Symmetric Bi-Centralizers on Semiprime Rings

Auday H. Mahmood

Eqbal J. Harjan

Mathematics Department, College of Education, Al-Mustansiriyah University.

Received 14, May, 2014 Accepted 5, February, 2015

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licens</u>

Abstract:

Let *R* be a 2-torsion free semiprime ring and $F: R \times R \to R$ be a symmetric Bi-additive mapping. The purpose of this paper is to prove the following results:

(1) If $F(x^2, y) = F(x, y)x$ fulfilled for all $x,y \in R$, then F is a symmetric left Bicentralizer. (2) If $F(x\omega x, y) = x F(\omega, y) x$ fulfilled for all $x,y,\omega \in R$, then F is a symmetric Bi-centralizer (3) Let R be a 2-torsion free semiprime ring with an identity element and $F:R\times R\to R$ be a symmetric Bi-additive mapping such that $F(x^3, y) = x$ F(x, y)x fulfilled for all $x,y \in R$, then F is a symmetric Bi-centralizer

Key words: Semiprime ring, A symmetric al left (right) Bi-Centralizer, A symmetric al left (right) Jordan Bi-Centralizer, A symmetric al Jordan Bi-Centralizer.

Introduction:

This note motivated by the work of J. Vokman [1] and B. Zalar [2]. Throughout, R will represent an associative ring with the center Z(R). A ring R is said be n-torsion free if nx=0, $x \in R$ implies that x = 0 [3]. Recall that Ris prime if aRb=(0) implies a=0 or and semiprime if aRa=(0)implies a=0 [4]. We write [x, y] for the commutator xy - yx and make extensive use of the commutator identities [xz, y] = [x, y]z +x[z, y], [x, yz] = [x, y]z + y[x, z]. An additive mapping $T:R \to R$ is called a left (right) centralizer in the case T(xy) = T(x) y (T(xy) = xT(y)) fulfilled for all $x, y \in R$. We follow Zalar [5] and call T centralizer in case T is both a left and right centralizer. An additive mapping is called a left (right) Jordan centralizer in case $T(x^2) = T(x) x (T(x^2))$ =x T(x)) for all $x \in R$. Zalar in [2] has proved that every left (right) Jordan centralizer on a semiprime ring of characteristic not two is a left (right) centralizer. In [6] Vokman proved that

if R is a 2-torsion free semiprime ring and $T:R \to R$ is an additive mapping such that $2T(x^2) = T(x)x + x T(x)$ fulfilled for all $x \in R$, then T is centralizer.

In [5] Vokman and Kosi proved that if R is a 2-torsion free semiprime ring and $T:R \to R$ is an additive mapping such that 2T(xyx) = T(x)yx + xy T(x) fulfilled for all $x,y \in R$, then T is centralizer. In case R has an identity element then an additive mapping $T:R \to R$ is a left (right) centralizer if and only if T is of the form T(x)=ax (T(x)=xa) for some $a\in R$. In this paper we generalize this result to a left (right) Bi-Centralizer.

A Bi-additive mapping $B:R\times R\to R$ is called symmetric if B(x, y) = B(y, x) for all pairs $x,y\in R$ [7]. We introduce the following concept: A symmetric Bi-additive mapping $F: R\times R\to R$ is called a symmetric left (right) Bi-Centralizer in case F(xz, y) = F(x, y)z (F(xz, y) = xF(z, y)) fulfilled for all $x,y,z\in R$, while F is called symmetric

left (right) Jordan Bi-Centralizer in case $F(x^2, y) = F(x, y)x$ ($F(x^2, y) = xF(x, y)$) fulfilled for all $x,y \in R$. The symmetric Bi-additive mapping F is called a symmetric Bi-Centralizer in case F is both a left and right symmetric Bi-Centralizer. Similarly we define the symmetric Jordan Bi-Centralizer is a symmetric Bi-Centralizer is a symmetric Jordan Bi-Centralizer. The converse is in general not true.

1. Preliminaries

Following Lemmas are essential for developing the proofs of our main results.

