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Abstract 

   In this paper the authors propose a group-lasso for sliced inverse regression (group lasso-SIR). This 

proposed method can deal with the problem of correlation existence between predictor variables. 

Simulation is used to investigate the performance of proposed method comparing with ridge and lasso 

in sliced inverse regression (lasso-SIR). The results show that the group lasso-SIR method is performs 

well comparing with other methods depending on Mean Square Errors (MSE) criterion.  
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 قسم الاحصاء –كلية الادارة والاقتصاد  -جامعة القادسية

 

يمكن أن تتعامل   .(SIR -المجموعة اللاسو) ، اقترح المؤلفون مجموعة لاسو للانحدار العكسي المقطوعالبحث في هذه  المستخلص:

 هذه الطريقة المقترحة مع مشكلة وجود الارتباط بين متغيرات التوقع. تم استخدام المحاكاة للتحقق من أداء الطريقة المقترحة بالمقارنة

جيد ا  للمجموعة تؤدي أداء   lasso-SIR أظهرت النتائج أن طريقة  .(lasso- SIR) مع التلال واللاسو في الانحدار العكسي المقطوع

 .(MSE) مقارنة بالطرق الأخرى اعتماد ا على معيار متوسط الأخطاء المربعة

، المجموعة  SIR -الكلمات المفتاحية: الانحدار العكسي المقطوع ، الانحدار التلال ، اللاسو الجماعي ، اللاسو الجماعي ، اللاسو

 .SIR -اللاسو
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1. Introduction  

Regression analysis models are among the most common statistical tools in social, 

economic and medical ... etc. applications. Therefore, it was necessary for researchers to find 

and develop several methods to estimate the parameters of these models. As well as the 

selection of important and influential factors in applied studies, especially for studies that 

contain large data and variables. Therefore, there is an increasing need to reduce the number 

of these variables effectively, taking into account the retention of all information within these 

variables, whether the variables clarification or responses. To achieve this goal Li introduced 

a Sliced inverse Regression (SIR) method (Li, 1991) to reduce dimensions and reduce the 

dispersion of data, in this model,  is estimated by the values of , i.e. the opposite of 

the usual regression. Which is divides the model into multiple slices by  values. In later 

years, researchers have developed and improved several methods in order to obtain accurate 

data analysis and better in SIR models. Li and Christopher proposed a method that combines 

the shrinkage of the lasso with SIR (Li and Christopher, 2006). Lixing et al. discussed the 

asymptotic behavior of the estimate of the central dimension-reduction space with high-

dimensional data (Lixing et al., 2006). Li and Xiangrong  introduced the SIR model based on 

the (OLS) method of SIR (Li and Xiangrong, 2008), the  regularization is introduced, and 

an alternating least‐squares algorithm is improvement. The robustness of sliced inverse 

regression were studied by Dikheel by proposing two robust methods (Dikheel, 2014). 

Alkenani and  Dikheel suggested sliced inverse quintile regression model (Alkenani and 

Dikheel, 2016). Li and Christopher used the Lasso-SIR method, which did not take into 

account the problem of correlations between explanatory variables (Li and Christopher, 

2006). The previous studies did not take in account the grouped correlation that may appear 

between explanatory variables. To overcome this problem we propose a group lasso with SIR 

to select the important variables within groups. 

   The reminder of this paper is organized as follows. In section 2 we present  SIR and their 

advantages. In section 3 we briefly introduce the concept of the methods lasso and group 

lasso. In section 4 we illustrate the SIR with group lasso. The results of the simulation study 

are discussed in section 5. A brief summarized conclusion is included in section 6. 

2. Sliced Inverse Regression (SIR) 

Li (1991) proposed the Sliced Inverse Regression model (SIR), which is one of the 

most common models for Sufficient Dimension Reduction (SDR) estimator. Finding a 

smooth regression function is the basis idea of SIR that operates on a variable set of 

projections. If we have a random vector of explanatory variables  and a response 

variable Y, the SIR model is the opposite of the classical regression. To study the relationship 

between the explanatory variables and the response variable , the model will be 

written as , this means that the response variable is  and independent variable is Y. 

The SIR is based on the following model: 

 

https://www.tandfonline.com/author/Zhu%2C+Lixing
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where   are unknown projection vector,   is a    

predictor vector,  is the random error with .  

