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Abstract
" The behavior of complementary solutions is investigated through a comprehenswe
set of computanonal results for simple harmonic eddy-current problem.
It is found that despite the absence of bounds the two solutions complement each
other in a tangible and useful sense. A simple one-dimensional problem was chosen for
application on a thin conducting sheet.

The over-all accuracy due to the effect of various factors was examined and was
much better than the available solution.
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Notation

U®, U = complex phasor and its conjugate;

U', U' =real and imaginary components of U®;

U = Pre-specified quantity;

n =outward unit normal to a surface;

< U,V >= Volume integral of U.V over the region of the problem;
[U, V]= Surface integral of U.V over the boundary.

*Laser and Optoelectronics Engineering Department, University of Technology, Baghdad, Traq.
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1. Introduction

A recent theoretical investigation
[1,2] has shown that complementary
formulations for the harmonic eddy
current problem, proposed by a number
of workers, are essentially equivalent
despite apparent differences. The
investigation also showed that the
complementary formulations are non-
bounding. As a natural sequel, the
present paper examines the actual
behavior of complementary
computational results. A simple one-
dimensional problem, whose exact
solution is available, was chosen for the
purpose. The paper examines the effects
of various factors on the relative
behavior of complementary results, and
on the over-all solution accuracy as
measured by the Ligurian error. The
paper also highlights the advantages of
averaging complementary estimates in
preference to settling for either estimate
alone.
The error-based approach adopted here
in the derivation produces, in addition
to independently solvable
complementary variation principles, a
single variational principle that involves
both complementary systems
simultaneously, Computational results
obtained from this single solution are
also presented and examined; the over-
all accuracy is found to compare
favorably with that of independent
complementary solutions.

2. The Problem

The problem to be solved is a
conducting sheet oriented as shown in
figurel. It has a thickness of 2b in the y-
directions, and extends indefinitely
along the x- and z- axes. It carries a
specified current 1° per unit width,
following on the z-direction. The
conductivity of the sheet material is o
and the permeability is u; the angular
frequency is @ .
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At low frequencies, the governing
equations are:

VxH" =J° (1)
and
vxEC = jwB® )

All fields vary with y only, so that the
problem is one-dimensional. Moreover,
each field has only one

component: H® = H®(y)u,,
1°=1°yu,, E°=E‘@)u,, and

B® =B®(y)u,, equations (1) and (2)
thus are simplified to :
{
_dH® 3)
dy
and
2
L s @
dy

Boundary conditions may be defined in
relation to a brick of unit width and unit
depth. At the front and rear surfaces,

where gxﬂ:O, and at the sides
nxHE =0. Non-homogeneous
conditions arise at the top and bottom
surfaces, where nx HE is constant on
each; symmetry and Ampere’s circuiral
law yield:

HE(-b) =-HC(b) = %1_5 (5)

It is convenient to divide variables and
governing  equations  into  two
complementary systems: H®,J¢, and
equations (1) and (3) belong to the H-
system, while E€, B¢ and equations (2)
and (4) belong to the E-system. The
non-homogenous boundary conditions
of equation (5), which force the
solution, belong to the H-system in this
problem. The two systems are related
through  the two constitutive
relationships.
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and
Ec zp_‘]_{? o lc =0'§C
3. Trail Variables

In the simple numerical solutions
to be performed, H(y)and E€(y)
will be represented as polynomials in y.
Symmetry about the midplane makes
H® and odd function of y and E€an
even function. Solution will be
performed at two levels of refinement:
third and fifth order polynomials for
H®, and second and fourth order

polynomials for EC; the corresponding
results will be labeled Hj, Hs, E;, and E,4
respectively. Each of the trial functions
for Hs and E4 involves six real
parameters:

HE()= (pry + Poy® + Psy®) + iy + aay” +asy°)

(8)
and
EC(y)=(p+ry> +5y")+ (S +Spy% +Sgy%)
9

The trial functions for H3 are obtained
by setting Ps and gs to zero, and those
for E2 by setting r4 and s4 to zero.
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-(pp+P3b’ + Bb)- j(qb +q3b° +qsb°) :%1’ +
(12)
In actual formulation, it is convenient to
set I' =0 with no loss of generality.
Equations (10)-(12) account for the
independent H- and E-system governing
equations (3)-(5). This leaves the

constitutive relationships (6) and (7)

link the two systems. These will be
considered in the following section.

