Asmhan Fleih Hassan Al-Zuhairy Neeran Tahir Abd AlAmeir Kufa University **Kufa University** college of education for girls college of education for girls

Alyaa Yousif Khudayer Kufa University college of education for girls

Abstract :-

In this work, we introduce a new definitions for δ^* -Base for the δ^* -Neighbourhood system of a point (δ^* - Local Base), δ^* -Base for a tritopology and δ^* -sub Base for a tritopology . And we gives the basic specifications for the new definitions .

Keywords :-

 δ^* - Local Base, δ^* - Base, δ^* -sub Base.

الخالصة :

في هذا العمل قدمت تعاريف جديدة في الفضـاء الثلاثـي التبولـوجي و هـي أسـاس δ - لنظـام الجـوار ات لنقطـة \parallel (أساس محلي δ^* -) و أساس δ^* - للفضاء الثلاثـي التبولـوجي و أسـاس δ^* - جزئـي للفضـاء الثلاثـي التبولـوجي . و كما قمت بإعطاء المواصفات الأساسية لهذه التعاريف في الفضاء الثلاثي التبولوجي .

Introduction :-

Throughout this paper we adopt the notations and terminology of $\lceil 1 \rceil$, $\lceil 2 \rceil$, $\lceil 3 \rceil$ and $\lceil 4 \rceil$, X and Y are finite sets and the following conventions : (X,T) , (X,T,Ω) , (X,T,Ω,ρ) will always denot to Topological space , Bitopological space and Tritopological space respectively .

Let (X,T) be a topological space, and let A be asubset of X, then A is said to be a α -open set iff $A \subseteq T - int(T - cl(T - int(A)))$ [1], and the family of all α -open sets is denoted by α .O(X). The complement of α -open set is called α -closed set.

Let (X, T, Ω) be a Bitopological space, and let A be asubset of X, then A is said to be a δ open set iff $A \subseteq T - int(\Omega - cl(T - int(A)))$ [3], and the family of all δ -open sets is denoted by $\delta O(X)$. The complement of δ -open set is called δ -closed set.

Al-Zuhairy

The Al-Zuhairy

The Alyaa Yousif Khudayer

Alyaa Yousif Khudayer

Kufa University

college of education for girls

duce a new definitions for δ^* -Base for

cocal Base), δ^* -Base for a triopology

the ba And let (X, T, Ω, ρ) be a Tritopological space, a subset A of X is said to be δ^* -open set iff $A \subseteq T - int(\Omega - cl(\rho - int(A)))$ [2], and the family of all δ^* -open sets is denoted by δ^* .O(X). The complement of δ^* -open set is called a δ^* -closed set.

And δ^* .O(X) does not represent a topology (not always represent a topology) [2], (X, T, Ω, ρ) is called discrete tritopological space with respect to δ^* - open if δ^* . O(X) contains all subsets on X .

 (X, T, Ω, ρ) is called indiscrete topological space with respect to δ^* -open if δ^* . $O(X) = \{ X, \}$ φ }.

Let (X, T, Ω, ρ) be a tritopological space, and let $x \in X$. A subset N of X is said to be δ^* nhd of a point x iff there exists δ^* -open set U such that $x \in U \subset N$. The set of all δ^* -nhds of a point x is denoted by δ^* – N(x).

1- δ^* **- Local Base at a point :**

1.1 Definition :

Let (X, T, Ω, ρ) be a tritopological space. A non empty collection δ^* - $\beta(x)$ of δ^* neighbourhoods of x is called a δ^* -base for the δ^* -neighbourhood system of x (δ^* -Local Base) iff for every δ^* -neighbourhood N of x there is a B \in $B \subset \delta^*$ - $\beta(x)$ such that $B \subset N$.

We then also say that δ^* - $\beta(x)$ is a δ^* - Local Base at x or a fundamental system of δ^* neighbourhoods of x .

If δ^* - β(x) is a δ^* - Local Base at x, then the members of δ^* - β(x) are called basic δ^* neighbourhoods of x .

1.2 Remark :

If δ^* . O(X) represent a topology then every point x in X has a δ^* - local base in tritopology .

Proof :

Clearly because the intersection condition of the topology definition is hold .

