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Abstract:

Time series analysis and forecasting have become a major tool in different applications in
hydrology and environmental management fields. Among the most effective approaches for analyzing
time series data is the model introduced by Box and Jenkins, ARIMA (Autoregressive Integrated
Moving Average). Approach: In this study, we used Box-Jenkins methodology to build ARIMA model
for electricity consumption data taken for Erbil region station for the period from 2014-2018. Results:
In this research, ARIMA (1, 1, 1) (0, 1, 1)12 model was developed. This model is used to forecasting
the monthly consumption for the upcoming 2019 year in each month to help decision makers establish
priorities in terms of electricity demand management. Conclusion/Recommendations: An intervention
time series analysis could be used to forecast the peak values of producing electricity in megawatt for
Erbil city.

Keywords: Time Series Modeling, Forecasting, ARIMA, Moving Average, Consuming Electricity and
Autoregressive.
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1  Introduction

Many methods and approaches for formulating forecasting models are available in
the literature. This research exclusively deals with time series forecasting model, in
particular, the Auto-Regressive Integrated Moving Average (ARIMA). These models were
described by Box and Jenkins [1].

The Box-Jenkins approach possesses many appealing features. It allows the manager who has
only data on past years’ quantities, rainfall as an example, to forecast future ones without
having to search for other related time series data, for example temperature. Box-Jenkins
approach also allows for the use of several time series, for example temperature, to explain
the behavior of another series.

Box-Jenkins (ARIMA) modeling has been successfully applied in various water and
environmental management applications. The followings are examples where time series
analysis and forecasting are effective.

2  Electricity in Kurdistan

As a result of the First Gulf War in 1991 and the ensuing internal conflicts, the
electricity supply system in the three northern governorates suffered severe damage (e.g.
several distribution and transmission lines were put out of commission, many substations
were destroyed, power station were ruined by explosives). In 1994, the governorates of
Duhok, Erbil and Sulaymaniyah had been cut off from the national grid and Erbil and
Sulaymaniyah relied on the hydropower stations of Dokan and Derbandikhan in
Sulaymaniyah governorate for their power supply while Duhok had no power supply for
almost one year.

By early 1998, the electricity generation, substations and transmission and
distribution systems became very weak and power cuts of up to about 5 hours were a regular
practice. In certain areas, electricity supply was limited to 3 to 5 hours daily, further reduced
to about one hour per day or no supply in some areas.

The electricity sector of the Kurdistan Region of Iraq has significantly improved. In
2013, it had reached more than 20 hours supply and brought in private sector investments.

In this project, we are going to study the amount consumed MW in Erbil 2014 to
2018, our main objective is to find the best model to predict for future demand in Erbil city as
people are suffering from lack of electricity supply in the area.

3 Materials and Methods

The main stages in setting up a forecasting ARIMA model includes model
identification, model parameters estimation and diagnostic checking for the identified model
appropriateness for modeling and forecasting. Model Identification is the first step of this
process. The data was examined to check for the most appropriate class of ARIMA processes
through selecting the order of the consecutive and seasonal differencing required to make
series stationary, as well as specifying the order of the regular and seasonal autoregressive
and moving average polynomials necessary to adequately represent the time series model.
The Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) are the
most important elements of time series analysis and forecasting. The ACF measures the
amount of linear dependence between observations in a time series that are separated by a lag
k. The PACF plot helps to determine how many auto regressive terms are necessary to reveal
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one or more of the following characteristics: time lags where high correlations appear,
seasonality of the series, trend either in the mean level or in the variance of the series.

4 Time Series

In statistics, signal processing and financial mathematics, a time series is a sequence
of data points, measured typically at successive times spaced at uniform time intervals. Time
series analysis comprises methods for analyzing time series data in order to extract
meaningful statistics and other characteristics of the data. Time series forecasting is the use
of a model to forecast future events based on known past events: to predict data points before
they are measured. There are two types of data indeed. The first one is that when the
observation is recorded as continuing such as Temperature. The second is when the data is
recording discretely as rainfall data for example [3].

4.1 Autoregressive Model

Let ey, e,, ... be a purely random process with mean zero and variance 6. Then we
can define an autoregression process z.of order p, written AR(p), if

Zt = P12t T Q2Zt 3+ T QpZep t & @

This looks just like a multiple regression model, except that the regressors are just the past
values of the series. Autoregressive series are stationary processes provided the variance of
the terms are finite and this will depend on the value of the ¢’s. Autoregressive processes
have been used to model time series where the present value depends linearly on the
immediate past values as well as a random error.