4. Solution Formulation

Constitutive relationships may
be enforced by minimizing constitutive
errors; the process yields variational
solution formulations [1,2] which will
be used to determine the remaining
unknown parameters in the ftrail
functions.
The instantaneous magnetic and
conduction constitutive errors, or
Ligurians, are:

AMz%<p!-_L}j>+%<v_B;_B>—<LLB> (13)

and
AC=~;—<p.LJ>+%<O'EE>—<J-E> (14)

The solution of the problem is basically
a process of enforcing the governing

Respectively, Ay and A, are strictly
nonnegative, and zero only if their

equations on the trial variables. The H- respective  variables  satisfy  the
system equation (3) is enforced by corresponding constitutive relationships.
substituting for H® from equation (8) to A total Ligurian is defined by:

express j- in terms of the H-system t

parameters. At)=Ay(H)+a _[Ac(t)dt (15)

1) =~(py + 3Py’ + SPsy™)- j(q +3a5y? +5a5y")

(10)
Similarly, the E-system equation (4) is
enforced by substituting for E from
equation (9) to express B® in terms of
the E-system parameters:

BC@)=—é(2w+4r4y3)+fi(zszv+4w3)(l 1)

The boundary conditions (5) eliminate
two of the H-system parameters since
application to equation (8) yields.

t-7

where « and r may be assigned
arbitrary positive values. Again, A is
strictly nonnegative, and zero only if the
trial variables satisfy both constitutive
relationships simultaneously. With the
trial variables constrained to satisfy all
the other governing equations,
enforcement of the constitutive
relationships by error minimization
through the variational principle

SA =0 (16)
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yields the requisite solution
formulation.

Because the Ligurain involve products
of fields and under steady harmonic
conditions, they are each composed of a
time-invariant component together with
a sinusoidal component at double
frequency; for example:

A(t)= A’ + ACosut - ASin2ut
=A%+ Re{ACeXety 17)

Representing the magnetic and
conducting Ligurian, A, and A. of
equations (13) and (14), in the same
way, when substituting into equation
(15), and performing the algebra, the
following general expressions for A°and
A° are obtained:

N(H,E) =+K,,(H,E)+an’(H,E) (18)
with
A%(H,E):%<p§c,_&‘>+%€v§(",§">—Re{<_€c,§'>}

A%(H,E}z%qf,g->+%<a§C,g>—Re{<gc,Q>}
and

A(H, E) = Ky (H, By + 21— Hom)C,
2jw

(19)
with
A%(H,E)::%<y[_{c,ﬁc >+%~:v‘[§(;,§c >~<_h_’c,§_c >

Ne(H,E)= 3 < psC.sC > +2 < 0B BC >~ < 4, 8C >

As the instantaneous Ligurian A()is
strictly nonnegative, equation (17)
implies that:

N z|K|20 (20)
Substituting for A(¢) from equation (17)
into the general variational principles of
equation (16), we obtain the variational
principles.

=0 1)
and

SN =0, N =0 (22a)

Behavior of Complementary Computational Results
for a Simple Harmonic Eddy-Current Problem

The variational principles of equation
(22a) are equivalent and may be
expressed concisely as:

O =0 (22b)
Equations (21) and (22) describe two
distinct variational principles. The first
corresponds to the time invariant
component A’ and is minimal, while the
second corresponds to the complex
phasor A° associated with the sinusoidal
component, and is merely stationary.
The two principles yield identical
results in an exact solution. In
numerical formulation, however, they
yield somewhat different values for the
unknown parameters, and hence
different approximations to the exact
solution.

