δ^* -Base for a tritopology

Asmhan Fleih Hassan Al-Zuhairy Kufa University college of education for girls Neeran Tahir Abd AlAmeir Kufa University college of education for girls

Alyaa Yousif Khudayer Kufa University college of education for girls

Abstract :-

In this work, we introduce a new definitions for δ^* -Base for the δ^* -Neighbourhood system of a point (δ^* - Local Base), δ^* -Base for a tritopology and δ^* -sub Base for a tritopology. And we gives the basic specifications for the new definitions.

Keywords :-

 $\delta^{\,*}\text{-}\operatorname{Local}$ Base , $\delta^{\,*}\text{-}\operatorname{Base}\,$, $\delta^{\,*}\text{-}\operatorname{sub}$ Base .

الخلاصة:

في هذا العمل قدمت تعاريف جديدة في الفضاء الثلاثي التبولوجي و هي أساس ×8 - لنظام الجوارات لنقطة (أساس محلي×8 -) و أساس×8 - للفضاء الثلاثي التبولوجي و أساس×8 - جزئي للفضاء الثلاثي التبولوجي . و كما قمت بإعطاء المواصفات الأساسية لهذه التعاريف في الفضاء الثلاثي التبولوجي .

Introduction :-

Throughout this paper we adopt the notations and terminology of [1], [2], [3] and [4], X and Y are finite sets and the following conventions $:(X,T), (X,T,\Omega), (X,T,\Omega,\rho)$ will always denot to Topological space, Bitopological space and Tritopological space respectively.

Let (X,T) be a topological space, and let A be asubset of X, then A is said to be a α -open set iff $A \subseteq T - int(T - cl(T - int(A)))$ [1], and the family of all α -open sets is denoted by α .O(X). The complement of α -open set is called α -closed set.

Let (X,T,Ω) be a Bitopological space, and let A be asubset of X, then A is said to be a δ open set iff $A \subseteq T - int(\Omega - cl(T - int(A)))$ [3], and the family of all δ -open sets is denoted by $\delta .O(X)$. The complement of δ -open set is called δ -closed set.

And let (X,T,Ω,ρ) be a Tritopological space, a subset A of X is said to be δ^* -open set iff $A \subseteq T - int(\Omega - cl(\rho - int(A)))$ [2], and the family of all δ^* -open sets is denoted by $\delta^*.O(X)$. The complement of δ^* -open set is called a δ^* -closed set.

And $\delta^*.O(X)$ does not represent a topology (not always represent a topology) [2], (X,T,Ω,ρ) is called discrete tritopological space with respect to δ^* - open if $\delta^*.O(X)$ contains all subsets on X.

 (X,T,Ω,ρ) is called indiscrete topological space with respect to δ^* -open if $\delta^*.O(X) = \{X, \phi\}$.

Let (X,T,Ω,ρ) be a tritopological space, and let $x \in X$. A subset N of X is said to be δ^* nhd of a point x iff there exists δ^* -open set U such that $x \in U \subset N$. The set of all δ^* -nhds of a point x is denoted by $\delta^* - N(x)$.

1- δ^* - Local Base at a point :

1.1 Definition :

Let (X,T,Ω,ρ) be a tritopological space. A non empty collection $\delta^*-\beta(x)$ of δ^*- neighbourhoods of x is called a δ^* - base for the δ^* -neighbourhood system of x (δ^* - Local Base) iff for every δ^* -neighbourhood N of x there is a $B \in \delta^*-\beta(x)$ such that $B \subset N$.

We then also say that $\delta^* - \beta(x)$ is a $\delta^* - \text{Local Base}$ at x or a fundamental system of $\delta^* - \text{neighbourhoods of } x$.

If $\delta^* - \beta(x)$ is a $\delta^* - \text{Local Base at } x$, then the members of $\delta^* - \beta(x)$ are called basic $\delta^* - \text{neighbourhoods of } x$.

1.2 Remark :

If $\delta^*.O(X)$ represent a topology then every point x in X has a δ^* - local base in tritopology.

Proof :

Clearly because the intersection condition of the topology definition is hold .

