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Abstract

Pareto distribution is used in many economic, financial and social applications. This distribution is
used for the study of income and wealth and the study of settlement in cities and villages and the study
of the sizes of oil wells as well as in the field of communication through the speed of downloading
files from the Internet according to their sizes. This distribution is used in mechanical engineering as
one of the distributions of models of failure, stress and durability.

Given the practical importance of this distribution on the one hand, and the scarcity of sources and
statistical research that deal with it, this research touched on some statistical characteristics such as
derivation of its mathematical function , probability density function, cumulative distribution function,
methods of estimating parameters, and the difficulties that researchers may face in dealing with these
phenomena. The parameters were estimated in a number of methods, including the Maximum
Likelihood (MLE), Ordinary Least Squares (OLS), Moment method (MOM), Relative Least squares
(RELS) and Ridge regression (RR). In addition an algorithm has been proposed to improve the
estimation parameters for this distribution. MSE was used to determine the best of these methods.
Conclusions were presented in the light of this and appropriate proposals were decided upon.

keywords: Pareto distribution Maximum Likelihood (MLE), Ordinary Least Squares (OLS), Moment
method (MOM),Relative Least squares (RELS), Ridge regression (RR).

Sk s Clalza pall Jsa

JuaS Jelan) Gl a0 daaa daaf (il d 3 il puall 155300
ALyl g 5l ALIS - alaky Amaly alal® g 5 laY) ALS - alay daaly daalal) cpad) ) A4S

Jaall Al yal @J)ﬂ\ 128 PRSI Aclaa¥ly Al 5 Anlasy) L:\.sg.\laﬂ\ (e 2aad) L;ﬁ sl @)}3 PREN roaldicall
Oe L) Jpend Ao o A (o Juai¥) e (8 XS g Jadil) Ul alaad dd 505 5l 5 Gaall 8 GUainal) A o555 i)
Al g Jasaall 5 Q) 2 3las Cilay 5 55 2alS LISl Anighl 8 a5 63 138 aadiny | el s € i)

Claleall 085 3k ¢Sl ay sl Ay (Jial¥) AUS Ay byl ady GEs Jie dilasy) jailadl)
alae VI Y @l 8 Ly ¢ Gkl e aae b laleal) a8 a3yl sl o3 e Jabadl) o sialill Lga 5 8 ) il gl
Caall lasily (RELS) Gl (s il Cilay sall ¢ (MOM) 5320l 485 5k ¢ (OLS) dsalall s il cilay sl «(MLE)
LGkl o3 il aaatl MSE aladiind a5 a3 5l 1] il el (ppeanil d3e ) ) 53 ) 581 &5 ¢l ) GLYW(RR).
Asuliall &l ) Al AAT) &5 @l ¢ gaia (B laliTuY) G
(MOM) pgjadl Ak ((OLS) 4lall (s juall claysall (MLE) alis¥) OlSaY) sl gaisi sdmlidal) cilals)
(RR) diall jlaadl (RELS) Al (5 sual) iy yal)

432


mailto:nazaralsarraf@ruc.eduiq

A.P. Dr. Nazar Al Sarraf; , A.P. Dr. Firas Ahmed; A.P.

About Estimating Pareto Distribution Parameters Ghufran 1. Kamal

The (15th & the 2nd International) Conference of Statistical Applications | ISSN (1681- 6870) |

1. Estimating Parameters of a Two-parameter Pareto Distribution

The two-parameter Pareto distribution can be defined in terms of its cumulative
distribution function as:

‘ Lx) ax»0.G=0
FX |T| =1 (1)

0 otherwise

where: B = shape parameter, and o = scale parameter.
By definition to obtain the density function (probability density function), we take the
partial derivative of the cumulative density function with respect to x and obtain:

flx)=:% 2

‘ Q. otherwise

1.1. Method of Moments (MOM)
The kth moment of the Pareto distribution is given as:
E .Xsf“;z |T £°f(x) dx
In -ordedr tc; Ldbtain the estimate of & from a sample of n observations, we recall that the