Lemma 2.1: [8]

Let R be a semiprime ring. If $a,b \in R$ are such that $a \times b = 0$, for all $x \in R$, then ab=ba=0.

Lemma 2.2: [2]

Let *R* be a semiprime ring and *G*, *F*: $R \times R \rightarrow R$ be a Bi-additive mappings. If $G(x, y) \omega F(x, y) = 0$, for all $x, y, \omega \in R$, then $G(x, y) \omega F(u, v) = 0$, for all $x, y, u, v, \omega \in R$.

Lemma 2.3: [2]

Let R be a seiprime ring and $a \in R$ some fixed element. If a [x, y] = 0 for all $x,y \in R$, then there exists an ideal U of R such that $a \in U \subset Z$.

Lemma 2.4: [9], [1]

Let *R* semiprime ring, suppose that axb + bxc holds all $x \in R$ and some $a,b,c \in R$. In this case (a + c)x b = 0 is satisfied for all $x \in R$.

Also, we see it be useful to introduce the following Lemma.

Lemma 2.5:

Let R be a ring with identity. then a symmetric Bi-additive mapping $F:R\times R\to R$ is a symmetric left (right) Bi-centralizer if and only if F is of the form F(x, y) = ayx (F(x, y) = xya) for some fixed element $a \in R$.

Proof: Suppose *T* is a symmetric left Bi-centralizer:

$$F(xz, y) = F(x, y) z$$

$$= F(1.x, y)z = F(1, y) xz$$

$$= F(1.y, 1) xz = F(1, 1)yxz$$

$$= ayxz, \text{ where } a \text{ stands for } F(1, 1)$$
Hence $F(xz, y) = ayxz$ for all $x, y, z \in R$.

Taking z = 1 leads to:

F(x, y) = ayx, for all $x, y \in R$. Conversely, suppose F(x, y) = ayx for all $x, y \in R$ then

F(xz, y) = ayxz = (ayx)z = F(x, y)zHence F is a symmetric left Bicentralizer.

In similar arguments as above, we can prove F is a symmetric right Bicentralizer if and only if F(x, y)=xya.

2. Main results Theorem 3.1:

Let R be a 2-torsion free semiprime ring and $F: R \times R \to R$ be a symmetric Bi-additive mappings. If $F(x^2, y) =$ F(x, y)x fulfilled for all $x,y \in R$ then Fis a symmetric left Bi-Centralizer Proof: We have $F(x^2, y) = F(x, y)x$ for all $x, y \in R$. (1)

Replacing x by $x+\omega$ in (1) we get: $F(x\omega+\omega x, y) = F(x,y) \omega + F(\omega,y) x$ (2)

The substitution x^2 instead of x in (2), and using (1) on the relation so obtained gives:

$$F(x^2\omega + \omega x^2, y) = F(x,y)x\omega + F(\omega,y)$$

x² for all x,y, \omega \in R. (3)

Putting $x\omega + \omega x$ for ω in (2), and using (2) we arrive at:

 $F(x(x\omega+\omega x) + (x\omega+\omega x)x, y) =$ $F(x,y)x\omega + 2 F(x,y)\omega x + F(\omega,y)x^2$ for all $x,y,\omega \in \mathbb{R}$. (4)

This can be written as:

$$F(x^2\omega + \omega x^2, y) + 2F(x\omega x, y) = F(x, y)x\omega + 2F(x, y)\omega x + F(\omega, y)x^2$$
 (5)
Comparing (3) and (5) leads to:
 $F(x\omega x, y) = F(x, y) \omega x$ for $x, y, \omega \in R$.

