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Abstract:

Statistical parameter estimation for multivariate data leads to waste of information, if the missing data
are omitted, and in return will lead to inaccurate estimates, that is why incomplete data should be
estimated using one of the statistical estimation methods to get accurate results and in return good
estimates for the parameters. This paper aims to estimate the missing values for a multivariate skew
normal model using the Expectation Conditional Maximization (ECM) algorithm and the K-Nearest
Neighbour (KNN) method. After estimating the missing values, the model parameters will be
estimated using the Maximum Likelihood Estimation (MLE) method and Newton-Raphson algorithm.
A comparison between the (ECM) algorithm and the (KNN) method was conducted using the Mean
Squared Error (MSE) for the model through simulation to find the best estimation method.

Keywords: Expectation conditional maximization (ECM), K-nearest neighbour method,
Maximum likelihood estimators (MLE), Newton-Raphson algorithm.
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1. Introduction:

The skew normal distribution is considered a member of the family of distributions that
includes the normal distribution, except that the skew normal distribution contains an
additional parameter to regulate the skewness. The skewness is the asymmetry of the
statistical distribution where the curve appears distorted or skewed either to the left or the
right, and this deviation can be determined to know how much the distribution differs from
the normal distribution. The normal distribution appears in graphs as a classical bell-shaped
curve that is symmetrical around the mean, median, and mode.

Missing data in the multivariate skew normal (MSN) distribution is one of the most common
problems when collecting and analysing the data, which means losing part of the sample
data, for example, in a manufacturing experiment missing data might happen because of
mechanical malfunctions that has nothing to do with the experimental procedure, or in a
survey, a person might not be able to express his preference of one candidate over another,
or in a family survey some participants might refuse to report their income or refuse to
answer some of the questions they were asked, or simply because some parts of the data are
damaged or lost. Missing data is one of the major problems that researchers encounter, and
the statistical methods that are used to analyse the data assumes a complete information on
all the variables that are used in the analysis, and not solving this issue properly could cause
some problems for the researcher like not estimating the variance appropriately or acquiring
biased results, therefore it is necessary to estimate the missing values using some of the
statistical method to overcome this problem, and in this paper the (ECM) algorithm and the
(KNN) method will be used to estimate the missing values.

2. Patterns of the Missing Data: M2

2.1 Pattern of Univariate Missing Data:
It is considered to be the simplest type of missing data and it is one of the special patterns in
which all the variables are observed completely except for one variable that contains the
missing values.

¥ )

"_1 ),§

~
~
N

Figure (1): Pattern of Univariate Missing Data.

2.2 Multivariate with Two Patterns:
This pattern is considered one of the special patterns in multivariate data in which some
variables are completely observed while others contain missing values in equal amounts.

379



Journal of Al Rafidain University College Issue No. 46/ 2020

The (15th & the 2nd International) Conference of Statistical Applications | ISSN (1681- 6870) |

~
-«

%"

-~
/]

NNNNNNN
NN
ANNNNN

Figure (2): Multivariate with Two Patterns.

2.3 Monotone or Nested Missing Data:
This pattern is considered one of the special patterns in which data are arranged in an
ascending or a descending order according to the number of missing values.
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Figure (3): Monotone or Nested Missing Data.
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2.4 Missing Data with Unidentified Parameters:
This pattern is also called the pattern of missing data in the case where the parameters are
unidentified. This pattern is the last of the special patterns, and it emerges when two
variables (X;) and (Xy) have their observations not recorded in the same observations, which
means any observation in (X;) has a corresponding missing observation in the variable (Xy).
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Figure (4): Missing Data with Unidentified Parameters.

2.5 General Pattern:
In this pattern the data is missing at random for any value from the values of the

variables under study.
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Figure (5): General Patterns.