]

o

probability of an observation greater than xis .. . Thus, the probability that all n sample
values *1>--->*z are greater than x is ) This is, therefore also the probability that the
lowest sample value is greater than x.
Thus, the c.d.f of the lowest sample is

~ 1

."a ]

F(x)=1-{%] ©)
we obtain method of moment’s estimates as:
. (np-1)x,
TR @
ﬁ - n[_f—-:r; ) (5)

Where *o is the minimum value and * is the mean.

1.2. Method of Maximum Likelihood (MLE)

function denoted by %=/ for the sample is:

433



Journal of Al Rafidain University College Issue No. 46/ 2020

The (15th & the 2nd International) Conference of Statistical Applications | ISSN (1681- 6870) |
L=L(x.cfB)=-2 L
i |

=l ]
By taking the log of the likelihood function:

hlLzﬁhlﬁﬂrﬁlna—|_,§+I|Zh1x,- @)
' =L

To obtain the estimate for each parameter, we differentiate equation (7) w.r.t. each
parameter and equate it to zero.

Olnl
% ——+Hl.11c:¢ Zhlx =0 (8)

Simplifying the equatlon and making P the subject formula we have:
n

Z;ln.r_..-—nlna letlr—lnal lel _ 9)

Since the likelihood function (L) is not bounded with respect to o, a maximum likelihood
estimate cannot be obtained for a by differentiating L w.r.t. a. since a is the lower bound,
we may maximize L subject to the constraint:

o <min x; (10)
Thus, we see that L is maximized w.r.t. o subject to (3.10) when
¢ =min x, (11)
1.3. Least Squares Method (LSE)

For the estimation of probability distribution parameters, the least squares method (LSM)
is extensively used in reliability engineering and mathematics problems.
Given that the cumulative density function of the Pareto distribution is given as:

Y

Fy(x)=1- = (12)

TS

the method of least squares estimates is given as
Z]nxi.?m;l—{,(-w__:: —HZIIn % )|In(1-Fy(x))|

P 2 13
”Z'lﬂ-‘f;'_i-_ Zlnmi-_:_ (13)
}5’0 =l’Zlnlll—F_¥ I'J::Ill—ﬁ’ Zln (%) (14)
Where
¥, = hllll—FX(x_']_]; ,[;’,3 =flna;
,[?1:—,6; X, =lnx,.
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1.4 Relative Least Squares Method (R.L.S.M)
The relative least squares estimators of a and d can be obtained by minimizing the sum of
squares of the relative residuals, Pablo and Bruce (1992), w.r.t. a and d as follows

n 2
y; — a— dx;
S — Z (;) (15)
. ¥i
i=1
n
= Z(l —aw; — dz;)?
i=1 (16)
Where
1 Xj
W; = — = —
¥i ¥i
) w; ad w,? + d ¥ Wy Z;

Differentiating w.r.t, a and d then equate to zero

n n n
\ \ \

5

2 Z; = & 2 w;z; |d 2 P
1=1 T—1 =1

(17)
After simplification, we get

_ Eiawizg Xz — X, wi X, 70

©

(B wiz)? — X, 7% X, wy?
2
q Dim i WiZi D Wi — 2l Zg 2, Wy
(XL, wiz)?2 — XL, z2 XL, w2
Where
1 Xj
W; = — Zy = —
Vi ¥i
Also

y; = logt; and xi=10g(F(:ti))
i 0 i n n 0. i 2
o) (Thean ) T (M) — 2 (i) 2 ()
2
(. () (202 ) s, (00 g (21
o 2 () (g ) B (o)~ P (i) 28 ()
(3 () (=229 ), () 3, (2
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Also
1

a=log(B) and d= -

() () ) ()
[ () ) )