<u>1.3 Example :</u>

Let $X = \{a,b,c,d\}$, $T = \{X, \varphi, \{b,c,d\}\}$. , $\Omega = \{X, \varphi, \{a\}\}$ $\rho = \{X, \varphi, \{a\}, \{c,d\}, \{c\}, \{b,c\}, \{a,c,d\}, \{a,c\}, \{a,c,c\}, \{a,b,c\}, \{b,c,d\}\}$

(X, T), (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

$$\begin{split} &\delta^*.O(X) = \{X,\phi,\{a\},\{c,d\},\{c\},\{b,c\},\{a,c,d\},\{a,b,c\},\{a,c\},\{a,b\},\{a,d\},\{a,b,d\},\{b,c,d\}\} \\ &\text{Clearly that } \delta^*.O(X) \text{ represent a topology }. \text{ Then the } \delta^*-\text{ local base at each of the points } a, b, c, d \text{ is given by } \delta^*-\beta(a) = \{\{a\}\}, \delta^*-\beta(b) = \{\{b,c\}\}, \delta^*-\beta(c) = \{\{c\}\}, \delta^*-\beta(d) = \{\{c,d\}\} \\ &\text{Clearly that } \delta^*.O(X) = \{\{a\}, b,c\}, \delta^*-\beta(b) = \{\{b,c\}\}, \delta^*-\beta(c) = \{\{c\}, b,c\}, \delta^*-\beta(d) = \{\{c,d\}\} \\ &\text{Clearly that } \delta^*.O(X) = \{\{a\}, b,c\}, \delta^*-\beta(b) = \{\{b,c\}, b,c\}, \delta^*-\beta(c) = \{\{c\}, b,c\}, \delta^*-\beta(d) = \{\{c,d\}\} \\ &\text{Clearly that } \delta^*.O(X) = \{\{a\}, b,c\}, \delta^*-\beta(b) = \{\{b,c\}, b,c\}, \delta^*-\beta(c) = \{\{c\}, b,c\}, \delta^*-\beta(d) = \{\{c,d\}\} \\ &\text{Clearly that } \delta^*.O(X) = \{\{b,c\}, b,c\}, \delta^*-\beta(c) = \{\{c\}, b,c\}, \delta^*-\beta(d) = \{\{c,d\}, b,$$

Observe that here a δ^* -Local Base at each point consists of a single δ^* -nhd of the point.

<u>1.4 Remark :</u>

If $\delta^*.O(X)$ does not represent a topology then not every point x in X has a δ^* -local base in tritopology.

Proof :

Clearly because the intersection condition of the topology definition is not hold .

<u>1.5 Example :</u>

Let $X=\{a,b,c,d\}$, $T=\{X,\phi,\{c,d\}\}$, $\Omega=\{X,\phi,\{a,b,c\},\{a\}\}$, $\rho=\{X,\phi,\{d\},\{c,d\},\{a,d\}\}$

 $(X, T), (X, \Omega), (X, \rho)$ are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

*

 δ^* . O(X) = {X, φ , {a,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d}}

Clearly that $\delta^* . O(X)$ does not represent a topology. Then the δ^* - Local Base at each of the points a, b, c, d is given by :

 $\delta^{*}-\beta(a) = \{ \{a,d\} \} , \delta^{*}-\beta(c) = \{ \{c,d\} \}$

But there is no $\delta^* - \beta(b)$ because the intersection of {a,b,d} and {b,c,d} is {b,d} is not $\delta^* - \beta(b)$ open set (not exist), i.e. there is no set B such that B is a subset of all δ^* -nhds of b.

Again , there is no δ^* - $\beta(d)$ because the intersection of $\{a,d\}$ and $\{c,d\}$ is $\{d\}$ is not δ^* - open set (not exist), i.e. there is no set D such that D is a subset of all δ^* -nhds of d.

Hence not every point x in X has a δ^* - local base in tritopology .

1.6 Remark :

All the following theorems and remarks is true in tritopology if $\delta^*.O(X)$ represent a topology (i.e. if every x has δ^* -local base).

Proof:

It is clear by the remarks and examples above .

<u>1.7 Theorem :</u>

Let (X,T,Ω,ρ) be a tritopological space. And let $x \in X$ then the collection $\delta^* - \beta(x)$ of all δ^* -open subsets of X containing x is a δ^* -Local Base at x.

Proof :

Let N be any δ^* -nhd of x. Then there exists a δ^* -open set G such that $x \in G \subset N$, since G is a δ^* -open set containing x, $G \in \delta^*$ - $\beta(x)$.

This shows that $\delta^* - \beta(x)$ is a $\delta^* - \text{Local Base at } x$.