The linearization of (6) with respect to x gives:

 $F(x\omega z + z\omega x, y) = F(x, y)\omega z + F(z, y)\omega z$ $y)\omega x$ for all $x,y,\omega \in R$. (7) Now we shall compute $F(x\omega z\omega x)$ $+\omega xzx\omega$, y) in two different ways. The first one by using (6), we see: $F(x\omega z\omega x + \omega xzx\omega, y) = F(x, y)\omega z\omega x$ + $F(\omega, y)xzx\omega$ (8)Also using (7) leads to: $F(x\omega z\omega x + \omega xzx\omega, y) = F(x\omega, y)z\omega x$ + $F(\omega x, y)zx\omega$ Comparing (8) and (9) we have: $(F(x\omega, y) - F(x, y)\omega) z\omega x + (F(\omega x, y)$ $+ F(\omega, y)x$) $zx\omega = 0$, for all $x, y, \omega \in R$. (10)According to (2) one can replace $(F(\omega x, y) + F(\omega, y)x)$ by $-(F(x\omega, y) F(x, y)\omega$) in (10), so we have: $(F(x\omega, y) - F(x, y)\omega) z [x, \omega] = 0$, for

Without lose the generality we fix some $y \in R$ and define $M(x, \omega) = F(x\omega, y) - F(x, y)\omega$, then the above relation reduces to: $M(x, \omega) z [x, \omega] = 0$, for all $x, y, \omega \in R$. Using Lemma (2.2), the above relation can be given as:

all $x, y, \omega \in R$.

 $M(x, \omega) z [u, v] = 0$, for all $x, y, \omega \in R$. (11)

Now, fix some x, $\omega \in R$ and let M represent to $M(x, \omega)$, then by Lemma (2.1) the relation (11) becomes:

M[u, v] = 0, for all $x,y,\omega \in R$. An application of Lemma (2.3) on the above relation we see that there exist an ideal U of R satisfies $M \in U \subset Z(R)$. In particular rM, $Mr \in Z(R)$ for $r \in R$. This gives us:

 $x.M^2\omega = M^2\omega.x = \omega M^2.x = \omega.M^2x$ This gives that $4F(x.M^2\omega, y) = 4F(\omega.M^2x, y)$, both sides of this equality will be computed in few steps using (2) and the above remarks. $2F(x M^2\omega + M^2\omega x, y) = 2F(\omega M^2x + M^2x\omega, y)$ $2F(x, y)M^2\omega + 2F(M^2\omega, y)x = 2F(\omega, y)M^2x + 2F(M^2x, y)\omega$ $2F(x, y)M^2\omega + F(M^2\omega + \omega M^2, y)x = 2F(\omega, y)M^2x + F(M^2\omega + \omega M^2, y)x = 2F(\omega, y)M^2x + F(M^2x + xM^2, y)\omega$

 $2F(x, y)M^2\omega + F(M, y)M\omega x + F(\omega, \omega)$ $y)M^2x = 2F(\omega, y)M^2x + F(M, y)M x\omega$ $+F(x, y)M^2\omega$ $F(x, y)M^2\omega + F(M, y)M\omega x = F(\omega,$ $y)M^2x + F(M, y)Mx\omega$ But $M\omega x = M\omega . x = x . M\omega = x M\omega = M$ $x\omega$, therefore we arrive at: $F(x, y)M^2\omega = F(\omega, y)M^2x (12)$ On the other hand we have: $4F(x\omega M^{2}, y) = 4F(xM.\omega M, y)$ $2F(x\omega M^{2} + M^{2}x\omega, y) = 2F(xM.\omega M + M^{2}x\omega)$ $\omega M x M., y$ $2F(x\omega, y)M^2 + 2F(M, y)M x\omega =$ $2F(Mx, y)M\omega + 2F(M\omega, y)Mx$ $2F(x\omega, y)M^2 + 2F(M, y)M x\omega = F(xM)$ $+ Mx, y)M\omega + F(\omega M + M\omega, y)Mx$ $2F(x\omega,$ $y)M^2+2F(M,$ v)M $=F(x,y)M^2\omega+F(M, y)M x\omega +F(\omega,$ $y)M^2x + F(M, y)Mx\omega$ $2F(x\omega, y)M^2 = F(x,y)\omega M^2 + F(\omega, y)$ $y)xM^2$

In view of (12) the above relation reduces to $F(x\omega, y)M^2 = F(x, y)\omega M^2$, consequently we conclude that $M^3 = 0$. The fact that R is semiprime ring leads to $M^2RM^2 = M^4R = 0$, which means $M^2 = 0$.

