Ministry of Higher Education

and Scientific Research

Journal of Kufa for Chemical Sciences

A refereed

Research Journal Chemical Sciences

Vol.2 No.9

Year 2022

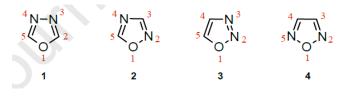
ISSN 2077-2351

Synthesis and Characterization of Heterocyclic Derivatives Containing Five membraned rings from 2-mercapto-5-methyloxadiazole

Sadiq M. Eidy¹, Mohammed R. Ahamad²

¹Department of Chemistry, College of Science, Baghdad University, Baghdad, Iraq ²Department of Chemistry, College of Science, Baghdad University, Baghdad, Iraq ²Corresponding author, e-mail:eidysadiq@ gmail.com (sadiq mohmmed eidy)

Abstruct


The present work included the synthesis of some new Schiff base derivatives of hydrazine hydrate coupled with ethyl-5-phenyl-2-(1,3,4-oxadiazole thiol) acetate, this role reacted with mercapto-acetic acid to synthesize five-membered ring heterocyclic compound derivatives. The yields of all synthesized compounds were good. All compounds were confirmed by their melting point, FT-IR spectra, and ¹HNMR spectra for some of them.

Keyword: Schiff bases, mercapto-acetic acid, Oxadiazole, hydrazine

الخلاصه · تضمن البحث تخليق قواعد شيف جديده من الهيدر إزيد المحضر بو إسطة تفاعل (اثيل – 5 فنيل 1، 3، 4 او كساداياز ول ثايول) اسيتيت مع الهيدرازين المائي ، وهذا بدوره يتفاعل مع مركبتو حامض الخليك لتخليق مشتقات حلقيه خماسيه شخصت جميع المركبات المحضرة بواسطة درجات الانصهار وأطياف الأشعة تحت الحمراء وطيف الرنين النووى المغناطيسي لبعض منها.

1. Introduction

Oxadiazoles are a monocyclic ring system with multiple applications. Although the 1,3,4oxadiazole ring system was known in 1880, the proper study of its chemistry, structure, physical properties, and application of various derivatives began only in 1950 [1], N-containing heterocycles, especially five-membered rings, are of great interest as they are found in natural products [2] and used frequently in medicinal chemistry. There are three known isomers:1,2,4oxadiazole, 1,2,3-oxadiazole and 1,2,5-oxadiazole. Amongst oxadiazole isomers, 1,3,4oxadiazole derivatives are known to be the most stable [3].

Literature studies have revealed that the 1,3,4-oxadiazole moiety possesses a broad spectrum of biological activity, including anti-fungal [4], anti-inflammatory [5], analgesic [6], antiviral [7],

antibacterial [8], anti-HBV activity [9], anti-Alzheimer activity [10], anticancer [11]. Thiazolidinones are five-member ring heterocyclic compounds that contain sulfur and nitrogen atoms. These compounds are not aromatic [12].Thiazolidinones have been demonstrated to exhibit antibacterial, antifungal, antiviral, antituberculostatic, anti-HIV, antihistamini, anticancer, anticonvulsant, and anti-inflammatory properties [13,14].

2. Experimental

2.1 General

The used chemicals were obtained from Sigma Aldrich. Melting points were recorded by Gallen-Kamp MFB-600 melting point apparatus. The FT-IR spectra were recorded on an FT-IR-8400S-Shimadzu spectrophotometer. ¹H NMR spectra were recorded on Bruker 400MHZ spectrophotometer (Germany), deuterated solvents (DMSO-d₆) were used for sample preparation, and tetramethylsilane TMS was used as an internal standard.

2.2. Synthesis of phenyl hydrazide S1

A mixture of phenyl acetate (4 mL, 0.03 mol) and excess hydrazine hydrate (2 mL, 0.04 mol) in 25 mL of ethanol, the mixture was refluxed for 10 hrs. The resulting product was recrystallized from ethanol [15]. Physical properties of the compound, yield: 95 (%), M.P: 112 °C, white crystalline solid.