<u>1.8 Remark :</u>

(I) In a discrete tritopological space the collection { $\{x\}$ } consisting of a single member $\{x\}$ forms a δ^* - Local Base at $x \in X$

Proof:

- for {x} is a δ^* -open subset of X and so it is a δ^* -nhd of x and any other δ^* -nhd N of x must contain {x}.
- (II) In a indiscrete tritopological space , the set X alone forms a $\ \delta^*\mathchar`-$ Local Base for every point $x\!\in\! X$.

Proof :

There is only δ^* -open X and φ in δ^* .O(X). and must be X.

<u>1.9 Theorem :</u>

Let (X, T, Ω, ρ) be a tritopological space. And let $\delta^* - \beta(x)$ be a $\delta^* - \text{Local Base}$ for every point $x \in X$. Then $\delta^* - \beta(x)$ has the following properties :

- (1) $\delta^* \beta(x) \neq \phi$ for every $x \in X$.
- (2) If $B \in \delta^* \cdot \beta(x)$, then $x \in B$.
- (3) If $A \in \delta^* \beta(x)$ and $B \in \delta^* \beta(x)$, then there exists a set $C \in \delta^* \beta(x)$ such that $C \subset A \cap B$.
- (4) If $A \in \delta^* \beta(x)$, then there exists a set B such that $x \in B \subset A$ and such that for every point $y \in B$, there exists $C \in \delta^* \beta(y)$ satisfying $C \subset B$.

Proof :

(1) Since X is δ^* -open, it is δ^* -nhd of its point. Since $\delta^*-\beta(x)$ is δ^* - Local Base for every point $x \in X$ and X is a δ^* -nhd of x, it follows that there must exist a $B \in \delta^*-\beta(x)$ such that B $\subset X$.

Hence $\delta^* - \beta(x) \neq \phi$ for every $x \in X$.

- (2) If $B \in \delta^* \beta(x)$, then B is a δ^* -nhd of x. So by definition of δ^* -nhd $x \in B$.
- (3) If $A \in \delta^* \beta(x)$, then A is a δ^* -nhd of x. Similarly B is a δ^* -nhd of x. It follows that A \cap B is δ^* -nhd of x. Since $\delta^* \beta(x)$ is δ^* Local Base at x, it follows that there exists $C \in \delta^* \beta(x)$ such that $C \subset A \cap B$.

2- δ^* - Base for a tritopology :

2.1 Definition :

Let (X,T,Ω,ρ) be a tritopological space. A collection $\delta^*-\beta$ of subsets of X is said to form a δ^* - base for the tritopology (T,Ω,ρ) iff:

(I) $\delta^* - \beta \subset \delta^* . O(X)$.

(II) for each point $x \in X$ and each δ^* -neighbourhood N of x there exists some $B \in \delta^* -\beta$ such that $x \in B \subset N$.

2.2 Remark :

If $\delta^*.O(X)$ represent a topology then the tritopology (T,Ω,ρ) has a δ^* -base. Proof:

Clearly because the intersection condition of the topology definition is hold .

2.3 Example :

(X, T), (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 δ^* .O(X) = {X, ϕ ,{a},{b},{a,b}}

Clearly that $\delta^*.O(X)$ represent a topology.

Then the collection $\delta^* - \beta = \{X, \{a\}, \{b\}\}\$ is a δ^* -base for the tritopology (T, Ω, ρ) since : (1) $\delta^* - \beta \subset \delta^* . O(X)$. And

(II) Each δ^* -neighbourhood of a contains {a} which is a member of δ^* - β containing a. Similarly each of δ^* -neighbourhood of b contains {b} which is a member of δ^* - β containing b. And X is a δ^* -neighbourhood of c which is a member of δ^* - β containing c.

2.4 Remark :

If $\delta^* O(X)$ does not represent a topology then the tritopology (T, Ω, ρ) has not a δ^* -base

Proof:

Clearly because the intersection condition of the topology definition is not hold .

2.5 Example :

Let
$$X = \{a, b, c, d\}$$

, $T = \{X, \phi, \{c, d\}\}$
, $\Omega = \{X, \phi, \{a, b, c\}, \{a\}\}$
, $\rho = \{X, \phi, \{d\}, \{c, d\}, \{a, d\}\}$

 $(X, T), (X, \Omega), (X, \rho)$ are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 $\delta^*.O(X) = \{X, \varphi, \{a,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}$

Clearly that $\delta^* . O(X)$ does not represent a topology.