Also, $MRM = M^2R = 0$ implies that M = 0 and hence:

 $F(x\omega, y) = F(x, y)\omega$, for all $x, y, \omega \in R$

Theorem 3.2:

let R be a 2-torsion free semiprime ring and $F: R \times R \to R$ be a symmetric Bi-additive mappings. If $F(x^2, y) = x$ F(x, y) holds for all $x, y \in R$, then F is a symmetric right Bi-Centralizer.

Theorem 3.3:

Let R be a 2-torsion free semiprime ring and $F: R \times R \rightarrow R$ be a symmetric Bi-additive mapping. Suppose $F(x\omega x, y) = x F(\omega, y) x$ holds for all $x, y, \omega \in R$, then [F(x, y), x] = 0.

Proof: For any x,y, $\omega \in R$, we have: $F(x\omega x, y) = x F(\omega, y) x$ holds for all x,y, $\omega \in R$. (1) Putting x + u for x in (1) and using (1), we obtain:

 $F(x\omega u + u\omega x, y) = x F(\omega, y) u + u$ $F(\omega, y) x$ (2) Setting $\omega = x$ and $u = \omega$ in (2) we get: $F(x^2\omega + \omega x^2, y) = x F(x, y) \omega + \omega F(x)$ $(x,y) x \text{ for all } x,y, \omega \in \mathbb{R}$ For $u=x^3$ the relation (2) reduces to: $F(x\omega x^3 + x^3\omega x, y) = x F(\omega, y) x^3 + x^3$ $F(\omega, v) x$ for all $x, v, \omega \in R$ Putting $x\omega x$ for ω in (3), we see: $F(x\omega x^3 + x^3\omega x, y) = x F(x, y)x\omega x +$ $x\omega x F(x, y) x$ for all $x, y, \omega \in R(5)$ The substitution $x^2\omega + \omega x^2$ for ω in (1)

gives:

 $F(x\omega x^3 + x^3\omega x, y) = x F(x^2\omega + \omega x^2, y)$ x for all x, y, $\omega \in R$

In view of (3) the above relation gives: $F(x\omega x^3 + x^3\omega x, y) = x^2 F(x, y)\omega x + x\omega$ $F(x, y) x^2$ for all $x, y, \omega \in R$ Combining (5) with (6) we get:

 $x[F(x, y), x] \omega x - x\omega[F(x, y), x]x=0,$ for all $x, y, \omega \in R$ (7)

The application of lemma (2.4) on (7)gives:

 $[F(x, y), x], x] \omega x = 0$ for all $x, y, \omega \in R$

Replacing ω by $\omega/F(x, y)$, x/S in (8) gives:

 $[[F(x,y), x], x] \omega [F(x, y), x] x = 0$, for all $x, y, \omega \in R$

Right multiplication of (8) by [F(x, y),x] implies that:

 $[[F(x, y), x], x] \omega x [F(x, y), x] = 0$, for all $x, y, \omega \in R$

Subtracting (10) from (9) we arrive:

 $[[F(x, y), x], x] \omega [[F(x, y), x], x] = 0,$ for all $x, y, \omega \in R$.

By semiprimness property of R we conclude:

[[F(x, y), x], x] = 0, for all $x, y \in R$. (11)

The next our task is to prove:

x [F(x, y), x] x = 0, for all $x, y \in R$. (12)

The linearization of (11) with respect to x gives:

 $[[F(x, y), x], \omega] + [[F(x, y), \omega], x]$ $+[[F(\omega, y), x], x] + [[F(\omega, y), x], \omega] +$ $[[F(\omega, y), \omega], x] + [[F(x, y), \omega], \omega]$ =0, for $x, y, \omega \in R$.