2.3. Synthesis of 5-phenyl-2-mercapto (1,3,4-oxadiazole) S2

A mixture of phenyl hydrazide (1 g, 0.007 mol) and an excess of carbon disulfide (2.5 mL) in absolute ethanol (25 mL) with an alkaline medium (potassium hydroxide 0.4 gm), The reaction was refluxed for 8 hrs. After checking the finish, all the H_2S gas stopped by lead acetate was added drops of HCl 10% for neutralization of the base (the precipitate was filtered off and washed with water to afford the desired compounds (potassium chlorides salt) [16].

2.4. synthesis of ethyl-5-phenyl-2-(1,3,4-0xadiazole thiol)acetate S3

Compound S2 (2 gm, 0.0011 mol) was dissolved in absolute acetone (30 mL) and potassium carbonate (1.6 gm,0.0011Lmol). Ethyl chloroacetete (2.57 mL,0.0011 mol) was added

drop wise. The reaction was refluxed for 8hrs, after which the precipitate was filtered and washed with cold water. The excess solvent was evaporated [17].

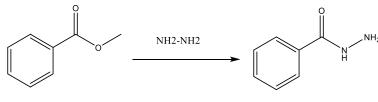
2.5. Synthesis of 5-phenyl-2-(1,3,4-0xadiazole thiol)acetohydrazide S4

Compound **S3** (5 gm, 0.018 mol) was dissolved in absolute ethanol (75 mL) and an excess of hydrazine hydrate (99 %, 14.7 ml) was added to the mixture gradually. The reaction was stirred for 24 hr then poured into ice cold water, filtered, dried, and recrystallized from ethanol to give a white crystalline [18].

2.6. General procedure for the synthesis of Schiff bases from 5-phenyl-2-(1,3,4-0xadiazole thiol) acetohydrazide S5-S13

A mixture of compound **S4** (0.5 gm,0.002 mmol) and different aromatic aldehydes (0.002 mol) in absolute ethanol (30 mL)and a few drops of glacial acetic acid was refluxed for 6 hrs. After that, the mixture was cooled down and the precipitated product was filtrated, washed with cold water, dried, and recrystallized from ethanol [19].

2.7. Synthesis of 4-thiazolidinone derivatives S14-S22


A mixture of Schiff bases **S5-S13** (0.001mol) and excess of thioglycolic acid (0.002 mol) in ethanol was refluxed for 18-20 hrs. The solvent was evaporated and the residue was neutralized with 5% sodium bicarbonate solution to remove excess of thioglycolic acid. The formed precipitate was filtered, washed several times with distilled water and recrystallized from ethanol[20].

3 Results and discussion

This work includes synthesis of new heterocyclic ring derivatives

(3-1) – Synthesis of Benzohydrazide (S1)

Benzohydrazide (S1) was prepared by treatment of methyl benzoate with hydrazine hydrate in ethanol as shown in Equation (3.1)

Equation (3.1)

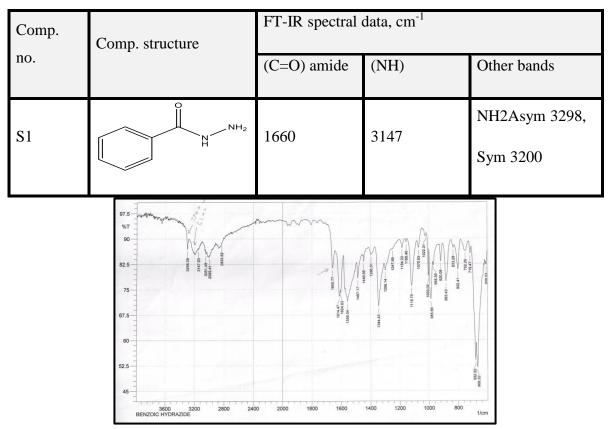
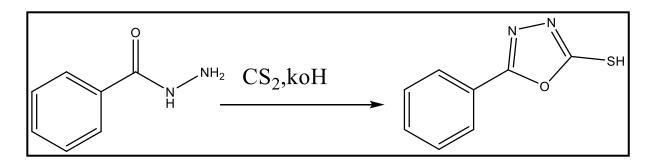
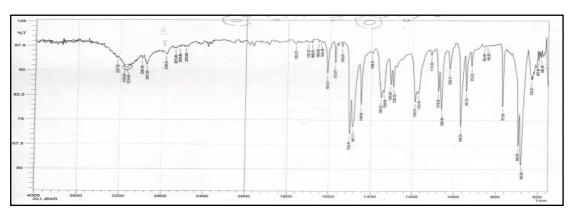



