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Abstract:

Let R be a 2-torsion free semiprime ring and F: RXR— R be a symmetric Bi-additive
mapping. The purpose of this paper is to prove the following results:

(1) If F(4, y)= F(x, y)x fulfilled for all x,y €R, then F is a symmetric left Bi-
centralizer. (2) If F(xwx, y) = x F(w, y) x fulfilled for all x,y, w €R, then F is a
symmetric Bi-centralizer (3) Let R be a 2-torsion free semiprime ring with an identity
element and F:RxR— R be a symmetric Bi-additive mapping such that F(, y) = x
F(x, y)x fulfilled for all x,y €R, then F is a symmetric Bi-centralizer

Key words: Semiprime ring, A symmetric al left (right) Bi-Centralizer, A symmetric
al left (right) Jordan Bi-Centralizer, A symmetric al Jordan Bi-Centralizer.

Introduction:

This note motivated by the work of
J. Vokman [1] and B. Zalar [2].
Throughout, R will represent an
associative ring with the center Z(R). A
ring R is said be n-torsion free if nx=0,
X€R implies that x=0 [3]. Recall that R
is prime if aRb=(0) implies a=0 or
b=0, and semiprime if aRa=(0)
implies a=0 [4]. We write [X, y] for the
commutator xy - yx and make
extensive use of the commutator
identities [xz,y] =[x, y]z +
X[z, y1 .+ [ yz] =[x, ylz + y[x, z]. An
additive mapping T:R —» R is called a
left (right) centralizer in the case
T(xy)=T(X) y (T(xy) = xT(y)) fulfilled
for all x,y €R. We follow Zalar [5] and
call T centralizer in case T is both a left
and right centralizer. An additive
mapping is called a left (right) Jordan
centralizer in case T(x%)= T(x) x (T(x)
=x T(x)) for all x €R. Zalar in [2] has
proved that every left (right) Jordan
centralizer on a semiprime ring of
characteristic not two is a left (right)
centralizer. In [6] Vokman proved that
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if R is a 2-torsion free semiprime ring
and T:R—= R is an additive mapping
such that 2T(x%) = T(X)x +x T(x)
fulfilled for all x €R, then T is
centralizer.

In [5] Vokman and Kosi proved that
if R is a 2-torsion free semiprime ring
and T:R—= R is an additive mapping
such that 2T(xyx) = T(X)yx + xy T(X)
fulfilled for all x,y €R, then T is
centralizer. In case R has an identity
element then an additive mapping T:
R — R is a left (right) centralizer if and
only if T is of the form T(x)=ax
(T(x)=xa) for some a€R. In this paper
we generalize this result to a left (right)
Bi-Centralizer.

A Bi-additive mapping B:RxR— R
is called symmetric if B(x, y) = B(y, x)
for all pairs x,y € R [7]. We introduce
the following concept: A symmetric
Bi-additive mapping F: RXR— R is
called a symmetric left (right) Bi-
Centralizer in case F(xz, y) = F(X, y)z
(F(xz, y) = xF(z, y)) fulfilled for all
X,y,Z €R, while F is called symmetric
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left (right) Jordan Bi-Centralizer in
case FO3Z, y) = F(x, y)x (F(, y) =
XF(x, y)) fulfilled for all x,y €R. The
symmetric Bi-additive mapping F is
called a symmetric Bi-Centralizer in
case F is both a left and right
symmetric Bi-Centralizer. Similarly we
define the symmetric Jordan Bi-
Centralizer. Every a symmetric Bi-
Centralizer is a symmetric Jordan Bi-
Centralizer. The converse is in general
not true.

1. Preliminaries
Following Lemmas are essential for

developing the proofs of our main
results.

Lemma 2.1: [8]

Let R be a semiprime ring. If a,b €R
are such thatax b =0, forall x e R,
then ab=Dba=0.

Lemma 2.2: [2]

Let R be a semiprime ring and G, F:
RXR— R be a Bi-additive mappings. If
G(x, ¥) w F(x, y) =0, for all x,y, w €R,
then G(x, y)w F(u, v)=0, for all
X,Y,u,v, w €ER.

Lemma 2.3: [2]

Let R be a seiprime ring and a €ER
some fixed element. If a [x, y] =0 for
all x,y €R , then there exists an ideal U
of R such that a eUcZ.