1.3 Example :

Let $X = \{a,b,c,d\}$, $T = \{ X, \varphi, \{b,c,d\} \}$. $\Omega = \{ X, \varphi, \{a\} \}$ ${a,c}, {a,b,c}, {b,c,d}$ $\rho = \{X, \varphi, \{a\}, \{c,d\}, \{c\}, \{b,c\}, \{a,c,d\},\$

 (X, T) , (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 δ^* .O(X) = {X, φ , {a},{c,d},{c},{b,c},{a,c,d},{a,b,c},{a,c},{a,b},{a,d},{a,b,d},{b,c,d} } Clearly that δ^* . O(X) represent a topology. Then the δ^* -local base at each of the points a, b, c, d is given by δ^* - β (a) = { {a} }, δ^* - β (b) = { {b,c} }, δ^* - β (c) = { {c} }, δ^* - β (d) = { ${c,d}$ } .

Observe that here a δ^* - Local Base at each point consists of a single δ^* -nhd of the point.

1.4 Remark :

If δ^* . O(X) does not represent a topology then not every point x in X has a δ^* -local base in tritopology .

Proof :

Clearly because the intersection condition of the topology definition is not hold .

1.5 Example :

Let $X = \{a,b,c,d\}$ $T = \{X, \varphi, \{c, d\}\}\$ $\overline{}$ $\Omega = \{X, \varphi, \{a, b, c\}, \{a\}\}\$ and $\rho = \{X, \varphi, \{d\}, \{c, d\}, \{a, d\}\}\$

 (X, T) , (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 δ^* . O(X) = {X, φ , {a,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d} }

Clearly that δ^* . O(X) does not represent a topology. Then the δ^* - Local Base at each of the points a , b , c , d is given by :

 $δ^*$ - β(a) = { {a,d} }, δ^{*}- β(c) = { {c,d} }

But there is no δ^* - β (b) because the intersection of {a,b,d} and {b,c,d} is {b,d} is not δ^* open set (not exist), i.e. there is no set B such that B is a subset of all δ^* -nhds of b.

Again, there is no δ^* - β (d) because the intersection of {a,d} and {c,d} is {d} is not δ^* - open set (not exist), i.e. there is no set D such that D is a subset of all δ^* -nhds of d.

Hence not every point x in X has a δ^* -local base in tritopology.

1.6 Remark :

All the following theorems and remarks is true in tritopology if δ^* . O(X) represent a topology (i.e. if every x has δ^* -local base).

Proof:

It is clear by the remarks and examples above .

1.7 Theorem :

Let (X, T, Ω, ρ) be a tritopological space. And let $x \in X$ then the collection δ^* - $\beta(x)$ of all δ^* open subsets of X containing x is a δ^* - Local Base at x.

Proof :

Let N be any δ^* -nhd of x. Then there exists a δ^* -open set G such that $x \in G \subset N$, since G is a δ^* -open set containing x, $G \in \delta^*$ - $\beta(x)$.

This shows that δ^* - $\beta(x)$ is a δ^* -Local Base at x.

1.8 Remark :

(I) In a discrete tritopological space the collection $\{x\}$ consisting of a single member $\{x\}$ forms a δ^* - Local Base at $x \in X$

Proof :

- for $\{x\}$ is a δ^* -open subset of X and so it is a δ^* -nhd of x and any other δ^* -nhd N of x must contain $\{x\}$.
- (II) In a indiscrete tritopological space, the set X alone forms a δ^* Local Base for every point $x \in X$.

Proof :

There is only δ^* -open X and φ in δ^* . O(X). and must be X.

1.9 Theorem :

Let (X, T, Ω, ρ) be a tritopological space. And let δ^* - $\beta(x)$ be a δ^* -Local Base for every point $x \in X$. Then δ^* - $\beta(x)$ has the following properties :

- (1) δ^* - $\beta(x) \neq \varphi$ for every $x \in X$.
- (2) If $B \in \delta^*$ - $\beta(x)$, then $x \in B$.
- (3) If $A \in \delta^*$ -β(x) and $B \in \delta^*$ -β(x), then there exists a set $C \in \delta^*$ -β(x) such that $C \subset A$ $\cap B$.
- (4) If $A \in \delta^*$ - $\beta(x)$, then there exists a set B such that $x \in B \subset A$ and such that for every point $y \in B$, there exists $C \in \delta^*$ - $\beta(y)$ satisfying $C \subset B$.

Proof :

(1) Since X is δ^* -open, it is δ^* -nhd of its point. Since δ^* - $\beta(x)$ is δ^* - Local Base for every point $x \in X$ and X is a δ^* -nhd of x, it follows that there must exist a B $\in \delta^*$ - $\beta(x)$ such that B $\subset X$.

Hence δ^* - $\beta(x) \neq \varphi$ for every $x \in X$.

