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Abstract— This paper presents the design of an optimal Linear Quadratic 

Regulator (LQR) controller using Ant Colony Optimization (ACO) and particle 

swarm optimization (PSO) methods for position control of a permanent magnet 

DC (PMDC) motor. In this work, Ant Colony control and particle swarm 

control algorithms have been utilized to set the optimal elements of the 

weighting matrices subjected to a proposed cost function. The proposed cost 

function is a combination of the quadratic performance index and integral 

square error. The proposed design can overcome the difficulty in setting the 

weighting matrices with the suitable elements. The simulation results using 

(Matlab Package) show that the optimal LQR controller using ACO algorithm 

can give excellent performance in terms of obtaining smooth and unsaturated 

state voltage control action that will stabilize the DC motor system performance 

and minimize the position tracking error of the system output. In addition, the 

rising time and settling time is decreased in comparison with the LQR based 

PSO controller performance. 

Index Terms— Linear Quadratic Regulator (LQR), Ant Colony Optimization (ACO), 

particle swarm optimization (PSO), quadratic performance index. 

I. INTRODUCTION 

The LQR has drawn a lot of attention since 1950 and is widely used in many 

applications such as flight control, missile guidance, active car suspension, power 

converters, ABS brake system, and etc. The LQR is an optimal multivariable feedback 

control method that minimizes the excursion of a system state trajectories whereas requiring 

minimum controller effort and improves stability performance. In other words, applying the 

LQR method to a controllable linear time-invariant (LTI) system results in a set of optimal 

feedback gains that minimize a quadratic criterion and stabilize the system [1], [2]. 

The behavior of the LQR controller depends on two parameters: the state and the 

control weighting matrices, and it must be optimally adjusted to obtain the desired 

performance because of their influence on the LQR performance. Moreover, the classic 

approaches such as trial and error, pole placement, and Bryson’s method tuning LQR 

parameters is tedious work and time-consuming. Therefore, different optimization 

algorithms have implemented to obtain the optimal parameters of the LQR controller. For 

instance, Genetic Algorithm (GA) [3], Particle Swarm Optimization (PSO) algorithm [4], 

Firefly Algorithm (FFA)  [5], and Artificial Bee Colony (ABC) algorithm [6], etc. 

The motivation for this work is that the classic approaches in tuning the LQR parameters 

are still difficult. Therefore, different types of optimization algorithms have been used for 
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this purpose till to date. The main points of the contribution of this paper are listed as 

follows: 

 The ACO and PSO algorithms are used because they show fast search ability in the 

global regions to obtain the optimal parameters for the LQR controller. These parameters 

lead to finding the best voltage control action. Thus, the output position of the PMDC motor 

will quickly reach the desired output position. 

 Excellent tracking performance of the optimal LQR controller based ACO 

algorithm and LQR controller based PSO algorithm that are investigated by changing the 

desired output position levels of the PMDC motor. 

 High robustness performance was achieved by adding an external torque disturbance to the 

PMDC motor system using optimal LQR controllers. 

The remainder of this paper is described in the following manner: Section two contains 

the mathematical model of the PMDC motor circuit. Section three illustrates the design 

structure of the optimal LQR controller. In Section four, the ACO and PSO algorithms are 

explained. Section five describes the performance of the optimal LQR controllers through 

the simulation results. Finally, the conclusions are explained in Section six. 

II. MODELLING DC MOTOR MODEL 

The PMDC motors are power actuator devices that transform electrical energy to 

mechanical energy and they are most suitable for adjusting and control of wide range 

positions and speeds. In this work, a simple model of PMDC motor was considered as 

depicted in Fig. 1 [7]. 

 

FIG. 1. A SIMPLIFIED EQUIVALENT REPRESENTATION OF THE PMDC MOTOR’S ELECTROMECHANICAL COMPONENTS [7]. 