Table (3-1): FTIR spectral data (cm⁻¹) of compound [S1]

FTIR spectrum of compound S1

(3-2) – 5-phenyl-1,3,4-oxadiazole-2-thiol (S2)

Benzohydrazide (S1) reacted with carbon disulfide in alkali medium that used to prepare the compound [S2] as shown in Equation (3.2).



Equation (3.2).

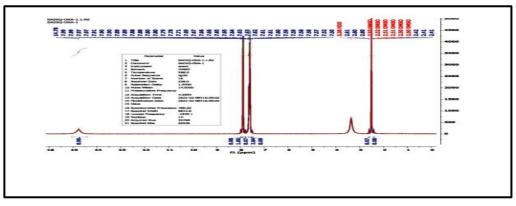
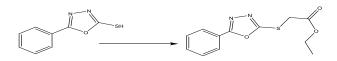

Comp. no.	Comp. structure	FT-IR spectral data, cm ⁻¹				
		(C=N)	(-SH)	Other bands		
S2	N SH	1610	2755			

Table (3-1): FTIR spectral data (cm⁻¹) of compounds [S2]

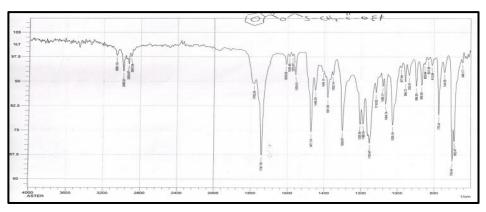
[-¹HNMR spectrum of compound [S2] showed a singlet signal at δ = (14.7) ppm due to (-SH) proton and signals at δ = (7.5-7.9) ppm due to (CH aromatic ring), Figure (3.2).


FTIR spectrum of compound S2

¹HNMR of compound S2

(3.3)- ethyl 2-((5-phenyl-1,3,4-oxadiazole-2-yl)thio)acetate.(S3)

5-phenyl-1,3,4-oxadiazole-2-thiol (S2) reacted with ethyl chloro acetate in alkali medium that used to prepare the compound [S3] as shown in Equation (3.3).



Equation (3.3)

FT-IR spectral data of compound (S3) showed the appearance of characteristic(1741) cm-1 belong to (C=O) of ester group ,(2931)cm-1belong to (C-H) aliphatic and disappearance of the absorption band at (2755) cm⁻¹ (S-H)

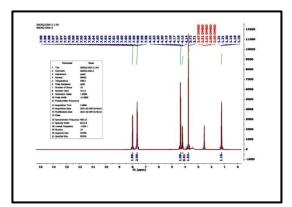
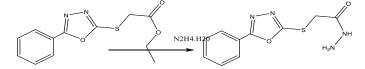

	Comp. structure	FT-IR spectral data, cm ⁻¹				
Comp. Structure		(C=O) ester	(C=N)	Other bands		
S3		1741	1608	2931 (C-H) aliph		

Table (3-1): FTIR spectral data (cm⁻¹) of compound [S3]

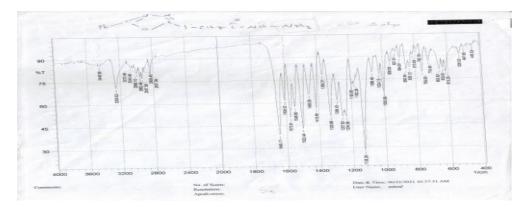
FTIR spectrum of compound S3

¹HNMR spectrum of compound [S3] showed a triplet signal at δ = (1.18) ppm due to (-CH₃)protons, quartet signal at δ = (4.1) ppm due to (-O-CH₂) protons, signal at δ = (3.7) ppm due to (S-CH₂-C=O) protons, signals at (7.5-7.9) ppm due to (CH aromatic ring) protons