Putting -x instead of x in the last relation and comparing the relation so obtained with it gives:

 $[[F(x, y), x], \omega] + [[F(x, y), \omega], x]$ $+[[F(\omega, y), x], x] = 0$, for all $x, y, \omega \in \mathbb{R}$. (13)

Putting $x\omega x$ instead of ω in (13) and using (1), (11) and (13) we see:

 $0 = x[[F(x, y), x], \omega]x + [[F(x, y), x]]$ $\omega x + x/F(x, y), \omega/x + \omega x/F(x, y), x$ $x_1 +$

 $[x[F(\omega, y), x] x, x]$

 $= x[[F(x, y), x], \omega]x + [F(x, y), x][\omega,$ x/x + x/F(x, y), $\omega/$, $x/x + x/\omega$, x][F(x, y), x] +

 $x[[F(\omega, y), x], x]x$

 $= [F(x, y), x][\omega, x]x + x[\omega, x][F(x, y),$ x]

 $= [F(x, y), x]\omega x^{2} - x^{2}\omega [F(x, y), x] +$ $x\omega x[F(x, y), x]$ - $[F(x, y), x]x\omega x$

Hence $[F(x, y), x]\omega x^2 - x^2\omega [F(x, y),$ x]+ $x\omega x$ [F(x, y), x]- [F(x, y), x] $x\omega x$ =0

Now, using (7) and (11) we have:

 $x\omega x[F(x, y), x]$ - [F(x, y), x] $x\omega x =$ $[F(x, y), x], x] \omega x = 0$

Therefore the last relation reduces to:

 $[F(x,y), x]\omega x^{2} - x^{2}\omega [F(x,y), x] = 0$, for all $x, y, \omega \in R$.

Left multiplication of the above relation by x gives:

 $x[F(x, y), x]\omega x^{2} - x^{3}\omega[F(x, y), x] = 0,$ for all $x, y, \omega \in R$. (14)

According to (7) ,one can replace x/F(x, y), $x/\omega x$ by $x\omega/F(x, y)$, x/x, so relation (14) can be given by:

 $x\omega[F(x, y), x] x^{2} - x^{3}\omega[F(x, y), x] = 0,$ for all $x, y, \omega \in R$. (15)

The substitution $F(x,y)\omega$ for ω in (15) leads to:

 $x F(x, y)\omega [F(x, y), x] x^{2} - x^{3} F(x, y)\omega$ [F(x, y), x] = 0, for all $x, y, \omega \in R$. (16)

Now, left multiplication of (15) by F(x,y) and subtracting (16) from the relation so obtained gives:

 $[F(x, y), x] \omega [F(x, y), x] x^2 - [F(x, y),$ x^3 | $\omega [F(x, y), x] = 0$, for all $x, y, \omega \in \mathbb{R}$.

Application of lemma (2.4) on the above relation leads to:

($[F(x, y), x^3]$ - $[F(x, y), x] x^2$) $\omega[F(x, y), x] = 0$, for all $x, y, \omega \in R$.

By using the identity [x, yz]=y[x, z]+[x, y]z the last relation reduces to: $([x^2[F(x, y), x] + x[F(x, y), x]x) \omega[F(x, y), x]=0$, for all $x, y, \omega \in R$.

But the relation (11) means that x[F(x, y), x] = [F(x, y), x]x.

So we can replace $x^2[F(x, y), x]$ by x[F(x, y), x]x and the above relation becomes:

 $x[F(x, y), x]x \omega [F(x, y), x] = 0$, for all $x, y, \omega \in R$.

Right multiplication of the above relation by x and substitution ωx for ω leads to:

 $x[F(x, y), x] x\omega x [F(x, y), x]x = 0$, for all $x,y, \omega \in R$.

Since R is semeiprime ring, hence the relation (12) follows.

The next step is to prove the relation x [F(x, y), x] = 0, for all $x,y, \omega \in R$. (17)

The substitution ωx instead of ω in (7) gives in view of (12)

 $x [F(x, y), x] \omega x^2 = 0$, for all $x, y, \omega \in R$. (18)

Putting $\omega[F(x, y), x]$ for ω in (18) leads to:

 $x[F(x, y), x] \omega F(x, y)x^2 = 0$, for all $x, y, \omega \in \mathbb{R}$. (19)

Right multiplication of (18) by F(x, y) and subtracting the relation so obtained from (19) gives:

 $x[F(x, y), x] \omega[F(x, y), x^2]$ for all $x, y, \omega \in \mathbb{R}$.