   Equation 1 shows the model when the response variable  depend on the p- dimension. The 

SIR method divides the model into multiple slices according to   values, then combines the 

information of all slides. Also, the SIR is based on finding estimates of effective trends to 

serve as parameters, which is considered a method to processing the problem of dimensions. 

The SIR is calculated through some arithmetic methods and conversions (Härdle and Simar, 

2003). This can be explained in the following stages: 

Stage1:  is standardized by  

 ,             (2) 

where   is the mean and   is the covariance matrix of  . 

Stage2: The range of  is divided into H slices, . Then calculate 

, which refers to the proportion of  that fall in the slice 

, and  is the indicator function. 

Stage3: We compute the sample mean vector  of the   for each slice  as:   

                                     (3) 

Stage4: Use a principle component analysis for  by the following formula:  

,                              (4) 

then find the eigenvalues and eigenvectors of .  

Stage5: Let  represents the eigenvectors associated with the largest  

eigenvalues,  is transformed back to the original by the following: 

                                            (5) 

 represents the estimated Effective Dimension Reduction (E.D.R) directions.  

3. Lasso and group lasso 

   There are several new methods have emerged in recent years. Through which models 

and important variables can be selected. The most important characteristics of these 

methods are the identification and selection of important factors during the estimation 

process. One of these ways is Lasso (Least Absolute Shrinkage and Selection Operator) 

method proposed by Tibshirani (1996). It is an  penalized least squares regression, by it 

some of the coefficients are shrunk while the rest of them are exactly set to zero. This 

feature makes lasso enjoys good properties of best subset regression and ridge regression 
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(Hastie et al., 2001). Lasso is sead to be better than ordinary least squares (OLS) 

regression for two reasons: Firstly, an over specified OLS model often has little bias but 

large variance, adversely affecting its prediction accuracy. This can be improved by 

shrinking or setting to zero some coefficients. Secondly, a large number of insignificant 

coefficients may be included in OLS models, a little value is added to the model and 

complicating the interpretation of the effects. The lasso estimate of ,  

 

where  is called lasso penalty.  

   Zou (2006) suggested a new version of the lasso, called adaptive lasso, based on the 
adaptive weights, which in turn lead different penalization to different coefficients in the 

 penalty. The adaptive lasso can be defined as: 

             (7)                    

where ( , . . . , ) are the adaptive weights.  

Yuan and Lin (2006), suggested group lasso method. The main objective for it is to 

identify the common factors of groups by developing the lasso, the formula for the group 

lasso is: 

 

where is the design matrix,   represented the group sets and is the individual group,    

is the index set belonging to the  group of variables.  

4. Group lasso-SIR  

   Many researchers developed methods have emerged in recent to solve the problem of high-

dimensional data as well the selection of important variables such as, lasso, adaptive lasso, 

group lasso…etc.. These methods have been employed with many classical regression 

analysis models. Li and Christopher (2006), introduced the lasso with SIR. They proposed 

replacing, the OLS estimator in SIR algorithm with a lasso estimator, and  is the 

lasso constraint,  is the  coordinate of , and  is a given shrinkage factor. The SIR 

algorithm for their method for the  sparse SIR direction ,     

1. Set a value for , then initialize , the  SIR estimate.  

2. Find , where  refers to the sample estimate of 

 evaluated at , .  
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3.  is updated as the lasso solution with  as the response,  as the predictors, and the 

shrinkage factor .  

4.  is normalized as . If ,  orthonormalized such that  and 

, where , are the sparse SIR estimates of the first  

directions.  

5. steps 2-4 are repeated until  converges. Set . 

Here, we proposed to replace the lasso penalty with group lasso penalty in step (3) to get 

group lasso-SIR. 

 

5. Simulation study  

   To evaluate the performance of group lasso-SIR, we use the numerical study by a code 

written with R depending on Lasso SIR package. The results of this method are compared 

with ridge and lasso-SIR with several models depending on MSE. We suppose the number of 

predictors to be p=1000, while the correlation between predictor variables is taken to be 

(r=0.25, 0.50, 0.75), the sample sizes are (n=100, 150, 300), the non zero coefficients s are (5, 

10, 15, 20). For the regression model , we suppose  for the 

first s coefficients, zero otherwise.  is independently and identically distributed (i.i.d) with 

standard normal. First, we generate  as , where  and  is a 

standard normal distribution and  is generated as  , for , for 

, for , for , the predictor variables are generated 

as  for j=1:5,  for j=6:12, and     for j>=12. The simulated 

samples are repeated 500 times to reach stable results. 