4.1 Complementary Formulations
The variational principle of

equation (22) is of particular interest as
it can be split into complementary
variational principles. To initiate the
split the multiplier o and the integration
interval ¢ must be assigned the
following values.

P70 (23)

Substituting into equation (19) yield,
after some rearrangement we get:

KO, E =} < pHE HE >+ < puC U 5)
2 2jw
+{l < vﬁc,_gc > +-I- <0'§C,§C >}
2 2jw
(<HC, B >+ < S EC 53 (24)
jo

The integrals in the first and second
pairs of brackets belong to the H- and
E-systems respectively. The integrals in
the third pair of brackets have factors
from both systems, and can be

manipulated as follows [1,2]: VxHC is
substituted for J° , a vector identify is

applied followed by the divergence
theorem, - jwB° is substituted for Vx£°,
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and appropriate terms are eliminated.
That is:

<H K o <JS E >=<H B >+—_I~ <VxH E >

jo jw

= ; : 1 ;
<HC,B° >+-I—<H(',VxE(‘ >+——~[NXHC,E(']
R ™ Jo 17 jo B

= HC, B >—<HC,B* >+ nx HC EC)
jo
= 1 iux BB
Jjo

" The volume integrals in the third pair of
brackets of equation (24) thus reduce to
a surface integral on the boundary.
Recalling the boundary conditions as
described in conjunction with equation
(5), it will be seen that the only nonzero
contributions to the surface integral
come from the top and bottom boundary
sections where tangential H° is known.
Substituting back equation (24), we can
write:

K (H,E)=6 (H)+E*(E) (25)

where
F ()= < H >+ —<pf. > (26)
2 2je

and

D= <l > <0t E > e )
jo

2jw
27)
These are the complementary
- functionals. The surface terms in

equation (27) introduces the H-system
boundary conditions naturally into the
E-systems functional =(%). Substituting
from equation (25) into-equation (22c),
we get the complementary variational
principles.

56 (H)=0 (28)
& (E)=0 (29)
These can be solved independently of
each other because the H- and E-system
trial variables are independent of each
other.
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5. Circuit Parameters

The behavior of complementary
solutions will be described mainly in
terms of the estimated values of
resistance and inductance. For the
specified-current conditions assumed,
these are given by:

RH) =< pJ° > [T (30)
L(H)=<yg“,gf>ﬂ}?2 G1)
RE) =<a§c,§*>f§5r (32)
L(E)=<vB’,B*> I!Fr (33)

R(H) and L(H) are H-system estimates,
and R(E) and L(E) are E-system
estimates. At the exact solution,
corresponding complementary estimates
are equal to each other and to the exact
values given by[3].

g Sinby +5iny (34)
" 20A Coshy —Cosy

and

L 1 Sinhy - Siny (35)

" 200 Coshy —Cosy
where A is the depth of penetration

A=2/ wou (36)
and

y=2b/A

In the present numerical formulation,
the integrals in equations (30)-(33) can
be evaluated once the parameter p, g, T,
and s are obtained from the solution.
The estimates will be normalized with
respect to the exact dc values of
resistance and inductance, which are:

1
gt 38
Re =300 (38)
and
dez% (39)

It is of interest to observe that the
integrals in the expressions for the
circuit parameters, equations (30)-(33),
appear explicitly in the expression for
the time-invariant Ligurian A°, equation
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- (18), but not in the complex Ligurian A°
, equation (19), mor in the
complementary functional ¢ and E=°,
equations (26) and(27).