That is $x [F(x, y), x] \omega ([F(x, y), x]x + x[F(x, y), x]) = 0$, for all $x, y, \omega \in R$.

Again, according to (11) one can replace [F(x, y), x]x in the last relation by x[F(x, y), x] which leads to:

 $x[F(x, y), x] \omega x [F(x, y), x] = 0$, for all $x, y, \omega \in R$.

Hence x [F(x, y), x] = 0, for $x, y \in R$ and consequently from (11) we conclude that

[F(x, y), x] x = 0, for all $x, y \in R$

Now, using similar techniques on the above relation as used to get (13) form (11) we arrive:

 $[F(x, y), x] \omega + [F(x, y), \omega]x + [F(\omega, y), x]x = 0$, for all $x, y, \omega \in R$.

Right multiplication of the above relation by [F(x,y), x] gives in view of (17)

 $[F(x, y), x] \omega [F(x, y), x] = 0$, for all $x, y, \omega \in \mathbb{R}$.

Since R is a semiprime ring, then the proof of the theorem is complete.

Theorem 3.4:

Let R be a 2-torsion free semiprime ring and $F:R\times R\to R$ be a symmetric Bi-additive mapping. Suppose $F(x\omega x,y)=xF(\omega,y)x$ holds for all $x,y,\omega\in R$, then F is a symmetric Bi-Centralizer.

Proof: For any $x, y, \omega \in R$, we have:

 $F(x\omega x, y) = x F(\omega, y) x$ (1)

The linearization of (1) with respect x gives:

 $F(x\omega u + u\omega x, y) = x F(\omega, y)u + u F(\omega, y)x$ for all $x, y, u, \omega \in R$. (2)

Taking $u=x^2$ in the above relation leads to:

 $F(x\omega x^2 + x^2\omega x, y) = x F(\omega, y) x^2 + x^2$ $F(\omega, y) x \text{ for all } x, y, \omega \in R.$ (3)

The substitution $x\omega + \omega x$ for ω in (1) gives:

 $F(x^2\omega x + x\omega x^2, y) = x F(x\omega + \omega x, y) x$ for all $x, y, \omega \in \mathbb{R}$. (4)

Comparing (3) and (4), we arrive at:

 $x \mu(x, \omega, y) x = 0$ for all $x, y, \omega \in \mathbb{R}$. (5) Where $\mu(x, \omega, y)$ stands for $F(x\omega + \omega x, y) - F(\omega, y) x - x F(\omega, y)$.

The linearization of (5) with respect x gives:

 $x \mu(x, \omega, y) u + x \mu(u, \omega, y)x + u \mu(x, \omega, y)x + x \mu(u, \omega, y)u + u \mu(x, \omega, y) u + u \mu(u, \omega, y)x = 0, \text{ for all } x, y, u, \omega \in R.$ (6)

Putting -x instead of x in (6) and comparing the relation so obtained with it, we arrive at:

 $x\mu(x, \omega, y)$ $u + x \mu(u, \omega, y)$ x + u $\mu(x, \omega, y)x = 0$, for all $x, y, u, \omega \in R$. (7)

Right multiplication of the above relation by $\mu(x, \omega, y)x$ gives because of (5):

 $x \mu(x, \omega, y) u \mu(x, \omega, y)x = 0$, for all $x, y, \omega \in R$. (8)

The next our task is to prove:

 $[\mu(x, \omega, y), x] = 0$, for all $x, y, \omega \in R$.

Now, by Theorem (3.3) we have:

[F(x, y), x] = 0, for all $x,y \in R$. (10)

Linearization of the above relation with respect to *x* gives:

 $[F(x, y), \omega] + [F(\omega, y), x] = 0$ for all $x, y, \omega \in \mathbb{R}$. (11)

Putting $x\omega + \omega x$ for ω in (11), we get: $[F(x, y), x\omega + \omega x)] + [F(x\omega + \omega x, y), x] = 0$, for all $x, y, \omega \in R$.

That is

 $x[F(x,y), \omega] +$

 $[F(x,y), \omega]x+[F(x\omega+\omega x, y), x]=0$, for all $x,y,\omega \in R$.