4.2 ARMA Models

We can combine the moving average (MA) and the autoregressive models (AR)
processes to form a mixed autoregressive/moving average process as follows:

Zt = @1Zt_1 + mzzt_z + e + Q)pZt—p + gt - 918(:_1 - 0281'—2 — e qut—q (2)

which is formed by a MA(q) and an AR(p) process. The term used for such processes is an
ARMA process of order (p, q). An advantage of using an ARMA process to model time series
data is that an ARMA may adequately model a time series with fewer parameters than using
only an MA process or an AR process. One of the fundamental goals of statistical modeling is
to use the simplest model possible that still explains the data — this is known as the principle
of parsimony [3].

4.3  Multiplicative Seasonal Model

In rare case all of the seasonal models are combined with a non-seasonal model in
order to reach an appropriate form and it is symbolized by ARMA(p, q) (P, Q) and its
backward shift form is provided below;

(B)®(B®)Z; = 6(B)O(B*)¢e; (3)
The variance is;
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o =(1+6%)(1+ 60 4)
4.4  Autoregressive Integrated Moving Average ARIMA

Most time series in their raw form are not stationary. If the time series exhibits a
trend, then, as we have seen, we can eliminate the trend using differencing V¥Z,. If the
differenced model is stationary, then we can fit an ARMA model to it instead of the original
non-stationary model. We simply replace Z, in (21) by V¥Z,. Such a model is then called an
autoregressive integrated moving average (ARIMA) model. The word “integrated” comes
from the fact that the stationary model that was fitted based on the differenced data has to be
summed (or “integrated”) to provide a model for the data in its original form. Often, a single
difference k = 1 will suffice to yield a stationary series. The notation for an ARIMA
process of order p for the AR part, order g for the MA part and differences d is denoted
ARIMA(p, d, q). Its Backward Shift Operator form can be written as below [2].

(B)W, = 0(B)e, (5)
where;
W, =vez,
@(B)=1-0,B—@,B?>— - — ¢,BP
6(B)=1—-6,B—0,B? —---— 0,B1

45 Integrated Multiplicative Seasonal Model

It is a merged model from seasonal part ARIMA and non-seasonal part, and the
symbol of this model is ARIMA(p,d,q) (P,D,Q)s. The general formula derived by
Backward Shift Operator is;

Where VS: is a degree of seasonal difference
vz, = (1 —-B5PZ, D=01.2,..
=Zy—Zes

5  Stages of building model

The most important purpose of building time series model is to be used for future and
can be reliable to make serious decisions in some circumstances. Thus, there are several
stages to find the best fitted time series model [6].

5.1 Identification

Identifying model is the most vital part in time series modeling. At this stage, the first
step in this phase is the formulation of the original time series to get to know their
characteristics (direction, changes, rotating, seasonal changes...) and then test series in terms
of stationary properties around the mean and variance. Finally, we calculate the
autocorrelation function and partial autocorrelation function.
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- If the autocorrelation function is exponential decay and the partial autocorrelation
function interrupted after a period (p), then the pattern is the AR(p)

- If the partial autocorrelation function is exponential decay and the autocorrelation
function interrupted after a period (q), then the pattern is the MA(q)

- If both autocorrelation function and partial autocorrelation function are exponential
decay, then the patterns are most likely to be ARMA(p, q)

5.2  Estimation

After identifying the character of the model and decide which model is to set on the
pattern, then the estimation of the parameters comes forward and needs to be estimated. In
addition, there are several methods to do so;

a. Least-Square Method

b. Maximum Likelihood Method

c. Yule-Walker Method

5.3  Model Diagnostic Checking

Model diagnose is the end of times series modeling which tells the researchers how good
the model fits the series. The procedure is easy, once estimation is done; we put the original
series into the model and compute the residuals. The behavior of the residual does provide a
good feeling about the selected model.