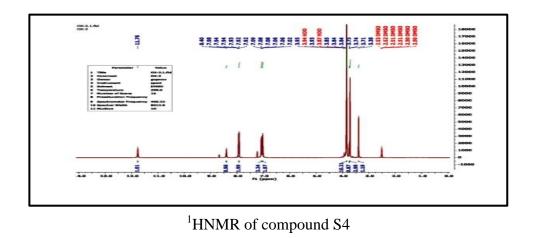

¹HNMR of compound S3

(3-4)- 2-((5-phenyl-1,3,4-oxadiazole-2-yl)thio)acetohydrazide (S4)

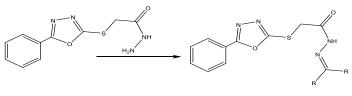
This part involved conversion of the prepared ester [S3] to the corresponding acetohydrazide [S4]


FT-IR spectra data of compound (S4) showed the appearance of the characteristic absorption band at (3446-3255) cm-1belong to v (NH2)

asym. sym., characteristic absorption band at (1645) cm⁻¹ v (C=O) due to amid carbonyl group and disappearance of the absorption band (1741) cm⁻¹ v (C=O)due to ester carbonyl group


Equation (3.4)

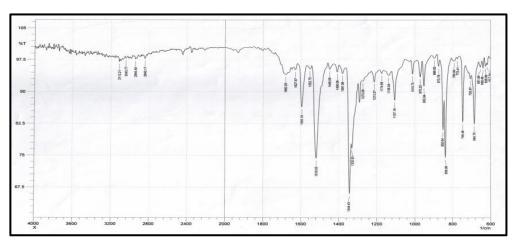
Comp. no.	Comp.	FT-IR spectral data, cm ⁻¹				
1		(C=O) amide	Other bands			
S 4		1645	Asym3446	(CH2) alph		
~ .			Sym 3255	2999		


spectrum of compound S4

¹HNMR spectrum of compound [S4] showed singlet signal at δ = (3.7) ppm due to(-NH₂), signals at δ = (3.38) ppm due to (S-CH₂-C=O) protons, signals at δ = (7.1-7.9) ppm due to (CH aromatic ring) protons, and singlet signal at δ = (11.7) ppm due to (-NH) proton

(3-5) -New Schiff bases derivatives from 2-((5-phenyl-1,3,4-oxadiazole-2-yl)thio)acetohydrazide [S5-S13].

The titled compounds were synthesized from the reaction between compound [S4] and appropriate aldehydes in absolute ethanol in the presence of glacial acetic acid, as shown in Equation (3.5).


Equation (3.5)

FT-IR spectrum data of compounds (S5-S13) showed appearance of characteristic absorption bands at (3047-3180) cm⁻¹belong to v (N-H) ,characteristic absorption band at (1658-1672) Cm⁻¹ v (C=O)due to carbonyl of amid group, (1602-1627) Cm⁻¹ belong to (C=N) and disappearance of the absorption bands (3217,3120) Cm⁻¹ belong to v (NH2) asym.,sym. All details of FTIR spectral data of compounds (S5-S13) are listed in Table (3-2)

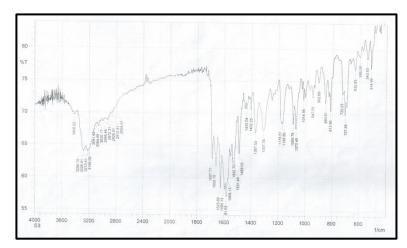
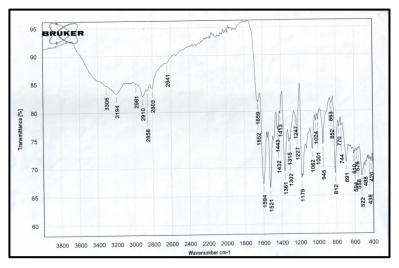
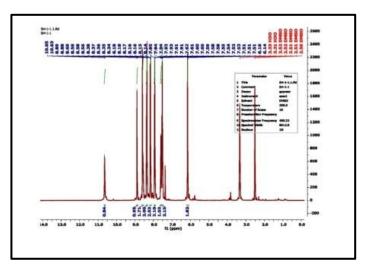
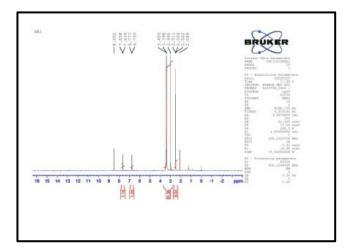
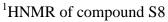