- (2) If $B \in \delta^*$ - $\beta(x)$, then B is a δ^* -nhd of x. So by definition of δ^* -nhd $x \in B$.
- (3) If $A \in \delta^*$ - $\beta(x)$, then A is a δ^* -nhd of x. Similarly B is a δ^* -nhd of x. It follows that A \cap B is δ^* -nhd of x. Since δ^* - $\beta(x)$ is δ^* - Local Base at x, it follows that there exists C $δ^*$ -β(x) such that $C \subset A \cap B$.
- (4) Since $A \in \delta^*$ - $\beta(x)$, A is a δ^* -nhd of x. Hence there exists a δ^* -open set B such that x $\epsilon \in B \subset A$. Since B is δ^* -open set, it is a δ^* -nhd for every $y \in B$. Again since δ^* - $\beta(y)$ is δ^* - Local Base at y and B is a δ^* -nhd for every $y \in B$, it follows that for every $y \in B$ there exists $C \in \delta^*$ - $\beta(y)$ such that $C \subset B$.

2- δ^* - **Base for a tritopology :**

2.1 Definition :

Let (X, T, Ω, ρ) be a tritopological space. A collection δ^* - β of subsets of X is said to form a δ^* - base for the tritopology (T, Ω, ρ) iff:

(I) δ^* -β \subset δ^* .O(X).

(II) for each point $x \in X$ and each δ^* -neighbourhood N of x there exists some B \in $B \in \delta^*$ -β such that $x \in B \subset N$.

2.2 Remark :

If δ^* . O(X) represent a topology then the tritopology (T, Ω, ρ) has a δ^* -base. Proof :

Clearly because the intersection condition of the topology definition is hold .

2.3 Example :

Let $X = \{a,b,c\}$, $T = \{ X, \varphi, \{a,b\} \}$. $\Omega = \{ X, \varphi, \{c\} \}$ and $\rho = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}\$

 (X, T) , (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 δ^* .O(X) = {X, φ , {a}, {b}, {a,b} }

Clearly that δ^* .O(X) represent a topology.

Then the collection δ^* - $\beta = \{X, \{a\}, \{b\}\}\$ is a δ^* -base for the tritopology (T, Ω, ρ) since: (I) δ^* -β \subset δ^* .O(X) . And

(II) Each δ^* -neighbourhood of a contains {a} which is a member of δ^* - β containing a. Similarly each of δ^* -neighbourhood of b contains {b} which is a member of $δ^*$ -β containing b. And X is a δ^* -neighbourhood of c which is a member of δ^* - β containing c .

2.4 Remark :

If δ^* . O(X) does not represent a topology then the tritopology (T, Ω, ρ) has not a δ^* - base

. Proof :

Clearly because the intersection condition of the topology definition is not hold .

2.5 Example :

Let X= {a,b,c,d}
\n
$$
\begin{aligned}\nT &= {X, \varphi, {c,d}} \\
\Omega &= {X, \varphi, {a,b,c}, {a}} \\
\varphi &= {X, \varphi, {d}, {c,d}, {a,d}}\n\end{aligned}
$$

 (X, T) , (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 δ^* . O(X) = {X, φ , {a,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d} }

Clearly that δ^* . O(X) does not represent a topology.

Then this tritopology has not a δ^* -base because the second condition of the definition (2.1) is not hold. because the intersection of $\{a,b,d\}$ and $\{b,c,d\}$ is $\{b,d\}$ is not a δ^* -open set (not exist) , i.e. each δ^* -nhds of b contains {b,d}, but {b,d} is not exist in δ^* .O(X) because δ^* .O(X) does not represent a topology . .

Again, because the intersection of $\{a,d\}$ and $\{c,d\}$ is $\{d\}$ is not a δ^* -open set (not exist), i.e. each δ^* -nhds of d contains {d}, but {d} is not exist in δ^* . O(X) because δ^* . O(X) does not represent a topology .

Hence there is no a δ^* -base.

2.6 Remark :

In the discrete tritopological space the collection δ^* -β ={ {x}: x ∈ X } consisting of all singleton subsets of X is a δ^* -Base for the tritopology (T, Ω, ρ) . Proof:

Because for each singleton set is δ^* -open so that δ^* - $\beta \subset \delta^*$. O(X). Also for each $x \in X$ and each δ^* -nhds N of x, {x} $\in \delta^*$ - β is such that $x \in \{x\} \subset N$.

2.7 Remark :

All the following theorems and remarks is true in tritopology if δ^* . O(X) represent a topology (i.e. if (T, Ω, ρ) has δ^* -base).