2

51 (o) (o) ) g () 5 ()

T" — 0 . 2 o 1
2 (o) () st )P r) S

1.5 The jackknife method

B = Antilog

And

The jackknife and bootstrap are nonparametric computer-intensive techniques for estimating
(e.g.) standard errors of the estimated parameters. The jackknife procedure consists of taking
subsamples of the original sample of n independent observations by omitting a single
observation at a time. Thus, each subsample consists of n - 1 observations formed by deleting
a different observation from the sample.Parameter estimates are then calculated from these
subsamples. Standard errors are determined from the variability across the n sets of parameter
estimates. A more detailed description of the jackknife method proceeds as follows:

Let @ be the vector of parameter estimates obtained by MLE from the sample
observations {y1, . . ., yn}.Divide the sample into g subgroups (at random if g < n) of size k.

Then from each subgroup, re-estimate &  from the remaining (g — 1)k observations. This
provides the g partial estimates gﬁ_ﬂ,j =1,...,0. Form the pseudo-values (the jackknife
replications)

6.5 = gf — (g — 1)8" .

E*Ji ]

The jackknife estimate of & is the average of the jackknife replications , that is

L 2 =
O = EZ 0.; = gb — (g — 1)8;

9=
Where

= 1 5 ~

6==>"067.

g j:]

The corresponding estimated covariance matrix is

~ -1 (18)

Ci(0) = QT > (6.5 —60) (65 — 60)’

i=1
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1.6 Ridge Regression Method (RR)

Like the method of LSE, the ridge regression estimates of /0 and A can be obtained by
minimizing the error sum of square for the model:

T =6+ BX,

subject to the single constraint that ?':'=ﬁ:"‘ﬁ-', where ¢ is a finite positive constraint.
Using the method of Lagrange's multiplier, we obtain:

; (n+2)D X X-D XD,
=

) W L = 19
(=) 2 2)-(Z ) o
DWW TP AVED ol
ﬂ: = . 3 . . (20)
1D x| —(n+a)( 2+ D X7
The Least Squares Estimates are:
. . Zln xl:Zhlf'l— Fy (x))—(n —A]Zlnxi (In(1=Fy (x)))
B=—p= —— — — 21
(n+2)(A+D Inx] )=(D lnx | ¢y
_ 1 A
= : - Inx; 22
Py ::+/'.Z}'+:1+/'.Zn ' (22)
where:
i=fZ.
BB

p =The number of parameters of the distribution
S5 = The covariance matrix
(Rasheed and Ahter. 2011).
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1.7 The Proposed method

This method is based on the search for the best neighborhood by a higher error limit and
lower target area for landmark estimates. Which we can summarize with the following
algorithm.

1- The distribution parameters are estimated using the suggested methods

2- The best three methods are selected for parameter estimation(a,b)

3- All possible combinations of parameters estimates are formed

4- Specify a possible solution area for each parameter with an error limit of 0.05 above
and below each parameter

@; —0.05 = @; < &; + 0.05

@The estimated parameter (a or b) is one of the methods used in this paper

5- 1000 acceptable solution points are generated for each solution area per parameter
followed by generating combinations of these possible solutions

6- 6-Each time a new model is generated, the previous models are compared with the
MSE comparison scale

Table (1): represents the MSE values and the number of times the priority of the methods
used according to the sample size of the modela=0.2and b =2

n=10 n=50 n=100
Method MSE frq MSE frq MSE fr
MLE | oooowo7 | o [NEMENSEN 6 | 757c-cc NN
Moment 0.008734 0 0.008036 0 0.007446 0
Ols 0.000176 7 5.3E-05 3 2.9E-05 3
RELS  |NOMEERNSN 10 1.69E-05 2 9.84E-06 13
RR 0.000256 0 0.000261 0 0.000249 0
jn 0.000105 6 1.48E-05 6 3
semigen 1.17E-07 468 1.21E-08 483 1.1E-08 470
Best method semigen semigen semigen semigen semigen semigen