According to (11) one can replace $[F(x,y), \omega]$ by $-[F(\omega,y), x] = 0$, so the last relation gives:

 $[F(x\omega+\omega x, y), x] - x[F(\omega,y), x] - [F(\omega, y), x]x = 0$, for all $x, y, \omega \in \mathbb{R}$.

This can be written as:

 $[F(x\omega+\omega x, y) - x F(\omega,y) - F(\omega,y) x, x]$ =0, for all $x,y, \omega \in R$.

Hence the relation (9) follows.

Now, in view of (9) the relation (8) can be given by:

 $\mu(x,\omega, y)x \ u \ \mu(x,\omega, y)x = 0$ for all $x,y,u,\omega \in R$.

The semiprime property of R leads to: $\mu(x,\omega, y) \quad x = 0$, for all $x,y,\omega \in R$. (12)

Also, according to (9) we arrive at:

 $x\mu(x,\omega, y) = 0$ for all $x,y,\omega \in R$. (13)

The linearization of (12) with respect to x gives:

 $\mu(x,\omega, y) u + \mu(x,\omega, y) x = 0$ for all $x,y,u,\omega \in R$.

Right multiplication of the above relation by $\mu(u, \omega, y)$ and using (13) on the relation so obtained yields:

 $\mu(x,\omega, y) \ u \ \mu(x,\omega, y) = 0$ for all $x,y, \omega \in R$.

Therefore $\mu(x,\omega, y) = 0$ for all $x, y, \omega \in \mathbb{R}$.

That is $F(x\omega + \omega x, y) = F(\omega, y) x + x F(\omega, y)$ for all $x, y, \omega \in R$.

As particular for $\omega = x$ the above relation gives:

 $2F(x^2, y) = F(x, y) x + x F(x, y)$ for all $x, y \in R$.

In view of (10) the above relation reduces to:

 $F(x^2, y) = F(x, y) x$ and $F(x^2, y) = x$ F(x, y) for $x, y \in R$

Using Theorems (3.1) and (3.2) it follows that F is symmetric Bi-Centralizer.

Now, if we taking $\omega = x$ in the relation (1), we obtain:

 $F(x^3, y) = x F(x, y) x$, for all $x, y \in R$.

The question is whether in a 2-torsion free semiprime ring the above relation implies that F is a symmetric Bi-Centralizer. The answer, it's not true in general unless R be a ring with an identity element. In order to prove this fact, we introduce the following result.

Theorem 3.5:

Let R be a 2-torsion free semiprime ring with identity, and let $F:R\times R\to R$ be a symmetric Bi-additive mapping such that $F(x^3, y) = x F(x, y) x$ holds for all $x,y \in R$, then F is a symmetric Bi-Centralizer.

Proof: we have

 $F(x^3, y) = x F(x, y) x$, for all $x, y \in R$. (1) Putting x+1 for x in (1), where I is the identity element, we get:

 $3F(x^2, y) + 2F(x, y) = F(x, y)x + x F(x, y) + x F(1, y) + F(1, y)x + x F(1, y)x$ (2)

Replacing x by -x in (2) gives:

 $3F(x^2, y) - 2F(x, y) = F(x, y)x + x F(x, y) - x F(1, y) - F(1, y)x + x F(1, y)x$ for $x, y \in R$.

Comparing (2) with the above relation, we arrive at:

 $6F(x^2, y) = 2F(x, y)x + 2xF(x, y) + 2x$ F(1, y)x for all $x, y \in R$. (3)

Also, comparing (2) with (3) implies that:

2F(x, y) = F(1, y) x + x F(1, y) for all $x, y \in R$. (4)

The substitution x^2 for x in (4) leads to: $2F(x^2, y) = F(1, y) x^2 + x^2 F(1, y)$, for all $x,y \in R$. (5)

In view of (4), (5) and the fact that R is a 2-torsion free the relation (3) reduces to:

 $F(1, y) x^2 + x^2 F(1, y) - 2x F(1, y)x = 0,$ for $x, y \in R$.

This relation can be written as:

[[F(1, y), x], x] = 0, for all $x, y \in R$.