3. Mechanisms that L ead to Missing Data: ]

The mechanism that will be used in this paper is the Missing at Random (MAR)
mechanism meaning that the distribution counted on the observed values of the variable and
didn’t count on the missing values which means the missing value is independent of any
other values in the data according to the following formula:

P(M| X, ) = P(M| X°, @) forall X™
Where:
@: The unknown parameters.
X: Data matrix of order (n X p).
M: Binary matrix taking the values of (0, 1) and is called the Missing Data Indicator Matrix.
And:
o {1 if X;j is obs
Y0 if X;j ismis
To generate a missing rate of (0.12):

1
T 1+ e-n®-030:-7)-02(x;—%)

T

And to generate a missing rate of (0.20):

1
T 1+ eCIn(G)-02(-3)-02(-7)

T;

Here (y) was used as a contributing factor correlated to the variable in which we want to
generate the missing values in. For example if we the data of three variables (y), (x;), and
(x,) and there is a reasonable correlation between (y) and the two other variables and we
wanted to consider some data are missing in variable (x;) according to the mechanism
above, we use (x,) instead of (x;) in the above equations and (y) stays the same, however if
we want the missing data to be in the variable (x,) we use (x,) instead of (x;), after that we
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generate binary values (0, 1) using the Bernoulli distribution (Ber(m;)) and after that we
consider the values corresponding to the (0’s) as missing values.

4. The Multivariate Skew Normal Distribution:™*!6!

Let the random vector (X) follows the (MSN) distribution for (p) variables [13] with the
location vector (¢ € RP) (a Euclidian vector space consisting of the real numbers for every

(p) of rows), (%) is the (p x p) covariance matrix, (A = Diag(})) is the skewness matrix,
and A = (44, ...,4, ) '), theniits p. d. f. is given by:

fx1§24)=27¢,(x|§ DD, (4027 (x—§) | 4) (1)
Where:
&: is the location vector consisting of (p) variables.
N=X+4%
A=, + A2 ') =1,-4107"4

And (¢p(x 1§,Q)) is the probability density function for the normal distribution
(Np (1, 2)), that means (Pp(x 1§,2) = ¢p(. 11,X)), and
(Pp(AQ 7 (x- &) 1A)) is the cumulative distribution function (c. d. f) for the
normal  distribution  (N,(0,X)),  which  means (P,(AQ71(x- §) 1A) =
Op(. 1 X)).

And (f(x 1§, Z, A)) can be expressed as (SN, (§, Z, 4)), and if (A = 0): X~SN,(§, )

This distribution can be expressed in a form which is more appropriate and that is used for
generating random numbers [12] :

X=§4+A||+2V2, (2)

Where ({4) and () are two independent random vectors that follows the distribution
(N, (0,1I,)), and if we assume that (z = [{;]), then (Z) follows the Half-Normal distribution
(HN,(0,1,)).

And by that, (X) can be expressed as follows:
X|t~N,(§+A7,2) 3

T~HN,(0,1,)

5. Expectation Conditional Maximization Algorithm: B!

The (EM) algorithm [3] is one of the most common iterative tools that is used in
maximum likelihood estimation for models with missing data or hidden variables, in addition
to having some desirable properties like its consistent rate or pattern of convergence and its

382



A Comparison between (ECM) and (KNN) Methods for ..... Lina Nidhal Shawkat; Prof. Dr. Qutaiba Nabeel Nayef

[ ISSN (1681- 6870) |

simple implementation. However, the (EM) algorithm loses some of its features when the
(M) step becomes analytically intractable, or in other word its analysis becomes very
difficult.

The (ECM) algorithm that was suggested by (Rubin) and (Meng) is a simple modification to
the (EM) algorithm in which the maximization (M) steps are replaced by a series of
conditional maximization (CM) steps with simple calculations. And by treating the values of
(X™) and (z;) as eigenvalues, the (ECM) algorithm is used to find the (ML) estimators for
the parameters.

For simplicity of notation, let (X° = (X%, ..., X%)) and (X™ = (X7, ..., X1)) be the observed
and missing parts of the experimental data, respectively, and let (t = (tq,...,T,)) be all the

latent variables. The Log-likelihood function for all the data for the (0) of the first model,
after excluding the additional constant terms, is:

n
1 ! - !
2,(6 |X°,X™, 1) = —EZ{log Zl+ (X —E— A1) FIX; —E— ATy +17'7)) ()
j=1
Where (0) represents all the unknown parameters which means:
0=(ZLA