Note that the best method at the sample size n = 10 was the proposed method semigen where
it had the smallest mse = 1.17E-0.7 and was the best 468 times out of 500 iterations, 93.6% of
all the experiments that were saved here followed by the method RELS B MSE = 9.41E-05
was repeated 10 times, which achieved a test strength of 2%. At the sample size n = 50, the
semigen method was also carrying less MSE = 1.21E-8, with a frequency of 96.5%, followed
by MLE method with a frequency of 1.2% and finally at sample size n = 100 was the lowest
MSE = 1.1E-8 and the semigen with 94% frequency followed by jn where MSE = 7.56E-6
and the second highest preference was RELS 2.6%.
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Table (2): represents the values of MSE and the number of times the priority of the methods
used according to the sample size of the model a= 0.4 and b =3

n=10 n=50 n=100
Method MSE frg MSE frq MSE frq
MLE 0.000304 | 4
Moment 0.003784 | 0 0.003265 | 0 0.003114 |0
Ols 0.000516 |1 0.000144 | 0 7.92E-05 | 2
RELS 447E-05 | 2 2.6E-05 |2
RR 0.001021 |0 0.001008 | 0 0.000977 |0
jn 0.000352 | 3 3.85E-05 | 2 2
semigen 2.45E-07 | 487 7.76E-09 | 495 6.06E-09 | 490
Best method | semigen | semigen | semigen | semigen | semigen | semigen

Note that the best method when the sample size n = 10 was the proposed method semigen
where it had the smallest mse = 2.45E-07 and was the best 487 times out of 500 repetitions,
or 97.4% of each of the experiments that were saved here followed by the method RELS B
MSE = 0.000257 was repeated 5 times, which achieved a test strength of 1%. At the sample
size n = 50, the semigen method was also carrying less MSE = 7.76E-09, with a 99%
frequency followed by jn method with a frequency of 0.2%. MSE = 6.06E-09 and the
semigen with 98% frequency followed by jn where MSE = 1.98E-05 and the second highest
preference was MLE with 1%.

Table (3): represents the values of MSE and the number of times the priority of the methods
used according to the sample size of the modela=0.6and b =4

n=10 n=50 n=100
Method MSE frg MSE frq MSE frq
MLE 0.000476 |1
Moment 0.001915 | 0O 0.001207 |0 0.00112 0
Ols 0.000818 | 2 0.000221 |0 0.000122 |0
RELS 6.76E-05 |0 3.91E-05 |2
RR 0.002082 | 0 0.00205 0 0.002009 | O
jn 0.00054 3 578E-05 |1 1
semigen 1E-06 490 5E-09 498 5E-09 495
Best method semigen semigen semigen semigen semigen semigen

Note that the best method when the sample size n = 10 was the proposed method semigen
where it had the smallest mse = 1E-06 and was the best for 490 times out of 500 repetitions,
or 98% of all experiments carried out here followed by the method RELS B MSE = 0.000395
It was repeated 4 times, which achieved a test strength of 0.8%. At the sample size n = 50, the
semigen method was also carrying less MSE = 5E-09, with a repeat rate of 99.6%, followed
by the MLE method with a frequency of 0.2%. 5e-09 = 99% semigen, followed by jn where
MSE = 2.97E-05 and the second highest preference was MLE 0.6
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Conclusions

1- The proposed method is superior to the other methods used for all sample sizes and
models

2- from the MSE at sample size n = 10, for all models, the second best estimation method
was RELS

3- At the sample size n = 50, according to the MSE scale, MLE was the second best
estimate method.

4- At sample size n = 100, jeknif was the second best method according to MSE and all
models

5- All results in terms of the number of times the method outweighed the rest of the
methods were identical to the previous conclusions other than the sample size100 The
MLE method was superior to jeknif in terms of how often it appeared as the best method.
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