Lemma 2.4: [9], [1]

Let R semiprime ring, suppose that axb
+ bxc holds all x €R and some

a,b,c eR. Inthiscase (a+c)xb=01s
satisfied for all x €R.

Also, we see it be useful to introduce
the following Lemma.

Lemma 2.5:
Let R be a ring with identity. then a
symmetric Bi-additive ~ mapping

F:RXR— R is a symmetric left (right)
Bi-centralizer if and only if F is of the
form F(x, y) = ayx (F(x, y)= xya) for
some fixed element a €R.
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Proof: Suppose T is a symmetric left
Bi-centralizer:
F(xz,y)=F(x,y) z

=F(1x¥y)z =F(@1,y)xz

=F(ly, 1) xz=F(1, 1)yxz

= ayxz , where a stands for F(1, 1)

Hence F(xz,y)=ayxz forall
X,y,Z €R.
Taking z =1 leads to:

F(x, y) =ayx , for all x,y €R.
Conversely, suppose F(x, y) = ayx for
all x,y €R then

F(xz, y)=ayxz = (ayx )z =F(X, y) z
Hence F is a symmetric left Bi-
centralizer.

In similar arguments as above, we can
prove F is a symmetric right Bi-
centralizer if and only if F(x, y)=xya.m

2. Main results
Theorem 3.1:

Let R be a 2-torsion free semiprime
ring and F :RXR— R be a symmetric
Bi-additive mappings. If F(X, y) =
F(x, y)x fulfilled for all x,y €R then F
is a symmetric left  Bi-Centralizer
Proof: We have
F(x*y)= F(x,y)x for all x,y €R. (1)
Replacing x by x+w in (1) we get:
F(xw+wx,y) =F(x,y) w + F(w,y) X
(2)

The substitution x%instead of x in (2),
and using (1) on the relation so
obtained gives:

F(XPw+wx®,y) = F(x,y)xw + F(w,y)
x* for all x,y, w €R. (3)
Putting xw+wx for w in (2), and using
(2) we arrive at:

F(Xx(xw+wx) + (Xw+wX)X, y)=
F(X,y)xw +2 F(x,y)wx+ F(w,y)x* for
all x,y,w €R. (4)

This can be written as:

F(XCw+wx® | y) +2F(xwX, y)= F(x,
y)Xw + 2 F(X, Y)wx +F(w, y) x> (5)
Comparing (3) and (5) leads to:
F(xwx, y)= F(X, y) wx for x,y,w €R.
(6)

The linearization of (6) with respect to
X gives:
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F( xwz+zwx, y)= F(X ,y)wz + F(z,
y)wx forall xy,w €R.
Now we shall compute F(Xxwzwx
+ wXzXw, Y) in two different ways. The
first one by using (6), we see:
F(Xwzwx + wxzxw, ¥) = F(X, Y)wzwX
+ F(w, y)XzXw (8)
Also using (7) leads to:
F(XwzwXx + wxzxw, ¥) = F(Xw, y)zwX
+ F(wX, Y)ZXw 9)
Comparing (8) and (9) we have:
(F(xw, y) = F(x, y)w ) zwx +(F(wX, y)
+ F(w, y)x ) zxw =0, for all x,y,w €R.
(10)
According to (2) one can replace
(F(wx, y) + F(w, y)x) by -(F(xw,y) -
F(x, y)w) in (10), so we have:
(F(xw, y) - F(x, y)w) z [X, w] =0, for
all x,y,w €eR.

Without lose the generality we fix
some y €R and define
M(X, w)=F(xw,y) — F(X, y)w,
then the above relation reduces to:
M(X, w) z [X, w] =0, forall x,y,w €R.
Using Lemma (2.2), the above relation
can be given as:
M(X, w) z [u, v] =0, for all x,y,w €R.
(11)
Now, fix some X, w €R and let M
represent to M(x, w), then by Lemma
(2.1) the relation (11) becomes:

M [u, v] =0, for all x,y,w €R.
An application of Lemma (2.3) on the
above relation we see that there exist
an ideal U of R satisfies M € U c Z(R).
In particular rM , Mr €Z(R) for r €R.
This gives us:

X.M?w = M*wx = w M?X = w.M*
This gives that 4F(x.M’w, y) =
4F(w.M?x, y), both sides of this
equality will be computed in few steps
using (2) and the above remarks.
2F(x M°w + Mwx, y) = 2F(wM?x +
M , y)
2F(x, Y)M’w + 2F(M?w, y)Xx = 2F(w,
yIMX + 2F(M?X, Y)w
2F(x, Y)M’w + F(M?w + w M?, y)x =
2F(w, )M + F(M*X + xM?, y)w

(1)
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2F(x, y)M?w +F(M, y)Mwx +F(w,
YIM?X = 2F(w, Y)M*X +F(M, y)M xw
+F(X, y)M?w
F(X, Y)M?w + F(M, y)Mwx =
yIM2X +F(M, )M xw
But Mwx = Mw.Xx =X.Mw = xMw =M
Xw, therefore we arrive at:
F(x, Y)M?w = F(w, y)M?x (12)
On the other hand we have:
4F(xwM?, y) = 4F(xM.wM, y)
2F(xwM? + MXw, y) = 2F(XM.wM +
wM xM., y)
2F(xw, Y)M? + 2F(M, Y)M xw =
2F(Mx, yYYMw + 2F(Mw, y)MXx
2F(xw, y)M? + 2F(M, y)M xw = F(xM
+ MX, Y Mw + F(wM + Mw, y)Mx
2F(xw,  YM*+2F(M, yYM  xw
=F(x,y)M’w+F(M, yWM xo +F(w,
YIM?X +F(M, )M xw
2F (xw, Y)M? = F(x,y)wM? + F(w,
y)XM?
In view of (12) the above relation
reduces to F(xw, Y)M*= F(x, y)wM?
consequently we conclude that M* =0.
The fact that R is semiprime ring leads
to M°RM? = M*R =0, which means M?
=0.
Also, MRM = M?R =0 implies that M
=0 and hence:
F(xw, y) = F(X, y)w, forall x,y,w €R
|
Theorem 3.2:

let R be a 2-torsion free semiprime
ring and F: RXxR— R be a symmetric
Bi-additive mappings. If F(x* y)= x
F(x, y) holds for all x,y €R, then F is a
symmetric right Bi-Centralizer .

Flw,

Theorem 3.3:

Let R be a 2-torsion free semiprime
ring and F: RxR— R be a symmetric
Bi-additive mapping. Suppose F(xwx,
y) =X F(w, y) x holds for all x,y, w €R,
then [F(x ,y), x]=0.

Proof: For any Xx,y, w €R, we have:
F(xwx, y) = x F(w,y) x holds for all
Xy, w €R. 1)

Putting x + u for x in (1) and using (1),
we obtain:
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F( xwu+tuwX, y) =x F(w,y)u+ u
F(w, y) X (2)

Setting w= x and u= w in (2) we get:
F(Xw+wx,y) =X F(X, Y) o + wF(x
y) x forall xy, w €R (€))
For u=x the relation (2) reduces to:
F(xoxX*+x°wx , y) = x F(w, y) X3 + X3
F(w,y) x forall x,y, w €R 4)
Putting xwx for w in (3), we see:
F(xwxX*+xX2wX , y) = X F(X, y)XwX +
xwX F(x, y) x forall x,y, w €R (5)

The substitution X’w+wx® for w in (1)
gives:

F(xox*+x%wx , y) = X F(Xw+wx® , )
x forall x,y, w €R

In view of (3) the above relation gives:
F(xwx3+xwx , y) = X% F(X, y)wX + Xw
F(x, y) x* for all x,y, w €R (6)
Combining (5) with (6) we get:

X[F(X, y) , X] wx - xw[F(X, y), x]x=0,
forall x,y, w €R @)

The application of lemma (2.4) on (7)
gives:

[[F(x, ), x], X] wx =0 for all x,y, w €R
(8)

Replacing w by w[F(x, y) , X] in (8)
gives:

[[F(x.y), X1, x] w[F(X,y), X] x =0, for
all x,y, w €R 9)

Right multiplication of (8) by [F(x, y),
X] implies that:

[[F(x, y) X] X] wx [F(x,y),x] =0, for
all x,y, w €R (10)
Subtracting (10) from (9) we arrive:
[[F(x, ¥), X1, X] w [[F(x, ¥), x], X] =0,
for all x,y, w €R.