In this Figure, the resistance of the armature (𝑅𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒) is connected in series with the 

inductance (𝐿𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒) and (𝑒𝑎) represents the back electromotive force (emf) voltage 

induced in the armature during the rotation. The armature voltage (𝑉𝑖𝑛) in volts is driven by 

an input voltage source. The measured variables are the shaft angle (𝜃𝑚) in 𝑟𝑎𝑑, the angular 

velocity of the shaft (𝑊𝑚) in 𝑟𝑎𝑑/𝑠𝑒𝑐, and the motor torque, (𝑇𝑚), in 𝑁. 𝑚. The dynamic 

behavior of the PMDC motor can be described by the following equations for the electrical 

part, mechanical part and the interconnection between them [7]- [9]. 

(𝐿𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒𝑆 + 𝑅𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒)𝐼(𝑠) = 𝑉𝑖𝑛(𝑠) − 𝐾𝑏𝑊𝑚(𝑠)                          (1) 
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𝑇𝑚(𝑠) = 𝐾𝑖𝐼𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒(𝑠)                                                                 (2) 

𝐸𝑎(𝑠) = 𝐾𝑏𝑊𝑚(𝑠) = 𝐾𝑏𝑆𝜃𝑚(𝑠)                                                         (3) 

𝐾𝑖𝐼𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒(𝑠) = 𝑇𝑚(𝑠) = (𝐽𝑚𝑆 + 𝑏𝑚)𝑆𝜃𝑚(𝑠) + 𝑇𝑑                                   (4) 

Where, 𝐾𝑖 represents the torque constant, 𝐾𝑏 represents the emf constant, 𝐽𝑚 represents the moment 

of inertia, 𝑏𝑚 represents the coefficient of viscous-friction, and 𝑇𝑑 represents the external torque 

disturbance. 

The block diagram for position control of PMDC motor based on equations (1), (2), (3), and (4) is 

depicted in Fig. 2. 

 

FIG. 2. THE BLOCK DIAGRAM OF THE PMDC MOTOR MODEL. 

III. OPTIMAL LQR CONTROLLER DESIGN 

The stare space representation of a linear time-invariant (LTI) system is described as 

follows [10]: 

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝑢(𝑡)                                                      (5) 

  𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝑢(𝑡)                                                      (6) 

Where, 𝒙(𝑡) is the state vector, 𝒚(𝑡) is the output vector, and 𝑢(𝑡) is the control vector. 

The linear state feedback law in LQR approach can be expressed as in equation (7): 

                   𝑢(𝑡) = −𝑲𝒙(𝑡)                                                         (7) 

Where, 𝐾 is the state feedback gain matrix. 

The LQR control problem may be stated to find the optimal linear state feedback law that minimizes 

the quadratic performance index which is defined in equation (8): 

                   𝐽 = ∫ [
∞

0
𝒙(𝑡)𝑇𝑸 𝒙(𝑡) + 𝑢(𝑡)𝑇𝑹 𝑢(𝑡)] 𝑑𝑡                                    (8) 

Where,  𝑸 is 𝑛 × 𝑛 symmetric positive semi definite state weighting matrix, and 𝑹 is 𝑚 × 𝑚 

symmetric positive definite control weighting matrix. 

The state feedback gain matrix is given as in equation (9): 

                   𝑲 = 𝑹−𝟏 𝑩𝑻 𝑷                                                       (9) 

Where, 𝑷 is the unique symmetric positive semi-definite solution to the algebraic Riccati equation 

(ARE) which can be defined as follows: 

                  𝑷𝑨 + 𝑨𝑻𝑷 + 𝑸 − 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 = 0                                   (10) 
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The block diagram of this optimal LQR controller which consists of LQR controller and different 

types of optimization algorithm which are utilized to get the optimal values of the weighting matrices 

of LQR controller is shown in Fig. 3.  

 

FIG. 3. THE BLOCK DIAGRAM OF TUNING LQR BASED ACO CONTROLLER. 

IV. LQR TUNING USING ACO AND PSO ALGORITHMS 

A. THE ACO ALGORITHM 

The ACO technique is a nature inspired meta-heuristic algorithm for the solution of the 

combinatorial optimization problem and was introduced by M. Dorigo in 1991.This algorithm is based 

on the behavior of the real ants in searching for the source of food with the minimum path cost. A graph 

model of the problem is formed in order to search for a minimum path cost. The ants walk along the 

graph to find a lower path cost and the better paths are followed after by the other ants. 