Со		FT-IR spectral data, cm ⁻¹						
mp. no.	Comp. structure	(N-H)	(C-H) Ali.	(C-H) Aro	(C=O)	(C=N)	(C=C)	Other Bands
S5	N-N-S-V-NH-N-()	3238	2931	3028	1668	1627	1579	
S 6	N-N-S-S-NH-N-C-NO2	3113	2945	3043	1680	1627	1518	NO ₂ As ym (1595) Sym. (1344)
S7	N-N S NH N Br	3062	2941	3001	1660	1627	1568	

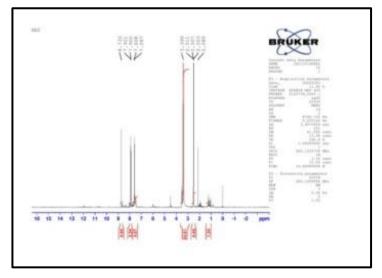
Table (3-2): FTIR spectral data (cm⁻¹) of compounds [S5-S13]


S 8	N-N-S-NH-N-CI	3213	2995	3064	1658	1625	1595	C-cl 632
S10	N-N-S-V-N-N-V-Ph Ph	3194	2910		1659	1652	1521	
S11	N-N-S-V-N-N-CH3 CH3	3113	2989	3030	1660	1629	1550	
S12	N-N-S-V-NH-N-C-C-OH	3273	2806	3062	1660	1606	1514	
S13	N-N S NH N S	3141	2967	3004	1652	1621	1522	

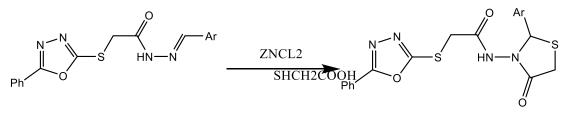

FTIR spectrum of compound S6


FTIR spectrum of compound S8



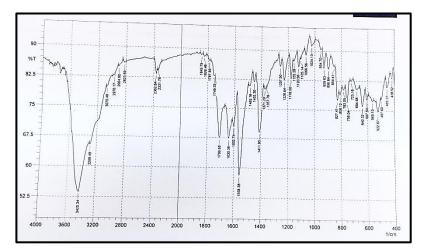

FTIR spectrum of compound S10

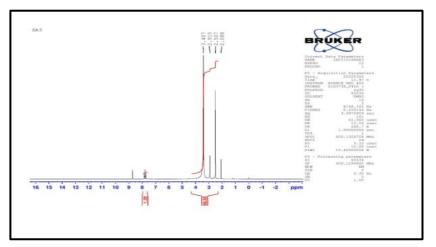
¹HNMR of compound S6



¹HNMR of compound S10

(3-6)- 4-thiazolidinone derivatives [S14-S22].


The 4-thiazolidinone derivatives [S14-S22] were synthesized by refluxing equimolar amounts from the imine derivatives with thioglycolic acid and ZnCl₂ ascatalyst in ethanol as shown in Equation (3-6).


Equation (3-6).

FTIR spectrum data of compounds [S14-S22] Figure (3-1) showed appearance of stretching band of carbonyl amide group at (1603-1676) stretching band of carbonyl group at (1695- 1726) cm⁻¹ due to thiazolidinone ring, stretching band of the (C=C) group for aromatic ring at (1556- 1587)cm⁻¹ and disappearance stretching band of (C=N). All details of FTIR spectral data of compounds [S14-S22] are listed in Table (3-6).