Case1: 500 simulated samples are generated for s=20 and the results are included in Table1: 

Table 1: MSE results for the used methods when s=20. 

n r ridge lasso-SIR group lasso-SIR 

100 

.25 0.9156187 0.6579719 0.5437485 

.5 3.088036 2.667877 2.409792 

.75 2.711442 2.310508 2.281719 

150 

.25 0.5222085 0.3522492 0.3300406 

.5 0.7642423 0.5362527 0.4245361 

.75 1.541709 1.293854 1.082153 

300 

.25 0.9799152 0.8655148 0.7718458 

.5 0.1767782 0.1641021 0.1259184 

.75 1.944356 1.613517 1.468753 

Case2: The same as Case1 except s=15 and the results are included in Table2: 
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Table 2: MSE results for the used methods when s=15. 

n R ridge lasso-SIR group lasso-SIR 

100 

.25 1.084368 0.8718594 0.5176119 

.5 1.481249 1.213465 1.191358 

.75 2.16188 1.739144 1.434361 

150 

.25 1.05884 0.8650053 0.7217975 

.5 1.142425 0.9611598 0.9027045 

.75 1.492051 1.169872 0.9427215 

300 

.25 0.4947488 0.3839826 0.3704343 

.5 0.8336184 0.7398179 0.5827363 

.75 1.076618 1.003812 0.7756428 

Case 3: The same as Case1 except s=10 and the results are included in Table3: 

Table3: MSE results for the used methods when s=10. 

N R ridge lasso-SIR group lasso-SIR 

100 

.25 0.7036851 0.3935908 0.4061151 

.5 0.6723328 0.4613948 0.4408378 

.75 1.841008 1.182484 1.161038 

150 

.25 0.5041425 0.4297877 0.371805 

.5 0.4743354 0.2549559 0.2130783 

.75 2.57582 2.152348 1.70304 

300 

.25 0.2495151 0.1850454 0.1734728 

.5 0.4158943 0.2916982 0.2165369 

.75 0.6822518 0.5554065 0.370098 

Table 1, Table 2, and Table 3 show that the group lasso-SIR gives good performance 

when s=20, 15, 10 in comparison with other methods for all used samples and correlations. 

Furthermore, the results show that the MSE decreases when the sample size increases, while 

the MSE values increases when the correlation values decrease.    

Case 4: The same as Case1 except s=5 and the results are included in Table4: 

Table 4: MSE results for the used methods when s=5. 

n r ridge lasso-SIR group lasso-SIR 

100 

.25 0.4651417 0.1696405 0.1897502 

.5 0.5027688 0.2309072 0.2411894 

.75 0.9814881 0.2718451 0.2853204 

150 

.25 0.3199197 0.1559372 0.1918986 

.5 0.1204836 0.07101108 0.09445693 

.75 0.1401998 0.07905097 0.0809922 

300 

.25 0.2283673 0.1579774 0.1644473 

.5 0.1524528 0.1098665 0.1147017 

.75 0.1271715 0.07357599 0.07467907 

In Table 4 , when s=5, we note that the lasso-SIR has the smallest MSE for all 

sample sizes and correlations except when n=100 and r=.25 which the group lasso-SIR is the 

best. Also, in this case the MSE values decrease when the sample sizes increase. Whereas, 

the MSE values increases when the correlation values decrease. This different behavior 

belong to remove the groups case because the zero values of beta include only the first group.    
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6. Conclusion  

The correlated predictor variables stand as a serious problem in variable selection 

methods. In current paper we proposed group lasso-SIR, this new method is compared with 

ridge and lasso-SIR by using several simulation cases. To judge the group lasso-SIR 

performance, we build numerical data which is simulating what we describe in previous 

sections. Based on results and MSE criterion we conclude that group lasso-SIR do well when 

the non zero coefficients, represented by s, increasing to include all groups of case of 

correlated predictor variables. Furthermore, we conclude that the lasso-SIR gives best results 

in case of small value of s because the groups are removed in this case. Consequently, the 

authors believe that group lasso-SIR can give a good  results in practice when the predictors 

are correlated. Also, the graphical lasso-SIR, robust lasso-SIR, and robust group lasso-SIR 

can be a future works in this sense. 
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