5.3.1 Autocorrelation of Residuals Test

When there are no significant differences between the autocorrelation function of the
fitted series and autocorrelation function of the original series, this indicates that the model is
appropriate. However, if the autocorrelation function does not have a significant difference,
we calculate the autocorrelation of residuals r.. If the autocorrelation function of the residuals
is outside the below range, it gives us enough evidence that the model is appropriate for the
data;

~1.965(r,) < p(e) <1.96S (1) (6)

S(re): The standard deviation of residual

n-k a2 2

_— D=1 i
g n a2
t=1€t

k-1
1+2 Z rgl
k=1

-1
S(r,)=N2
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5.3.2 Goodness of Fit Test
Each of the [1,3] studied mixed model (p, d, g) ARIMA and is supposed to be:

m ()
Q= nz I'ﬁ (§)~X€m—p—q)

k=1

One can determine the appropriateness of the model through this test, which is in accordance
with the following hypothesis:
Hy: Model appropriate
H;: Model not appropriate

Thus, if p — value < 0.05, the null hypothesis is rejected and it means the model is not fitted
the data well and vice versa.

5.4 Forecasting

It is known to predict that the future value of certain behavioral knowledge of the
phenomenon with having the least possible error compared to reality. After the completion of
the first three phases, identifying the model, determine the appropriate model, and checking
the appropriateness of the model, we use the fitted model to predict. A good predictor is the
one which gets mean squares error (MSE) as small as possible;

E[? (D] = E[(Zes — Z))]° ®

Z(1): Predicted value
t: The original time period.
By making equation (7) to zero, we have;

Zt(l) =E(Zt11)
Substituting equations (8) into (7), the MSE is of Z,(I):
MSE = E[(Zey1 = EZer ) = Var(Zes) ©)

Thus we get the optimal prediction of the conditional expectation for (Z.,;) equals toZ.(I),
sO;

Zt(l) = E(Zt+l|Ztth—1r ---'Z1)
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It can illustrate the stages of building the time series model in the following chart:

A > Identifying the model

!

Estimating the parameters of identified model

o !

Testina the model

l Yes

Forecastina

A

6 Case Study

In this section, we are going to display several models based on our data in order to
find a suitable model to predict future values. The data was taken from a government
organization for weather record sets from 2014 to 2018. The analysis is done by using
STATGRAPHIC version 16.

6.1 Time series analysis

The purpose of time-series analysis to find an appropriate model for electricity in the
city of Erbil, and then take advantage of these models for the purposes of prediction and
control usage electricity source for the future.
First of all, we need to plot the data and see its behavior. From the plot, it can be seen that
whether it has trend or seasonality shape. This is the most important step because all of the
checking models are based on this step. If you go wrongly, it would take a long time till you
gain the best model. Therefore, one has to be very careful at this stage. Since the data is a
daily, Fig. 1, shows that there is a seasonal cycle of the series and the series is not stationary.
The ACF and PACF of the original data, as shown in Fig. 2, show that the electricity data is
not stationary.
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Figure 1: Time Series plot of the original electricity data
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Figure 2: ACF&PACEF for the original electricity data

In order to start modeling to our data, the data must be randomness. Although, it is obvious
that the data is randomness regarding to the plots, we still check it by using Box & Pierce
test. If p-value is smaller than 0.05 (p-value <0.05) then we reject null hypothesis which is
shown below;

Table 1: Test of randomness for the data

Data Hypotheses P-Value

H,:The series is randomness
Electricity Data in Erbil H,:The series is not randomness 0.0000

It is clear that the above result indicates non stationary process and also all the values of
autocorrelation functions do not lie in the below confidence interval as given below;

—-1.96S(r) < pr <1.96S(ry)
Where k is the lag and S (1) is the standard deviation of the autocorrelation.

In order to fit an ARIMA model stationary data in both variance and mean are needed. We
could attain stationary in the variance could be attained by having log transformation and
differencing of the original data to attain stationary in the mean. For our data, we need to
have seasonal first difference, d = 1 of the original data in order to have stationary series.
After that, we need to test the ACF and PACF for the differenced series to check stationary.

As a result of the above transformation now we test our data to see the differences between
those results and test as well. The below result shows enough information that our data is
stationary now;
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Data Hypotheses P-Value
Electricity Data in Erbil Ho: The seriests randomness 0.163
H;:The series is not randomness
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Figure 3: Time Series Plot of Transformed Data
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Figure 4: (a) Autocorrelation (ACF); (b): Partial Autocorrelation (PACF) for first order

seasonal differencing and de-seasonalized original electricity data

As shown in Fig. 4 the ACF and PACF for the differenced and de-seasonalized the data are
almost stable which support the assumption that the series is stationary in both the mean and
having 1st order seasonal

the variance after

difference.

Therefore, an ARIMA

(p,1,9) (P,1,0)*? model could be identified for the differenced and de-seasonalized
electricity data. After ARIMA model was identified above, the p, q, P and Q parameters need
to be identified for our model.
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6.2 Choosing the appropriate model

After stabilizing the time series around mean and variance, next we need to define
models by setting several values into the p, q, P and Q. The following is MSE values for 5
different models provided in Table 5.