By semiprimness property of R we
conclude:

[[F(x, y), x], X]
(11)

The next our task is to prove:

X [F(x, y),x] x =0, for all xyE€R.
(12)

The linearization of (11) with respect
to x gives:

[[F(x y), x], o]+[[F(x y), w], X
+[[F(w, y), x], x] +[[F(w,y), X], w] +
[[Flw, y), 0], X] +[[FX y), 0], w]
=0, for Xy, w €R.

=0, for all x,y€eRrR .
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Putting —x instead of x in the last
relation and comparing the relation so
obtained with it gives:

[[F(x, ¥), x],w] + [IF(x y), ], X]
+[[F(w, ¥), X] , x] =0, for all
Xy, w €ER. (13)

Putting xwx instead of w in (13) and
using (1) ,(11) and (13) we see:

0= x[[F(x, y), x], w]x + [[F(x, y), X]
wX + X[F(X, ¥), w]x + wx[F(X, Yy), X],
X] +

[X[F(w, y), ] X, X]

= X[[F(x y).x], w]x +[F(x, y), X][w,
XIx + X[[Fx, y) ,w], X]x+ Xw,
X[F(x, y), x]+

X[[F(w, y), X], XIx

=] [F(x y) X][w, X]x + X[, X][F(X, ),
X

= [F(x, y), X]wx* - Xw[F(x, y)x]+
XwX[F(X, y), X]- [F(X, y), X]xwXx

Hence [F(x,y), xJoxX* - X*w[F(X, Y),
X]+ xwX[F(X, ¥), X]- [F(X, ¥), X] Xwx
=0

Now, using (7) and (11) we have:
XwX[F(x, y), x]- [F(X, y), X] xwx =
[[F(x, y).x 1, X] wx =0

Therefore the last relation reduces to:
[F(xy), XJwx? - X*w[F(x, y), ] =0, for
all x,y, w €R.

Left multiplication of
relation by x gives:
X[F(x, ), X]wx? - Xw[F(x, y), X] =0,
forall x,y, w €R. (14)
According to (7) ,one can replace
X[F(X, y), X]wx by xw[F(x, y), X]x, so
relation (14) can be given by:

xw[F(x, y) X] ¥* - Xw[F(x, y), x] =0,
forall x,y, w €R. (15)

The substitution F(x,y)w for w in (15)
leads to:

X F(x, Y)w [F(x ), X] ¥* - X% F(X, y)w
[F(x, y), x] =0, for all x)y, w €R.
(16)

Now, left multiplication of (15) by F(x,
y) and subtracting (16) from the
relation so obtained gives:

[F(x. ¥) X1 wF(x y), X] x*[F(x, y),
x°] w[F(x, y), x]=0, for all x,y, w €R.

the above



Baghdad Science Journal

\Vol.12(4)2015

Application of lemma (2.4) on the
above relation leads to:

([F(X! y)! X3 ]- [F(X! y)l X] X2 )a)[F(X:
y), X]=0, for all x,y, w €R.

By using the identity [Xx, yz]=y[Xx,
Z]+[x, y]z the last relation reduces to:
(DI, ), X1 +X[F(x, ), X]X) @[F(x,
y),x]=0, for all x,y, w €R.

But the relation (11) means that x[F(x,
y) X1= [F(x, y), X]Ix.

So we can replace X’[F(x, y) ,x] by
X[F(x, y) X]x and the above relation
becomes:

X[F(x, ¥), X]x w [F(X, y), X] =0, for all
Xy, w €R.

Right multiplication of the above
relation by x and substitution wx for w
leads to:

X[F(x, ¥), X] xwx [F(X, y), x]x =0, for
all x,y, w €R.

Since R is semeiprime ring, hence the
relation (12) follows.

The next step is to prove the relation

X [F(x, y), x] =0, for all x,y, w €R.
(17)

The substitution wx instead of w in (7)
gives in view of (12)

x [F(x, y), x] wx® =0, for all x,y, w €R.
(18)

Putting w[F(x, y), x] for w in (18)
leads to:

X[F(x, ¥), X]w F(x, y)x* =0, for all
Xy, w €R. (19)

Right multiplication of (18) by F(x, y)
and subtracting the relation so obtained
from (19) gives:

X[F(x, y), xX] w[F(x, y), x?] for all
Xy, w €R.