In the (E) step (expectation step) the value of the function (Q) is calculated as follows:
n
Q(8]6™) = %z {log |27t - tr(z 1R (5, 1))} (5)
j=1
Where:
RO, ) = B (X - § - A7)(X; - & - A7) 1x3,0%)
= ((1, - 293;°®) 2% — ) (0 - 8" ) ((1, - 2953°®) 2% — 2}
+ (1, - 2W05;°00) 30
+(X) - g - am)) (X0 - g - a7’ (©)
And:

I k ’ =] I\ —
SJ'.)O( ) = 0j(0;2®o0))0;

Where (ﬁj(.k)) and (‘T’j(k)) are defined as:
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19 = E(z; 1x2,0®) , 9 = E(r;7) 1X2,00) 7)
v _ Ak — s (k)goo(k) $ (k) goo(k)y ~3(k AR5 (k)

X" = E(X; 1X7,8%)) = 2057 ; + (I, — W7 (W + A7) )
The (E) Step:

Computing (ﬁg.k)), (lTJj(k)), and ()?](k)), where (j = 1,...,n), using equations (7) and (8).

The (CM) Steps:

— The first (CM) step:
Updating the value of (§()) by maximizing (5) with respect to (&) which will result in:
gk+1) = %( ?:1)?]@ Y NG) Z;'l=1 ﬁ;k))

— The second (CM) step:
Updating the value of (£®)) by maximizing (5) with respect to (Z) which will result in:
gkt = Llyn RO
2<1=177

Where f\'](k)is R}k) (§&,A) in (6) with & and A replaced by EX+1 and A%, respectively .
— The third (CM) step:
Updating the value of (A%®)) by maximizing (5) with respect to (A) which will result in:

~ . < - &0\ ! (e - o (k

Ale+1) — Diag {(z(k+1) 1OZ?=1le( )) (z(k+1) 1OZ?=1Y}-( +1))Ip}

vk iy (k B0 = S (k) S00(k ~k) o) 3 ,

Yj( +1) _ (q,J( ) _ 715' )715- ) )A(k) (Ip _z(k)sj ( )) +71§- )(XJ( )_E(k+1))
Q: represents the Hadamard product [7] of two matrices with the same dimensions.

Implementation of the (ECM) algorithm:

The initial values for (X) and (Q(§, Z, A)) where (Q) is a vector for the model parameters.

1- Replace every missing value in (X) by the mean for the values of (X).

2- Compute the mean and variance for the values of (X), (x) and (S) respectively.

3- Generate random numbers from the Uniform (0, 1) distribution that are used in
selecting initial values for the parameters:

8 = (30,50, 3(®)
£0) = § + (u—1) Diag(S)

zg()) =B JU-wsy/(1-2/m) ,i=1..p
&0 = y— 2w 2O
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The missing values are replaced by new values according to the following equation:
X' =M;E+An+Z5"(X;-§-A7))
5 =0} (0,2 0})" 0,

6. K-Nearest Neighbours Imputation Method: P!

The (KNN) method is a nonparametric classification method, it is simple but effective in
many situations .The (KNN) is considered to be a successful method for multivariate
standard data [9] and the idea is to use the distance measure to find the (K) most similar
observations for a compound with missing values, and replace these missing values using the
available variable information on its neighbours. The (KNN) imputation method can be
summarized by filling the missing value with the mean value for the corresponding column
of the nearest neighbour to the corresponding row that has no missing values. The nearest
neighbours can be determined using the Euclidian Distance.

The distance or the variance between the samples can be measured by using the
Euclidian Distance [5], and it can be said that the nearest neighbour uses the K-nearest points
to do the classification.

The (KNN) algorithm is as follows:

1- The dataset (D) is divided into two parts, the first is (D,,,) which represents the part of
the data that has the missing values, and it has at least one missing value or instance, the
second part of the data is the part that has no missing values or instances and it is
denoted by (D,).

2- For each vector (x) in (D,):

e Each vector is divided into two parts, observed and missing, (x = [x,; Xp])-

e The distance between (x,) and the vectors for the set (D.) is calculated. These
features are only used in vectors in the case of complete dataset (D.), and in the
vector (x).

e Use the K-nearest neighbours and estimate the majority of the missing values for the
categorical instances. For continuous instances, replace the missing value using the
mean value for the instance in the nearest neighbour. The median can be used
instead of the mean.