Each ant releases a pheromone substance to track the graph and to select their path with 

probabilities that are generated because of the trails of pheromone and these pheromones are frequently 

decreased due to the evaporation [11]-[13]. The steps of ACO algorithm for tuning the LQR controller 

are given as follows: 

Step 1: Initialize the algorithm parameters such as dimension of the problem (𝑑𝑖𝑚), population size 

(𝑁), maximum number of iterations (𝐼𝑡𝑒𝑟), alpha (𝛼), beta (𝛽), Evaporation rate (𝜌), number of nodes 

for each parameters (𝑛_𝑛𝑜𝑑𝑒), pheromone Matrix (𝜏), and change of pheromone (𝛥𝜏). 

Step 2: each parameter generates a number of equally spaced nodes. 

Step 3: each ant calculates the probability rule to choose their solution to the problem, known as a tour 

as follows: 

          𝑃𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽
𝑖𝑗𝜖𝐴𝑘

                                                          (11) 

𝜂𝑖𝑗 = 1/𝑑𝑖𝑗                                                               (12) 

Where, 𝑃𝑖𝑗
𝑘  is the probability of 𝑘𝑡ℎ ant to choose node 𝑗 at a node 𝑖, 𝜏𝑖𝑗 is the pheromone amount 

between nodes 𝑖 and 𝑗, 𝜂𝑖𝑗 is the heuristic information between nodes 𝑖 and 𝑗, 𝑑𝑖𝑗 is the path between 

nodes 𝑖 and 𝑗, and the parameters 𝛼 and 𝛽 are the parameters to control the relative importance between 

the Pheromone amount and the  heuristic information, respectively.  

Step 4: Evaluate the cost function (𝐼𝑆𝐸) as in Eq. (13) for each ant as follows:  

  𝐼𝑆𝐸(𝑘) = ∫ (𝑍 − 𝑌)2𝑑𝑡
∞

0
                                                          (13) 
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Where; 𝑘 = 1, 2, … , 𝑁., 𝑍 is the desired input position of PMDC motor, and 𝑌 is the actual output 

position of PMDC motor. 

Step 5: Find the best node value, the minimum path cost to reach this node, which is the node that has 

a minimum (𝐼𝑆𝐸) value among all the ants. 

Step 6: Update the Pheromone trails with the evaporation process after all the ants have completed their 

tours as in equation (14). 

𝛥𝜏𝑖𝑗
𝑘 =

𝐿𝑚𝑖𝑛

𝐿𝑘
                                                              (14) 

Where, 𝛥𝜏𝑖𝑗
𝑘 is the quantity of pheromone on each path, 𝐿𝑚𝑖𝑛 is the best solution obtained by the set 

of the ants at the current iteration, and 𝐿𝑘 is the objective function value found by the ant 𝑘. 

The total quantity of pheromones left by all ants between the nodes 𝑖 and 𝑗 are calculated by using 

equation (15): 

𝛥𝜏𝑖𝑗 = ∑ 𝛥𝜏𝑖𝑗
𝑘𝑁

𝑘=1                                                      (15) 

Step 7: Next, the evaporation process occurs and the quantity of pheromones between all the nodes is 

updated as in equation (16): 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + 𝛥𝜏𝑖𝑗                                       (16) 

Where, 0 < 𝜌 < 1 is the pheromone evaporation factor and 𝑡 is the current iteration. 

Step 8: Stop if the maximum number of iterations (𝐼𝑡𝑒𝑟) is reached. Otherwise, Step 3 to Step 8 is 

repeated. 

B. THE PSO ALGORITHM 

The PSO technique is proposed in 1995 by Russell Eberhart and James Kennedy. This 

algorithm is a heuristic global optimization method that mimics the social behavior of a 

colony or swarm of birds. Because of its high computational efficiency, this algorithm is 

commonly used in different engineering problems. 