Thatis X [F(x, ¥),X] @ ([F(x, y), X]x
+ x[F(x, y), X]) =0, for all x,y, w €R.
Again, according to (11) one can
replace [F(x, y), X]x in the last relation
by x[F(x, y), x] which leads to:

X[F(X, ¥), X] wx [F(x, y), x] =0, for all
Xy, w ER .

Hence x [F(x, y), X] =0, for x,y €R and
consequently from (11) we conclude
that

[F(x,y), X] x =0, for all x,y €R
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Now, using similar techniques on the
above relation as used to get (13) form
(11) we arrive:

[F( y), x] o + [F(x, y), w]x + [F(w,
y), X]x =0, for all x,y, w €R.

Right multiplication of the above
relation by [F(x,y), x] gives in view of
(17)

[F(x, ¥), X] w [F(x ,y), X] =0, for all
Xy, w €R .

Since R is a semiprime ring, then the
proof of the theorem is complete.
|

Theorem 3.4:
Let R be a 2-torsion free semiprime
ring and F:RXR— R be a symmetric
Bi-additive mapping. Suppose
F(xwx,y) = xF(w,y)x holds for all
XY, w €R, then F is a symmetric Bi-
Centralizer .
Proof: For any x,y, w €R, we have:
Fxwx, y) = x Fw, vy x
(1)
The linearization of (1) with respect x
gives:
F(xwu+uwX, ¥)=X F(w, Y)u + u F(w,
y)x forall x,y,u,w €R. (@)
Taking u=x? in the above relation leads
to:
F( xwx?+X°wx, y) = X F(w, y) X* + X
F(w, y) x forall x,y, w €R. (3)
The substitution xw+wx for w in (1)
gives:
F(Cwx+xwx’ , y) = x F(xw+wX, y) X
forall x,y, w €R. 4)
Comparing (3) and (4), we arrive at:
X u(x, w,y) x=0 forall x,y, w €R. (5)
Where u(x, w,y) stands for F(xw+wx
) y) - F(a), y) X-X F((U, y)
The linearization of (5) with respect x
gives:

Xpu(x,w,y) ut xp(u,, y)x+ upu(x
, )X+ Xu(u,w, y)u+uulX,w,y)u
+uu(u,w, y)x=0, for all x,y,u, w €R.
(6)
Putting -x instead of x in (6) and
comparing the relation so obtained
with it, we arrive at:
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xu(X, wy) u + x u(u,wy) x + u
u(x, w,y)x =0, for all x,y,u, w €R.
(7)

Right multiplication of the above
relation by u(x ,w, y)x gives because of
(5):

X u(X ,w,y) u pux,w, y)x =0, for all
XY, w €R. (8)

The next our task is to prove:

[u(x, w ,y), x] =0, for all x,y, w €R.
(9)

Now, by Theorem (3.3) we have:

[F(x, ¥), x] =0, for all xy €R .
(10)

Linearization of the above relation
with respect to x gives:

[F(x, ¥), w] + [F(w ,y), X] =0 for all
Xy, w €R. (11)

Putting Xw+wx for w in (11), we get:
[F(x, ¥), xw+wX)] + [FXw+wX, Y), X
1=0, for all x,y, w €R.

That is

x[F(xy), o]+

[F(x,y), w]x+[F(xw+wX, y), X]=0, for
all x,y, w €R.

According to (11) one can replace
[F(x,y), w] by -[F(w,y), X] =0, so the
last relation gives:

[F(xw+wX, y), X] - X[F(w.y), X] -[F(w,
y) X]x =0, forall x,y, w €R.

This can be written as:

[F(xw+wx, y) - X F(w,y) - F(w,y) X, X]
=0, for all x,y, w €R.

Hence the relation (9) follows.

Now, in view of (9) the relation (8) can
be given by:

uX,w, y)x uuXxw, y)x =0 for all
X,Y,u, w €R.

The semiprime property of R leads to:
u(x,w, y) x =0, for all xy,w €R.
(12)

Also, according to (9) we arrive at:
xu(X,w, y) =0 for all xyw €R.
(13)

The linearization of (12) with respect
to x gives:

uX,w, y) u + uX,w, y) x =0 for all
X,Y,U, w €R.
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Right multiplication of the above
relation by u(u, w,y) and using (13) on
the relation so obtained yields:

uX,w, y) u uXxw, y) =0 for all
Xy, w €R.
Therefore  u(X,w, y) =0  for all
Xy, w €R.
That is Fxw+wx,y) = F(w, y) X

+ X F(w, y) forall x,y, w €R.