6. Complementary Solutions
The sheet problem was solved

using the complementary formulations
of section 4.1, with the trial functions of
section 3. Figures 2 and 3 show the
resulting resistance and inductance
estimates at different values of sheet
thickness (normalized with respect to
depth of penetration). The curves are
labeled according to system and order
of polynomial; thus HS denotes and H-
system estimates are found by using
fifth order polynomials, and so forth.
For the infinitesimally thin sheet,
numerical estimates coincide with exact
values. As sheet thickness increases (or,
alternatively, as frequency increases for
a fixed thickness), the field distribution
develops into patterns of increasing
complexity. Each of the numerical
estimates follows the exact curve quite
closely up to a point beyond which the
simple trail functions are no longer able
to approximate the exact distribution.
The different points of departure, most
clearly seen in Fig.2, are predictably
higher for higher-order polynomials. H-
system estimates are more accurate than
E-system  estimates because the
boundary conditions of equation (5),
which force the solution, belong to the
H-system and are enforced explicitly on
H-system variables, equation (12); they
enter the E-solution only naturally
through the last term in equation (27).
The boundness of complementary eddy-

current solutions has been shown in

figures (2) and (3) which provide
graphical confirmation in that the
solutions are non-bounding. The
complementary functions of equations
(26) and (27), derived here by the error-
based approach, are essentially the same

Behavior of Complementary Computational Results
for a Simple Harmonic Eddy-Current Problem

as those given by other workers [4,8]. It
follows that the absence of bounds is
not a peculiarity of the error-based
derivation, but is fundamental to the
harmonic eddy-current problem.
Bounded behavior is characterized by
two main features. Firstly, the upper
and lower bounds always bracket the
exact solution irrespective of how crude
the approximation may be. Secondly,
numerical estimates converge to exact
values as the trial functions are refined.
While it is evident that the curves of
figures 2 and 3 do not exhibit such
behavior, it will be observed that the
resistance curves of fig.2 appear to
exhibit bounded behavior up to b/A just
under 5. It is probably this kind of
apparent boundedness that encouraged
workers to expect true boundedness.
Such behavior may be a fortuitous
consequence of a combination of factors
relating to the particular problem
considered, the type of trail functions
used, and the quantity being computed.
The inductance curves, for example, do
not even appear bounding, as the
various curves cross each other at a
number of points (for example, H5 and
E4 at b/A=66 ).

Despite the non-boundedness of the
solutions, careful examination of the
curves suggests that the average of
complementary estimates lies more
consistently in the vicinity of the exact
results rather than of the estimates.
While rather weak, this observation
does allow one to rely on the average
with more confidence than either of the
complementary estimates taken alone,
especially in the range where the
approximations are known to be
relatively good. Of course the
availability of the exact solution for the
present simple problem makes it easy to
identify  the range of  good
approximation; however; this range can
also be identified by comparing the
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Ligurian error with the estimated values
of the complementary functional, as in
fig.4. The Ligurian is a comprehensive
measure of the numerical error in
properly formulated solutions where the
only approximations are in the
restrictions on the trail functions (as
distinct from approximations in the
modeling of the original problem).

7. Conclusions

The paper has shown that
complementary formulations of the
harmonic eddy-current problem are
non-bounding. However, if the trends
observed for the particular problem
considered here prove to be general,
then the absence of bounds is not a
serious drawback: the two sets of
estimates do complement each other
about the exact solution in a tangible
and useful sense. The averages of
complementary estimates lie more
consistently close to the exact values
than either of the complements taken
alone. This is particularly true where the
approximation is relatively good, a
condition that can be monitored through
the Ligurian error.
The paper has also show that
complementary solutions do not yield
the best values for the unknown
parameters. Better values, leading to a
smaller over-all Ligurian error, can be
obtained from a single solution, based
on the real time-invariant Ligurtian that
involves both complementary systems
simultaneously,
The paper indicates that the analyst has,
in principle, two alternatives. The first is
to perform wither of the complementary
solutions alone; this is by far the most
common policy. The second is to
perform both complementary solutions,
the  economical disadvantage of
performing two solutions, as opposed to
only one in the first alternative, is offset
by the additional information provided,
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particularly with regard to accuracy. In
general, for a given level of confidence,
complementary solutions taken together
can do with less refined approximation
than either solution taken alone.
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