At first, each particle in the search space has an initially random position with an initial 

velocity equal to zero or small value. Such particles are moving in the search space in 

randomly direction and this movement of the particles is performed by evaluating them to 

show how near they are to the optimum solution by using a cost function. At each iteration 

each particle accelerates to the best location found by it so far (𝑝𝑏𝑒𝑠𝑡) and the global best 

position (𝑔𝑏𝑒𝑠𝑡) reached by any particle in the swarm [14]-[16]. The steps of PSO algorithm 

for tuning the LQR controller are given as follows: 

Step 1: Initialize the algorithm parameters such as dimension of the problem (𝑑𝑖𝑚), population size 

(𝑁), maximum number of iterations (𝐼𝑡𝑒𝑟), cognitive parameter (𝑐1), social parameter (𝑐2), initial 

random position for each bird (𝑋0), zero initial velocity for each bird (𝑉0), and inertia factor (𝑤). 

Step 2: Set the best position for each particle (𝑝𝑏𝑒𝑠𝑡) equals its current position. 

Step 3: Evaluate the cost function (𝐼𝑆𝐸) as in Eq. (13) for each particle. 

Step 4: Find the best position value (𝑔𝑏𝑒𝑠𝑡) which is a bird position that has a minimum (𝐼𝑆𝐸) value 

among all the birds’ positions. 

Step 5: Update the velocity and position for each birds as follows: 

𝑉𝑘𝑚
𝑡+1 = 𝑤𝑉𝑘𝑚

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑘𝑚
𝑡 − 𝑋𝑘𝑚

𝑡 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑘𝑚
𝑡 − 𝑋𝑘𝑚

𝑡 )                 (17) 

𝑋𝑘𝑚
𝑡+1 = 𝑋𝑘𝑚

𝑡 + 𝑉𝑘𝑚
𝑡+1                                                  (18) 
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Where, 𝑡 = 1, 2, … , 𝐼𝑡𝑒𝑟, 𝑘 = 1, 2, … , 𝑁, 𝑚 = 1, 2, … , 𝑑𝑖𝑚, and 𝑟1 and 𝑟2 are random mumbers 

between 0 and 1. 

Step 6: Evaluate again the cost function (𝐼𝑆𝐸) for each particle as in Eq. (13). For each bird if its current 

cost function value is smaller than its previous value then the (𝑝𝑏𝑒𝑠𝑡) is changed with the current 

position.  

Step 7: Find the smallest (𝑝𝑏𝑒𝑠𝑡) value among all birds and store it in (𝑔𝑔𝑏𝑒𝑠𝑡) variable. 

Step 8: If (𝑔𝑔𝑏𝑒𝑠𝑡) value is smaller than (𝑔𝑏𝑒𝑠𝑡) then the (𝑔𝑏𝑒𝑠𝑡) value is replaced by the (𝑔𝑔𝑏𝑒𝑠𝑡) value. 

Step 9: Stop if the maximum number of iterations (𝐼𝑡𝑒𝑟) is reached. Otherwise, Step 5 to Step 9 is 

repeated. 

V. SIMULATION RESULTS AND DISCUSSIONS 

The PMDC motor specifications as shown in Table I are taken from [17]. The ACO and PSO 

tuning control algorithms for obtaining the optimal values of the weighting matrices of the LQR 

controller are performed by using the MATLAB simulation package to achieve the desired output 

position for the PMDC motor system as shown in Fig. 3. In the simulation results, a comparison is 

drawn from the results obtained between the LQR based ACO controller and LQR based PSO 

controller. The simulation results are presented to illustrate the performance and validity of these two 

design methods. 

TABLE I. THE PARAMETERS OF THE PMDC MOTOR SYSTEM. 

