotake; J. Imag. Sci. Tech.; 43, 339 (1999).
- [9] S. Wang, S. Shen, and H. Xu; Dyes Pigments; 44, 195 (2000).
- [10] K. Maho, T. Shintaro, K. Yutaka, W. Kazuo, N. Toshiyuki, and T. Mosahiko; Jpn. J. Appl. Phys.; 42, 1068 (2003).
- [11] D.W. Rangnekar, V.R. Kanetkar, J.V. Malanker, and G.S. Shankarling; Indian J. Fiber Text. Res.; 24, 142 (1999).
- [12] G. Hallas and J.H. Choi; Dyes Pigments; 40, 119 (1999).
- [13] P. Gregory, D.R. Waring, and G. Hallos; "The Chemistry and Application of Dyes"; pp. 18-20, Plenum Press, London, (1990).
- [14] S.S. Kandil; Trans. Met. Chem.; 23, 461 (1998).
- [15] S. Wu, W. Qian, Z. Xia, Y. Zou, S. Wang, and S. Shen; Chem. Phys. Lett.; 330, 535 (2000).