Advantages of this method:

1- It can predict both the gualitative instances (the value that is repeated the most for the K-
nearest neighbours) and the quantitative instances (the mean for the K-nearest
neighbours).

2- It doesn’t need to create a prediction model for each instance containing missing data, in
fact the (KNN) algorithm doesn’t create any particular models.

3- The situations with multiple missing values can be easily treated.
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4-

It takes into account the structure of the data correlation.

Disadvantages of the method:

1-

Choosing the distance function could be Euclidian, Manhattan, Mahalanobis, Pearson,
... etc. In this paper the Euclidian distance for two variables will be used and it can be
expressed as follows:

n

Z(xu"xzi)z

i=1

The (KNN) algorithm searches through the dataset for the most similar cases, and this
procedure takes a lot of time and it can be very important to extract the data where the
large databases are analysed.

Choosing the K-number of neighbours, we substitute by it according to the accuracy of
the classifier after the substitution , when choosing a small (K) we notice a reduction in
the performance of the classifier after it is computed due to the extensive intensity in
some common cases in estimating the missing values. In other hand, choosing a large
(K) includes the cases which differs greatly from the analogous that has missing values
weakens its estimation procedure, and in return the lowers the performance of the
classifier. For small datasets, a (K) less than (10) can be used.

G(xqy,x3) =

7. Maximum L ikelihood Estimation Method : 212°12]

The (ML) method is considered as one of the most important methods to find the

estimated parameters for complete data after estimating the missing values as previously
explained, and now we will explain the procedure of estimating the parameters of a
multivariate skew normal model (MSN). By taking the logarithm for equation (7):

2(01X) = ) logf(x; 1E,Z,A)

Which means:

1 n
£,(01%) = =3 > {log 2] + (X; = § —AY T (X, = § — A)} @
=1

And considering how difficult it is to solve the equations resulting from the partial
derivatives of the likelihood function we will resort to the numerical methods by using the
Newton-Raphson algorithm to obtain the shape parameter (), the covariance parameter (%),
and the skewness parameter (A).
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8. The Experimental Side:

8.1. Generating the data:

Three sample sizes were used (n = 400, 614,800) and (p=2) to run the simulations with
(100) iterations for each experiment as follows:

1- The data was generated according to the multivariate skew normal distribution (MSN)
using hypothetical values for the parameters (¢; =12,¢, =4, =9,%, =5,A; =
6,A, = 3) shown in Table (1), and a second hypothetical values for the parameters
(¢, =20,¢, =10,%, =8,%, = 6,A; = 7,A, = 5) shown in Table (2).

2- Two rates of missing were taken, (12 %) and (20 %), and the data are missing according
to the missing at random (MAR) mechanism that was mentioned previously.

8.2. The Model Used in Simulation:

The mean squared error (MSE) for the model will be calculated after estimating the
missing values using the (ECM) algorithm and the (KNN) method and estimating the
parameters using (MLE), The R program was used for the statistical analysis.

8.3. Interpreting the Results of the Simulation:

The results of the simulation for Tables (1) and (2) will be interpreted as follows:

e Sample size 400:
When the missing observations are at (12 %), and after the estimation of the missing
values using (ECM) algorithm and (KNN) method we notice that the model estimated
using (KNN) method was better than the model estimated using (ECM) algorithm.
As for the case when the missing observations are at (20 %), and after the estimation of
the missing values using (ECM) algorithm and (KNN) method we notice that the model
estimated using (KNN) method was better than the model estimated using (ECM)
algorithm.

e Sample size 614:
When the missing observations are at (12 %), and after the estimation of the missing
values using (ECM) algorithm and (KNN) method we notice that the model estimated
using (ECM) algorithm was better than the model estimated using (KNN) method.
As for the case when the missing observations are at (20 %), and after the estimation of
the missing values using (ECM) algorithm and (KNN) method we notice that the model
estimated using (ECM) algorithm was better than the model estimated using (KNN)
method.

e Sample size 800:
When the missing observations are at (12 %), and after the estimation of the missing
values using (ECM) algorithm and (KNN) method we notice that the model estimated
using (KNN) method was better than the model estimated using (ECM) algorithm.
As for the case when the missing observations are at (20 %), and after the estimation of
the missing values using (ECM) algorithm and (KNN) method we notice that the model
estimated using (ECM) algorithm was better than the model estimated using (KNN)
method.
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& =12 =5