Description and Symbol Value and Unit 

Armature Resistance (𝑅𝑎) 5 Ω 

Coefficient of Viscous-Friction ( 𝑏𝑚) 0.136 𝑁. 𝑚. 𝑠 

Moment of Inertia  (𝐽𝑚) 0.0025 𝐾𝑔. 𝑚2/𝑠2 

Torque Constant  (𝐾𝑖) 0.245 𝑁. 𝑚/𝐴 

Back EMF Constant (𝐾𝑏) 0.245 𝑉. 𝑠/𝑟𝑎𝑑 

Armature Inductance (𝐿𝑎) 0.01 𝐻 

 

The states of the PMDC are 𝑥1, 𝑥2, and 𝑥3 and represent the angular position (𝜃𝑚) in (𝑟𝑎𝑑), the 

angular velocity (𝑤𝑚) in (𝑟𝑎𝑑/𝑠𝑒𝑐), and the armature current (𝑖𝑎) in (𝑎𝑚𝑝), respectively. The open-

loop step response of the output position of the PMDC motor system is shown in Fig. 4. This Figure 

reveals that the system has an unstable response. 

 

FIG. 4. STEP RESPONSE OF THE OPEN LOOP PMDC MOTOR SYSTEM. 
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To investigate the optimal LQR controllers as shown in Fig. 3, the ACO and PSO tuning control 

methodologies are used to set the optimal elements of the weighting matrices of the LQR controller. 

These parameters lead to find the optimal control action and to minimize the position error with the 

minimum number of fitness evaluation, the parameters of the control methodology based on ACO and 

PSO algorithms are defined in Tables II and III, respectively. 

TABLE II. THE PARAMETERS OF THE ACO ALGORITHM. 

Description and Symbol Value  

Population size (𝑁) 25 

Maximum number of iteration (𝐼𝑡𝑒𝑟) 50 

Alpha (𝛼) 0.8 

Beta (𝛽) 0.2 

Evaporation Rate (𝜌) 0.7 

Number of Nodes for each Parameters 

(𝑛_𝑛𝑜𝑑𝑒) 
100 

Dimension of the Problem (𝑑𝑖𝑚) 4 

 

TABLE III. THE PARAMETERS OF THE PSO ALGORITHM. 

Description and Symbol Value  

Population size (𝑁) 25 

Maximum number of iteration (𝐼𝑡𝑒𝑟) 50 

Cognitive Parameter (𝑐1) 1.49618 

Social Parameter (𝑐2) 1.49618 

Inertia Factor (𝑤) 0.7298 

        Dimension of the Problem (𝑑𝑖𝑚)          4 

 

The optimization ranges of LQR weighting matrices are set as in Table IV as follows: 

TABLE IV. THE OPTIMIZATION RANGES OF LQR WEIGHTING MATRICES. 

Parameter Min. Max. 

𝑞11 0.001 12 

𝑞22 0.001 9 

𝑞33 0.001 3 

𝑅 0.001 0.75 

 

The simulation results of the closed loop position control system with the variable step change as 

(1, 2, and 3) radian in the DC motor desired output position and LQR controllers with the initial output 

position of the system equals zero radian can be shown in Figs. 5 to 10. The optimal parameters of the 

controllers with the dynamic behavior of the system at each variable step change such as rising time, 

settling time, peak time, overshoots and steady state error are set as in Table V. 

The output position response of the DC motor system in the variable step change using optimal 

LQR controllers has no overshoot in the transient state and at the steady-state, the error is equal to zero 

value in each step change, as shown in Fig. 5 
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FIG. 5. THE OUTPUT POSITION OF THE PMDC MOTOR. 

TABLE V. THE OPTIMAL PARAMETERS OF THE CONTROLLERS WITH THE DYNAMIC BEHAVIOR OF THE SYSTEM 

Parameter LQR based ACO LQR based PSO 

𝑞11 7.0307 11.3201 

𝑞22 0.8494 8.4526 

𝑞33 2.1826 2.3845 

𝑅 0.3646 0.4257 

𝐾1 4.3913 5.15672 

𝐾2 2.7196 4.28680 

𝐾3 2.3909 2.31100 

𝑇𝑟 2.3993 sec 3.6824 sec 

𝑇𝑝 0 sec 0 sec 

𝑇𝑠 (2% error) 3.2773 sec 5.7728 sec 

𝑀𝑝 % 0 0 

𝐸𝑠.𝑠 0 0 

 

In Fig. 6, the position error signal of the closed loop PMDC motor system based on optimal LQR 

controllers was a small value in the transient and it has become zero at the steady state. 