Then this tritopology has not a δ^* - base because the second condition of the definition (2.1) is not hold. because the intersection of {a,b,d} and {b,c,d} is {b,d} is not a δ^* - open set (not exist), i.e. each δ^* -nhds of b contains {b,d}, but {b,d} is not exist in δ^* .O(X) because δ^* .O(X) does not represent a topology.

Again, because the intersection of {a,d} and {c,d} is {d} is not a δ^* - open set (not exist), i.e. each δ^* -nhds of d contains {d}, but {d} is not exist in $\delta^*.O(X)$ because $\delta^*.O(X)$ does not represent a topology.

Hence there is no a δ^* - base .

2.6 Remark :

In the discrete tritopological space the collection $\delta^* - \beta = \{ \{x\} : x \in X \}$ consisting of all singleton subsets of X is a δ^* - Base for the tritopology (T, Ω, ρ) . Proof:

Because for each singleton set is δ^* - open so that $\delta^*-\beta \subset \delta^*$.O(X). Also for each $x \in X$ and each δ^* -nhds N of x, $\{x\} \in \delta^*-\beta$ is such that $x \in \{x\} \subset N$.

2.7 Remark :

All the following theorems and remarks is true in tritopology if $\delta^*.O(X)$ represent a topology (i.e. if (T,Ω,ρ) has δ^* -base).

Proof :

It is clear by the remarks (2.2) and (2.4) and examples (2.3) and (2.5).

2.8 Theorem :

Let (X, T, Ω, ρ) be a tritopological space. A sub collection $\delta^* \cdot \beta$ of $\delta^* \cdot O(X)$ is a $\delta^* \cdot B$ ase for (T, Ω, ρ) iff every $\delta^* \cdot open$ set can be expressed as the union of members of $\delta^* \cdot \beta$. **Proof :**

Let $\delta^* \cdot \beta$ is a $\delta^* \cdot Base$ for (T, Ω, ρ) and let $G \in \delta^* \cdot O(X)$. Since G is $\delta^* \cdot open$ set, it is a $\delta^* \cdot nhd$ of each of its points. Hence by definition of $\delta^* \cdot Base$, to each $x \in G \exists$ a member B of $\delta^* \cdot \beta$ s.t.

 $x\!\in B\subset G$

It follows that $G = \cup \{ B : B \in \delta^* \cdot \beta \text{ and } B \subset G \}$.

Conversely, let $\delta^* - \beta \subset \delta^* . O(X)$ and let every $\delta^* - open \text{ set } G$ be the union of members of $\delta^* - \beta$

We have to show that $\delta^* - \beta$ is $\delta^* - \beta$ as for (T, Ω, ρ) . We have

(1) $\delta^* \cdot \beta \subset \delta^* \cdot O(X)$ (given)

(2) let $x\in X$ and let N be any $\ \delta^*$ -nhd of x . Then there exists a $\ \delta^*$ -open set $\ G$ such that $x\in G\subset N$.

But G is the union of members of $\delta^* \cdot \beta$. Hence there exists $B \in \delta^* \cdot \beta$ such that $x \in B \subset G \subset N$. Thus $\delta^* \cdot \beta$ is $\delta^* \cdot \beta$ ase for (T, Ω, ρ) .

2.9 Theorem :

Let (T_1, Ω_1, ρ_1) and (T_2, Ω_2, ρ_2) be a tritopologies for X which have a common δ^* - Base $\delta^* - \beta$. Then $\delta^*_1 . O(X) = \delta^*_2 . O(X)$.

Proof :

Let $G \in \delta^{*}_{1}$.O(X) and $x \in G$. Since G is δ^{*}_{1} -open set, it is a δ^{*}_{1} - nhd of x and since δ^{*} - β is a δ^{*} - Base for $(T_{1}, \Omega_{1}, \rho_{1})$, there exists $B \in \delta^{*}$ - β such that $x \in B \subset G$. Since δ^{*} - β is a δ^{*} - Base for $(T_{2}, \Omega_{2}, \rho_{2})$, and $B \in \delta^{*}$ - β it follows that $B \in \delta^{*}_{2}$.O(X). Hence G is δ^{*}_{1} - nhd

of x. Since x is arbitrary. Then $G \in \delta^*_2.O(X)$ by theorem $[G \in \delta^*.O(X) \text{ iff } G \text{ is a } \delta^*$ - nhd of each of its points]. Thus $\delta^*_1.O(X) \subset \delta^*_2.O(X)$. By symmetry $\delta^*_2.O(X) \subset \delta^*_1.O(X)$. Hence $\delta^*_1.O(X) = \delta^*_2.O(X)$.