Ay

=6
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A,

=3

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE FOR
ECM

MLE FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

11.972190 | 11.992755 | 4.168256 | 4.174171 9.781955 9.529136 4.161180 | 4.129643

4.130137

4.060908

2.071783

2.005640

0.00005675219

0.00005539024

11.958057 | 11.987677 | 4.883160 | 4.899563 | 10.198317 9.857652 2.292834 | 2.291551

3.736854

3.682388

1.342513

1.301261

0.00008586726

0.0000762788

& =12 & =4 Z;=9

%, =5

Aq

=6

A,

=3

MSE

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE FOR
ECM

MLE FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

11.952236 | 11.944910 | 4.334198 | 4.307269 | 10.050067 9.949571 3.617136 | 3.725617

4.143404

4.186692

1.790107

1.806239

0.00004411781

0.0000464651

11.940702 | 11.956399 | 4.296350 | 4.265956 | 10.357712 10.040118 | 3.681946 | 3.694449

3.763790

3.862462

1.750797

1.795295

0.00006534279

0.00006747916

& =12 =4 ;=9 X, =5

Aq

=6

A,

=3

MSE

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE FOR
ECM

MLE FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

11.941069 | 11.986914 | 4.286915 | 4.260068 | 10.134210 9.900777 3.917675 | 3.902419

4.398699

4.263697

2.044866

2.038809

0.00003719075

0.00003313492

11.956640 | 12.023029 | 4.496946 | 4.512534 | 10.623968 10.373587 | 3.457218 | 3.479675
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22 =6
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A;

=5

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

ECM

20.026137 | 20.087361

10.138293

10.173210

8.692531

8.427851

5.575072

5.391737

3.837823

3.672001

2.410354

2.331494

0.0001403665

0.0001193867

20.032916 | 20.130257

10.082907

10.165533

8.214829

7.967263

5.245145

5.006123

3.136178

2.964337

2.156868

2.050509

0.0001656719

0.0001549199

El =20

EZ =10

2

=8

22 =6

Aq

=7

A;

=5

MSE

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

ECM

20.077233 | 20.069538

10.085809

10.104498

8.230865

8.120328

5.641420

5.569634

3.384672

3.574532

2.296233

2.381271

0.0000136643

0.00009924098

20.068452 | 20.061563

10.186722

10.228881

8.402103

8.278845

5.272329

5.241268

3.076861

3.233440

1.771233

1.801482

0.0001177308

0.0001179611

§1=20

§2 =10

X

=8

22 =6

Aq

=7

A

=5

MSE

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

MLE
FOR
ECM

MLE
FOR
KNN

20.041265 | 20.118810

10.174469

10.185622

8.570184

8.431594

5.466199

5.369759

3.264229

3.114218

1.875900

1.892097

0.0000521167

0.0000186532
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Figure (6): hypothetical values for the parameters (¢; = 12,&, = 4,2, =9,Z, = 5,A; = 6,A, = 3)
With Sample size 614
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Figure (7): second hypothetical values for the parameters (¢; = 20,¢, = 10,£; = 8,2, = 6,A; = 7,A, =5)
with Sample size 614
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9. Conclusions:

In this paper, the problem of missing data for the multivariate skew normal model was studied, which is
considered one of the major problems that many researchers encounter. The missing values were estimated
using the (ECM) algorithm and the (KNN) method and a comparison was conducted between the two methods
to figure out which one of them is better for the multivariate skew normal model and the following was
attained:

1. In samples of size (400) or less, the (KNN) method was better than the (ECM) algorithm in estimating
the missing values.

2. In samples of size between (500) and (700), the (ECM) algorithm was better than the (KNN) method in
estimating the missing values.

3. Insamples of size (800) or more, it was noticed that both of the methods were reasonably good, and the
best method is determined according to the rate of missing values in the dataset and in this paper it was
noticed that when the missing rate is at (12 %) the (KNN) method performs better than the (ECM)
algorithm, while the (ECM) algorithm performs better than the (KNN) method when the missing rate is
at (20 %).
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