Table 3 : Fitted Models andtheir MSE

Fitted Models MSE
ARIMA(1,1,1)x(1,1,1)12 with constant 22.7566
ARIMA(1,1,1)x(0,1,1)12 22.7532
ARIMA(0,1,0)x(1,1,1)12 23.5066 NS
ARIMA(L,1,0)x(1,1,0)12 27.4866
ARIMA(0,1,1)x(0,1,1)12 22.8582
ARIMA(L,1,0)x(0,1,1)12 23.0072
ARIMA(0,1,0)x(1,1,2)12 23.5095
ARIMA(0,1,1)x(0,1,2)12 22.8588

As shown from Table 5 there are several models fitted on the data and less value of MSE
indicates the more suitable model. However, there are other assumptions which the model
must meet such as, significant parameters, the randomness of residuals is the most important.
Thus, here we select ARIMA (1,1,1)x(0,1,1)12 as it does not have the smallest MSE but its
parameter is highly significant and we always look forward with the smallest

Table 4: Result of ARIMA (1,1,1) (0,1,1)12

Parameter Estimate Stnd. Error T P-value
AR(1) 0.241263 0.0581368 4.14992 0.000033
MA(1) 0.579839 0.0494229 11.7322 0.000000

SMA(1) 0.979969 0.00149198 656.824 0.000000

And the form of the above model can be written as followings;

(1= @1B)Vizze=(1 - 91[312)et
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6.3  Testing the Fitted Model

After identifying the model, it has to be tested whether it is appropriate for the data or not.
The most important part of doing this is to check the capability of the model how far it goes
with the original series. Thus, it can be reliable to predict future cases. Now, we test the
residual autocorrelation. Since all of the values inside the confidence interval, it means the
variable of residual autocorrelation function is randomness and thus the model is appropriate
for the data.

~1.96S(ry) < ps < 1.96 S(ry)

6.4  Goodness of Fit Test

This is the final step when one chooses the best fitted model is to check it mathematically
rather than looking at the autocorrelation function of the residual. We can test it again by Box
& Pierce. As p — value > 0.05 it means the model is good to be used for forecasting which
is explained in the next section. The Table illustrates the above discussion;

Table 5: Goodness of Fit Test for Fitted Model

Series Data Fitted Model Hypotheses P-Value

Hy: Fitted model approperiate

Electricity Data in Erbil | ARIMA(1,1,1)x(0,1,1)12 H,: Fitted model not apprperiate 0.348
Time Sequence Plot for AllData
ARIMA(1,1,1)x(0,1,1)12
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Figure (5): Forcasting plot of the estimated best fit model
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Residual Partial Autocorrelations for adjusted AllData
Residual Autocorrelations for adjusted AllData ARIMA(1,1,1)x(0,1,1)12
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Figure (6): ACF and PACF of residual model

Since all lags are within the two red lines from both graphs, it means that the lags are not
significant and that is what we are anticipating.

6.5 Forecasting

After diagnosing the fitted model and selected as the best one, final step comes
forward forecasting. This is the last part of modeling in time series analysis.

Table 6 : Predicted electricit usage based on the orginal data as well as estimated model

2019 Forecast Lowe_r 9_5.0% Uppel_r 9_5.0%
Limit Limit
Jan 1030.946 950.786 1107.61
Feb 1053.372 932.268 1119.75
Mar 1076.656 921.968 1130.13
Apr 1098.708 914.135 1140.04
May 1125.77 903.592 1145.02
Jun 1151.763 895.704 1151.95
Jul 1136.83 897.785 1170.07
Aug 1178.617 891.557 1177.39
Sep 1204.565 880.556 1178.07
Oct 1232.018 877.594 1188.13
Nov 1259.604 875.416 1198.7
Dec 1287.395 870.229 1205.02
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7  Conclusion

Time series analysis is an important tool in modeling and forecasting.
ARIMA(1,1,1) (0,1,1)12 model give us information that can help the decision makers
establish strategies, priorities and proper use of electricity resources in Erbil. This piece of
information is quite meaningful and appropriate to predict the exact monthly needed
electricity data. Therefore, it is worth mentioning that individual data should not be used in
decision making by depending on our model. However, an intervention time series analysis
can be tested to see if we can improve our model performance in forecasting the peak values
of electricity data.
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