¹HNMR spectrum of compound [S16] showed signal at δ = (2.9) ppm due to (S-CH₂-C=O) protons, signal at δ = (3,4)ppm due to (-CH₂-S ring)protons, signals at δ = (7.6-7.8)ppm due to(CH aromatic ring)protons and singlet signal at (8.7)ppm due to(N-H), Figure(3.24).

FTIR spectrum of compound S16

¹HNMR of compound S16 Table (3-6): FTIR spectral data (cm⁻¹) of compounds [S14-S22]

		FT-IR spectral data, cm ⁻¹						
Comp. no.	Comp. structure	(N- H)	(C- H) Ali	(C- H) Aro	(C=O) lactame	(C=O) amide	(C=C)	Other Bands
S14	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	3170	2952	30 56	1708	1676	1558	
S15		3286	2962	3056	1706	1620	1562	
<i>S16</i>	Br N-N-S-S-NH-N-S O O	3266	2970	3070	1706	1639	1558	
<i>S17</i>		3152	2943	3084	1726	1623	1587	C-cl 628
S18	N-N-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S	3172	2906	3058	1706	1641	1560	(C-O- C)
<i>S19</i>	Ph Ph Ph Ph Ph Ph Ph Ph	3292	2975	3184	1701	1639	1556	

<i>S20</i>	H ₃ C _N CH ₃	3290	2980	3200	1695	1603	1582	
S21		3226	2974	3039	1772	1697	1568	
S22		3274	2981	3213	1780	1683	1562	

Table (3-1): Physical properties of compounds(S1 - S22)

1S	C7H8ON2	136	112	white	95
S2	C8H6N2OS	178	215	Pale	75
				yellow	
S3	C12H12N2O3S	264	70	yellow	86
S4	C10H10O2N4S	250	160	white	52
S5	C17H13O4N5S	383	247	yellow	90
S6	C17H14O2N4S	338	90	Grey	65
S7	C31H24 O3N5S2	508	140	Orange	99
S 8	C17H13O2N4SC	372	160	White	65
	1				
S 9	C17H13O2N4Br	417	190	Pale	70
				yellow	
S10	C18H16O3N4S	368	170	brown	50
S11	C19 H19O2N5S	381	210	Yellow	60
S12	C17 H14O3N4S	354	210	Brown	55

S13	C15H12O2N4S2	336	235	Yellow	55
S14	$C_{19}H_{14}O_3N_4S_2$	105	410	Light yellow	77
S15	$C_{19}H_{13}O_5N_5S_2$	260	455	Yellow	60
S16	$C_{19}H_{13}O_3N_4S_2Br$	290	489	Off white	70
S17	C ₁₉ H ₁₃ O ₃ N ₄ S ₂ Cl	270	444	Light yellow	65
S18	$C_{20}H_{16}O_4N_4S_2$	180	440	White	65
S19	$C_{31}H_{24}O_3N_5S_2$	168	578	Orange	55
S20	$C_{21}H_{19}O_3N_5S_2$	290	453	white	75
S21	$C_{19} H_{14} O_4 N_4 S_2$	185	426	white	55
S22	$C_{17}H_{12}O_4N_4S_3$	235	408	white	60

Referances

1- Somani, R. R.; Shirodkar, P. Y., Oxadiazole: A biologically important Heterocycle *ChemInform* **2011**, 42, no.

2. Kumar, V.; Kaur, K., Triazole and oxadiazole containing natural products: a review. *The Natural Products Journal* **2014**, 4, 115-130

3. Katritzky, A. R.; Ramsden, C. A.; Joule, J. A.; Zhdankin, V. V., *Handbook of heterocyclic chemistry*. Elsevier: 2010.

4-Kushwah, P.; Mehta, D.; Gupta, G. K.; Das, R.; Kaur, K., A Brief Review on Oxadiazole

5- Saini, R.; Chaturvedi, S.; Kesari, A. N.; Kushwaha, S., Synthesis of 2-(substituted)-5-(benzotriazomethyl)-1, 3, 4-oxadiazole for anti-fungal activity. *Der Pharma Chem* **2010**, 2, 297-302

6-Narayana, B.; Vijaya Raj, K. K.; Ashalatha, B. V.; Kumari, N. S., Synthesis of Some New 2-(6-Methoxy-2-Naphthyl)-5-Aryl-1, 3, 4-Oxadiazoles as Possible Non-steroidalAntiinflammatory and Analgesic Agents. *Archiv der Pharmazie: An InternationalJournal Pharmaceutical and Medicinal Chemistry* **2005**, 338, 373-377.