Proof :

It is clear by the remarks (2.2) and (2.4) and examples (2.3) and (2.5) .

2.8 Theorem :

Let (X, T, Ω, ρ) be a tritopological space. A sub collection δ^* - β of δ^* - $O(X)$ is a δ^* -Base for (T, Ω, ρ) iff every δ^* -open set can be expressed as the union of members of δ^* -β. **Proof :**

Let δ^* - β is a δ^* - Base for (T, Ω, ρ) and let $G \in \delta^*$. O(X). Since G is δ^* -open set, it is a δ^* - nhd of each of its points. Hence by definition of δ^* - Base, to each $x \in G$ \exists a member B of $δ^*$ -β s.t.

 $x \in B \subset G$

It follows that $G = \cup \{ B : B \in \delta^* \text{-} \beta \text{ and } B \subset G \}$.

Conversely, let δ^* - $\beta \subset \delta^*$.O(X) and let every δ^* -open set G be the union of members of δ^* - β .

We have to show that δ^* - β is δ^* -Base for (T, Ω, ρ) . We have

(1) δ^* -β $\subset \delta^*$.O(X) (given)

(2) let $x \in X$ and let N be any δ^* -nhd of x. Then there exists a δ^* -open set G such that $x \in G$ $\subset N$.

But G is the union of members of δ^* - β . Hence there exists $B \in \delta^*$ - β such that $x \in B \subset G \subset$ N . Thus δ^* -β is δ^* -Base for (T, Ω, ρ) .

2.9 Theorem :

Let (T_1, Ω_1, ρ_1) and (T_2, Ω_2, ρ_2) be a tritopologies for X which have a common δ^* - Base δ^{*}-β. Then $δ$ ^{*}₁.O(X) = $δ$ ^{*}₂.O(X).

Proof :

Let $G \in \delta^*_{1}$. $O(X)$ and $x \in G$. Since G is δ^*_{1} -open set, it is a δ^*_{1} - nhd of x and since δ^* - β is a δ^* -Base for (T_1, Ω_1, ρ_1) , there exists $B \in \delta^*$ - β such that $x \in B \subset G$. Since δ^* - β is a $δ^*$ - Base for (T_2, Ω_2, ρ_2) , and B ∈ δ^{*}-β it follows that B ∈ δ^{*}₂.O(X). Hence G is δ^{*}₁- nhd

of x . Since x is arbitrary . Then δ^*_{2} .O(X) by theorem [G $\in \delta^*$.O(X) iff G is a δ^* - nhd of each of its points]. Thus δ^*_{1} . $O(X) \subset \delta^*_{2}$. $O(X)$. By symmetry δ^*_{2} . $O(X) \subset$ δ^*_{1} .O(X). Hence δ^*_{1} .O(X) = δ^*_{2} .O(X).

• Properties of a δ^* -Base for a tritopology.

2.10 Theorem :

Let (X, T, Ω, ρ) be a tritopological space. And Let δ^* - β is a δ^* -Base for (T, Ω, ρ) . Then δ^* -β has the following properties :

- (1) for every $x \in X$, there exists a $B \in \delta^*$ - β such that $x \in B$, that is, $X = \bigcup \{B : B$ $\in \delta^*$ -β }
- (2) for every $B_1 \in \delta^*$ - β , $B_2 \in \delta^*$ - β and every point $x \in B_1 \cap B_2$, there exists a $B \in \delta^*$ - β such that $x \in B \subset B_1 \cap B_2$, that is, the intersection of any two members of δ^* - β is a union of members of δ^* -β.

Proof :

- (1) Since X is a δ^* -open set, it is a δ^* nhd of each of its points. Hence by definition of δ^* -Base, for every $x \in X$, there exists some $B \in \delta^*$ - β such that $x \in B \subset X$ in other words, $X = \cup \{B : B \in \delta^*-\beta\}$.
- (2) If $B_1 \in \delta^*$ - β and $B_2 \in \delta^*$ - β , then B_1 and B_2 are δ^* -open sets. Hence their intersection B_1 \cap B₂ is also δ^* -open and therefore $B_1 \cap B_2$ is a δ^* - nhd of each of its points. So by definition of δ^* -Base, to each $x \in B_1 \cap B_2$, there exists $B \in \delta^*$ - β such that $x \in B \subset B_1 \cap B_2$ B₂, that is, B₁ \cap B₂ is the union of members of δ^* -β.

2.10 Theorem :

Let (X, T, Ω, ρ) be a discrete tritopological space and let δ^* - β be the collection of all singleton subsets of X, any class δ^* - β ' of subsets of X is a δ^* - Base for the discrete tritopology (T, Ω, ρ) iff δ^* -β $\subset \delta^*$ -β'.