The linearization of the above relation with respect to *x* gives:

[[F(1, y), x], z] + [[F(1, y), z], x] = 0, for all $x, y, z \in R$. (6)

Putting xz instead of z in (6) leads to:

[[F(1, y), x], xz] + [[F(1, y), xz], x] = 0x [[F(1, y), x], z] + [[F(1, y), x]z + x[F(1, y), z], x] = 0.

x [[F(1, y), x], z] + [[F(1, y), x]z, x] + [x[F(1, y), z], x] = 0

x [F(1, y), x], z] + [F(1, y), x][z, x] + x[F(1, y), z], x] = 0, for all $x, y, z \in R$.

According to (6), the above relation reduces to:

[F(1, y), x][z, x] = 0, for all $x,y,z \in R$. The substitution zF(1, y) for z in the above relation gives:

[F(1, y), x] z [F(1, y), x] = 0, for all $x,y,z \in R$.

Using the semiprimeness property of *R* implies that:

[F(1, y), x] = 0, for all $x, y \in R$

That is $F(1, y) \in \mathbb{Z}$ for all $y \in \mathbb{R}$, hence the relation (4) reduces to:

F(x, y) = F(1, y) x = x F(1, y) for $x, y \in R$. (7)

On the other hand, in view of (1) and the symmetry of F we have:

 $F(x, y^3) = y F(x, y) y$ for all $x, y \in R$. Using the similar techniques as used on (1) to get the relations (7) we arrive at: F(x, y) = F(x, 1) y = y F(x, 1), for $x, y \in R$. (8)

Taking x = 1 in (8), we get:

F(1, y) = ay = ya, where a stands for F(1, 1). (9)

Combining the relations (7) and (9) leads to:

F(x, y) = ayx = xya, for $x, y \in R$.

Using Lemma (4.5) we obtain the required results. ■

References:

- [1] Vukman, J. 2001.Centralizers on semiprime rings, Comment. Math. Univ. Carolinae 42:237-245.
- [2] Zalar, B. 1991. On centralizers of semiprime rings. Comment. Math. Univ. Carolinae, 4(32):609-614.
- [3] Ashraf, M. and Muziber R. M., 2012.On Jordan α- Centralizer in semiprime rings with involution. Int. J. Contemp. Math. Sciences, 7(23):1103-1112.
- [4] Bresar, M.,1989. Jordan mapping of semiprime rings. J. Algebra, 127, 218-228.
- [5] Vukman, J. and Kosi, I. U1b1,2003. On centralizers of semiprime rings. Aequationes Math. 3(66):277-283.
- [6] Vukman, J. 1999. An identity related to centralizers in semiprime rings. Comment. Math. Univ. Carolinae, 3(40):447-456.
- [7] Yenigul, M. S. and Argac, N. 1993. Ideals and Symmetric Bi-Derivations of prime and semi-prime Rings. Math. J. Okayama Univ. 35:189-192.
- [8] Herstein, I. N.,1957. Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8:1104-1110.
- [9] Daif, M. N. and El-Sayiad Tammam M. S.,2008. An Identity on θ-Centralizers of semi-prime rings. International Mathematical Forum, 3(19): 937-944.

التطبيقات المتناظرة ثنائية التمركز على الحلقات شبه الأولية عدى حكمت محمود إقبال جبر حرجان

قسم الرياضيات - كلية التربية- الجامعة المستنصرية .

الخلاصة

قدمنا في هذا البحث بعض النتائج الخاصة بالتطبيقات المتناظرة ثنائية التمركز المعرفة على الحلقة شبه الأولية R مميزها لا يساوي 2. إضافة لذالك قدمنا الصيغة العامة لهذه التطبيقات عندما تكون معرفة على حلقة ذات عنصر محايد وبعض النتائج الخاصة بهذا النوع من التطبيقات

الكلمات المفتاحية: الحلقة شبه الاولية، تناظر اليساري (اليميني) ثنائي التمركز، تناظر اليساري (اليميني) ثنائي التمركز لجاوردان، تناظر ثنائي التمركز لجاوردان.