7- Narayana, B.; Vijaya Raj, K. K.; Ashalatha, B. V.; Kumari, N. S., Synthesis of Some New 2-(6-Methoxy-2-Naphthyl)-5-Aryl-1, 3, 4-Oxadiazoles as Possible Non- steroidalAntiinflammatory and Analgesic Agents. *Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry* **2005**, 338, 373-377.

8- Amir, M.; Kumar, S., Synthesis and evaluation of anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation properties of ibuprofen derivatives. *Acta Pharmaceutica* **2007**, 57, 31-45

9- Gan, X.; Hu, D.; Chen, Z.; Wang, Y.; Song, B., Synthesis and antiviral evaluation of novel 1,
3, 4-oxadiazole/thiadiazole-chalcone conjugates. *Bioorganic & medicinal chemistry letters* 2017,
27, 4298-4301.

10 - Tripathi, A.; Choubey, P. K.; Sharma, P.; Seth, A.; Tripathi, P. N.; Tripathi, M. K.; Prajapati, S. K.; Krishnamurthy, S.; Shrivastava, S. K., Design and development of molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1, 3, 4-oxadiazoles as potential multifunctional

agents to treat Alzheimer's disease. European Journal of Medicinal Chemistry 2019, 183, 111707.

11-Caneschi, W.; Enes, K. B.; de Mendonça, C. C.; de Souza Fernandes, F.; Miguel, F. B.; da Silva Martins, J.; Le Hyaric, M.; Pinho, R. R.; Duarte, L. M.; de Oliveira, M. A. L., Synthesis and anticancer evaluation of new lipophilic 1, 2, 4 and 1, 3, 4-oxadiazoles. *European journal of medicinal chemistry* **2019**, 165, 18-30.

12-Khosrow, Z., Khalil, F.Taraeh, T.Mohammad, R.HARIATZADEH, T.J. chem., 28, 95(2004).

13- Vigorita, M. G.; Ottana, R.; Monforte, F.; Maccari, R.; Trovato, A.; Monforte, M. T.; Taviano, M. F. Bioorg. Med. Chem. Lett. 11, 2791-2794(2001).

14- Kucukguzel, G.; Kocatepe, A.; De Clercq, E.; Sahin, F.; Gulluce, M. Eur. J. Med. Chem. 41, 353-359(2006).

15- Husain A, Ahmad A, Alam MM, Ajmal M, Ahuja P. Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1-(biphenyl-4-yl)propan-1-ones as safer antiinflammatory and analgesic agents. Eur J Med Chem 2009; 44: 3798-3804.

16- Zhang Y, Qiao RZ, Xu PF, Zhang ZY, Wang Q, Mao LM, Yu KB. Synthesis and Antibacterial Activities of 2-(1-Aryl-5-Methyl-1,2,3-triazol-4-yl)-1,3,4-Oxadiazole Derivatives. J Chin Chem Soc 2002; 49: 369-372.

17- Mir I, Siddiqui MT. Antituberculosis agents—I: α -[5-(2-Furyl)-1,2,4-triazol-3-ylthio] acethydrazide and related compounds. Tetrahedron1970; 26: 5235-5238.

18- Mohan S, Ananthan S, Murugan KR. Synthesis, characterization and biological activity of some novel sulphur bridged pyrazoles. Int J Phar Sc and Res 2010; 1(9): 391-398.

19- Kahlmeter G, Brown DFJ, Goldstein FW, Macgowan AP, Mouton JW, Osterlund A, Rodloff A, Steinbakk M, Urbaskova P, Vatopoulos A. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother 2003; 52: 145-148

20- Dayam, R. Sanchez, T. Clement, O. Shoemaker, R. Sei, S. and Neamati, N. J.Med.Chem.Cem., 2005:48(1) 111-120.