 

FIG. 6. THE POSITION ERROR SIGNAL. 
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The control action response In Fig. 7 of the optimal LQR controllers was smooth without oscillation 

response, no spikes behavior and the action did not reach to the saturation state of 12 volt depending on 

the supply voltage of PMDC motor. 

 

FIG. 7. THE CONTROL ACTION SIGNAL. 

The improved cost function (ISE) of the PMDC motor model for the optimal LQR controllers at 

50 iteration is clearly showed in Figs. 8 and 9. 

 

FIG. 8. THE PERFORMANCE INDEX (ISE) OF THE LQR BASED ACO ALGORITHM. 

 

FIG. 9. THE PERFORMANCE INDEX (ISE) OF THE LQR BASED PSO ALGORITHM. 
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The angular velocity (𝑥2) state and the armature current (𝑥3) state of the PMDC motor are shown 

in Figs. 10 and 11, respectively. These figures reveal that the angular velocity of the PMDC using LQR 

based ACO controller is faster than that of the PMDC using LQR based PSO controller and also 

consuming less current than that of the PMDC using LQR based PSO controller. 

 

FIG. 10. THE ANGULAR VELOCITY OF THE PMDC MOTOR. 

 

FIG. 11. THE CURRENT OF THE PMDC MOTOR. 

To investigate the robustness performance of the LQR based ACO controller that has a better 

performance than the LQR based PSO controller according to the simulation results, an external torque 

disturbance (𝑇𝑑) which equals (1 𝑁. 𝑚) is added at the moment (22 − 23 𝑠𝑒𝑐). The output position 

response of the PMDC motor has a small overshoot at (22 𝑠𝑒𝑐) during adding disturbance and the error 

equals zero value at the steady state response as shown in Fig. 12. 
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FIG. 12. THE OUTPUT POSITION OF THE PMDC MOTOR UNDER DISTURBANCE. 

The small value of the error position signal between the desired position and the output position of 

the PMDC motor system is shown in Fig. 13, the error has a small value at the transient state and in the 

steady state, the error becomes very close to zero value. 

 

FIG. 13. THE POSITION ERROR SIGNAL UNDER DISTURBANCE. 

The response of the control action is shown in Fig. 14, which has a capability to track the error 

position signal of the PMDC motor system to follow the desired position as step change and reduce the 

effect of the torque external disturbance. 

 

FIG. 14. THE CONTROL ACTION SIGNAL UNDER DISTURBANCE. 
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Finally, the angular velocity (𝑥2) state and the armature current (𝑥3) state of the PMDC motor are 

shown in Figs. 15 and 16, respectively. 

 

FIG. 15. THE ANGULAR VELOCITY OF THE PMDC MOTOR UNDER DISTURBANCE. 

 

FIG. 16. THE CURRENT OF THE PMDC MOTOR UNDER DISTURBANCE. 

VI. CONCLUSIONS 

In this work, a position control of PMDC motor using different methodologies for tuning the 

weighting matrices of the LQR controller is successfully designed and constructed using MATLAB 

Package. According to the obtained simulation results the following points are concluded as listed 

below: 

 The ACO algorithm has the ability to fast pick up the optimal weighting matrices of the LQR 

controller with the minimum number of fitness evaluation in comparison with the PSO 

algorithm. 

 A proper voltage control action was obtained without a saturation voltage state. 

 Excellent tracking performance was achieved by changing the desired output position level. 

 The performance of the LQR based ACO controller is better than that of the LQR based PSO 

controller in terms of obtaining desirable time response specifications and minimum 

unsaturated state voltage control law that will stabilize the PMDC motor system performance 

and minimize the position tracking error of the system output. Furthermore, the cost function 

is decreased. 

 High robustness performance was obtained by adding an external torque as a disturbance effect 

to PMDC motor system using LQR based ACO controller. 
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