As particular for w = x the above
relation gives:

2F(X%, y)= F(x, y) x + x F(x, y) for all
X,y €R.

In view of (10) the above relation
reduces to :

F(X% y) = F(x, y) x and F(X, y) = x
F(x, y) for x,y €ER

Using Theorems (3.1) and (3.2) it
follows that F is symmetric Bi-
Centralizer. ]

Now, if we taking w=x in the relation
(1), we obtain:

FOC, y) = x F(x, ) x, for all x,y, €R.
The question is whether in a 2-torsion
free semiprime ring the above relation
implies that F is a symmetric Bi-
Centralizer. The answer, it's not true in
general unless R be a ring with an
identity element. In order to prove this
fact, we introduce the following result.
Theorem 3.5:

Let R be a 2-torsion free semiprime
ring with identity, and let F:RxR— R
be a symmetric Bi-additive mapping
such that F(x*, y)= x F(x, y) x holds for
all x,y €R, then F is a symmetric Bi-
Centralizer.

Proof: we have

FOC, y)= x F(x, y) x, for all x,y €R. (1)
Putting x+1 for x in (1), where 1 is the
identity element, we get:

3F(X%, y) +2F(x, y) = F(X, y)x +x F(x,
y) + x F(1, y)+ F(1, y)x +x F(1, y)x
(2)

Replacing x by -x in (2) gives:

3F(, y) - 2F(x, y) = F(X, y)X +x F(X,
y) - x F(1,y)- F(1, y)x +x F(1, y)x for
X,y €R.



Baghdad Science Journal

\Vol.12(4)2015

Comparing (2) with the above relation,
we arrive at:

6F(X%, y) = 2F(x, y)x + 2xF(x, y) + 2x
F(1, y)x forall x,y €R. (3)

Also, comparing (2) with (3) implies
that :

2F(x, y) = F(1, y) x+ x F(1, y) for all
X,y €R. 4

The substitution x* for x in (4) leads to:
2F(X%, y) = F(1, y) X* + X* F(1, y), for
all x,y €eR. (5)

In view of (4), (5) and the fact that R is
a 2-torsion free the relation (3) reduces
to:

F@1,y) x>+ x* F(1, y) - 2x F(1, y)x =0,
for x,y €R.

This relation can be written as:
[[F(1,y),x],x] =0, forall x,y €R.
The linearization of the above relation
with respect to x gives:

[[F(,y), x], 2] + [[F(,y), 2], x] =0,
for all x,y,z €R. (6)

Putting xz instead of z in (6) leads to:
[[F(, y), x] , xz]+[[F(1, y), xz], ] =0
x [[F@, y), X1, 2] + [[F(@,y), ]z +
X[F(,y),z],x] =0.

X [[F(1,y),x], 2] + [[F(1,y), x]z, x] +
[x[F(1,y).z].x] =0

x[F(y), x], 2] + [F(1,y), x][z, x] +
X[F(1,y),z],x] =0, forall x,y,z €R.
According to (6), the above relation
reduces to:

[F(1,y), x][z, X] =0, forall x,y,z €R.
The substitution zF(1, y) for z in the
above relation gives:

[F(1,y), x] z[F(1,y), x] =0, for all
X,Y,Z €R.

Using the semiprimeness property of R
implies that:

[F(1,y), x] =0, forall x,y, ER

That is F(1, y) €Z for all y €R, hence
the relation (4) reduces to:

Fix, y) = F(1, y) x = x F(, y) for
X,y €R. (7)

On the other hand, in view of (1) and
the symmetry of F we have:

F(x, y’) =y F(x,y)y forall x,y €R.
Using the similar techniques as used on
(1) to get the relations (7) we arrive at:
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F(x, y) = F(x, 1) y =y F(x, 1), for
X,y €R. (8)

Taking x =1 in (8), we get:

F(1, y)= ay = ya , where a stands for
F(1, 1). 9)

Combining the relations (7) and (9)
leads to:

F(x,y) = ayx = xya , for x,y €R.

Using Lemma (4.5) we obtain the
required results. ]
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