Proof :

Let δ^* - β ' be a δ^* - Base for the discrete tritopology (T, Ω, ρ) . Since each singleton {x} is δ^* open set, {x} must be a union of members of δ^* - β' . But a singleton set can only be the union of itself or itself with the empty set φ . Hence $\{x\}$ must belong to δ^* - β' . It follows that δ^* - $\beta \subset$ $δ^*$ -β'.

Conversely, let δ^* - $\beta \subset \delta^*$ - β' . Now δ^* - $\beta = \{ \{x\} : x \in X \}$ is a δ^* - Base for the discrete tritopology (T, Ω, ρ) by remark (2.6). Also each member of δ^* -β' is δ^* -open so that δ^* -β' ⊂ δ^* .O(X).

Since δ^* -β $\subset \delta^*$ -β' it follows that if any δ^* -open set G is the union of members of δ^* -β, it is also the union of members of δ^* -β'. Hence δ^* -β' is also a δ^* - Base for the discrete tritopology (T, Ω, ρ) .

3- δ^* **- Sub base for a tritopology :**

3.1 Definition :

Let (X, T, Ω, ρ) be a tritopological space. A collection δ^* - β_* of subsets of X is called a $δ^*$ - sub base for the tritopology $(T, Ω, ρ)$ iff : $δ^*$ -β_{*} ⊂ $δ^*$.O(X). And finite intersections of members of δ^* - β_* form a δ^* -base for the tritopology (T, Ω, ρ) .

It follows that δ^* - β_* is a δ^* - sub base for the tritopology (T, Ω, ρ) iff every member of δ^* .O(X) is the union of finite intersections of members of δ^* -β_{*}

3.2 Remark :

If δ^* . O(X) represent a topology then the tritopology (T, Ω, ρ) has a δ^* - sub base. Proof :

Clearly by using remark (2.2) .

3.3 Example :

Let
$$
X = \{a,b,c,d\}
$$
, $T = \{X, \varphi, \{a,c,d\}\}$.
, $\Omega = \{X, \varphi, \{b\}\}$
and $\rho = \{X, \varphi, \{a\}\}$

 (X, T) , (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 δ^* .O(X) = {X, φ , {a}, {a,c}, {a,d}, {a,c,d} } Clearly that δ^* .O(X) represent a topology.

Then the collection δ^* - $\beta_* = {\{a, c\}, \{a, d\}}$ is a δ^* - sub base for the tritopology (T, Ω, ρ)

since the family δ^* - β of finite intersections of δ^* - β_* is given by :

 δ^* - $\beta = {\{a\}, \{a, c\}, \{a, d\}}$

Which is a δ^* -base for the tritopology (T, Ω, ρ) .

3.4 Remark :

If δ^* . O(X) does not represent a topology then the tritopology (T, Ω, ρ) has not a δ^* - sub base .

Proof :

Clearly by using remark (2.4) .

3.5 Example :

Let
$$
X = \{a,b,c,d\}
$$

\n
$$
\begin{aligned}\nT &= \{X, \phi, \{c,d\}\} \\
\Omega &= \{X, \phi, \{a,b,c\}, \{a\}\} \\
\phi &= \{X, \phi, \{d\}, \{c,d\}, \{a,d\}\}\n\end{aligned}
$$

are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 δ^* . O(X) = {X, φ , {a,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d} }

Clearly that δ^* . O(X) does not represent a topology.

(X, T), (X, Ω), (X, ρ) are three topological space
that that:
that is:
chendition:
 δ^8 . O(X) = {X, φ, {a,d), {c,d), {a,b,d}, {a,c,d
Clearly that δ^* . O(X) does not represent a topology
Then this tritopology has not Then this tritopology has not a δ^* - sub base because it has not δ^* - base because δ^* . O(X) does not represent a topology , then the second condition of the definition (2.1) is not hold .

Hence there is no a δ^* - sub base.

References :

- **[1]** Bourbaki , N. "General Topology" , Addison Wesley Reading , Mass ,1966 .
- **[2]** Hassan. A. F. " Relation among topological, bitopological and tritopological spaces " , Al-Qadisiya . J.,V. 11, No.3, 2006, 217-223 .
- [3] Hassan. A. F. " δ^* -open set in tritopological spaces " MS.c thesis . University of Kufa, 2004 .
- [4] Jaleel. I. D. " δ -open set in bitopological spaces " MS.c thesis . University of Babylon, 2003.