• Properties of a δ^* - Base for a tritopology .

<u>2.10 Theorem :</u>

Let (X, T, Ω, ρ) be a tritopological space. And Let $\delta^* - \beta$ is a $\delta^* - \beta$ base for (T, Ω, ρ) . Then $\delta^* - \beta$ has the following properties :

- (1) for every $x \in X$, there exists a $B \in \delta^* \beta$ such that $x \in B$, that is, $X = \bigcup \{B : B \in \delta^* \beta \}$
- (2) for every $B_1 \in \delta^* \cdot \beta$, $B_2 \in \delta^* \cdot \beta$ and every point $x \in B_1 \cap B_2$, there exists a $B \in \delta^* \cdot \beta$ such that $x \in B \subset B_1 \cap B_2$, that is, the intersection of any two members of $\delta^* \cdot \beta$ is a union of members of $\delta^* \cdot \beta$.

Proof :

- (1) Since X is a δ*-open set, it is a δ*- nhd of each of its points. Hence by definition of δ*-Base, for every x∈X, there exists some B∈δ*-β such that x∈B⊂X in other words, X = ∪ {B : B ∈ δ*-β}.
- (2) If $B_1 \in \delta^* \cdot \beta$ and $B_2 \in \delta^* \cdot \beta$, then B_1 and B_2 are δ^* -open sets. Hence their intersection $B_1 \cap B_2$ is also δ^* -open and therefore $B_1 \cap B_2$ is a δ^* nhd of each of its points. So by definition of δ^* Base, to each $x \in B_1 \cap B_2$, there exists $B \in \delta^* \cdot \beta$ such that $x \in B \subset B_1 \cap B_2$, that is, $B_1 \cap B_2$ is the union of members of $\delta^* \cdot \beta$.

2.10 Theorem :

Let (X,T,Ω,ρ) be a discrete tritopological space and let $\delta^*-\beta$ be the collection of all singleton subsets of X, any class $\delta^*-\beta'$ of subsets of X is a $\delta^*-\beta$ Base for the discrete tritopology (T,Ω,ρ) iff $\delta^*-\beta \subset \delta^*-\beta'$.

Proof :

Let $\delta^* - \beta'$ be a δ^* - Base for the discrete tritopology (T, Ω, ρ) . Since each singleton $\{x\}$ is δ^* open set, $\{x\}$ must be a union of members of $\delta^* - \beta'$. But a singleton set can only be the union of itself or itself with the empty set φ . Hence $\{x\}$ must belong to $\delta^* - \beta'$. It follows that $\delta^* - \beta \subset \delta^* - \beta'$.

Conversely, let $\delta^* \cdot \beta \subset \delta^* \cdot \beta'$. Now $\delta^* \cdot \beta = \{ \{x\} : x \in X \}$ is a $\delta^* \cdot \beta$ as for the discrete tritopology (T, Ω, ρ) by remark (2.6). Also each member of $\delta^* \cdot \beta'$ is $\delta^* \cdot \beta$ open so that $\delta^* \cdot \beta' \subset \delta^* \cdot O(X)$.

Since $\delta^* - \beta \subset \delta^* - \beta'$ it follows that if any δ^* -open set G is the union of members of $\delta^* - \beta$, it is also the union of members of $\delta^* - \beta'$. Hence $\delta^* - \beta'$ is also a δ^* - Base for the discrete tritopology (T, Ω, ρ) .

3- δ^* - Sub base for a tritopology :

3.1 Definition :

Let (X, T, Ω, ρ) be a tritopological space. A collection $\delta^* - \beta_*$ of subsets of X is called a δ^* - sub base for the tritopology (T, Ω, ρ) iff : $\delta^* - \beta_* \subset \delta^* . O(X)$. And finite intersections of members of $\delta^* - \beta_*$ form a δ^* - base for the tritopology (T, Ω, ρ) .

It follows that $\delta^* \cdot \beta_*$ is a $\delta^* \cdot$ sub base for the tritopology (T, Ω, ρ) iff every member of $\delta^* \cdot O(X)$ is the union of finite intersections of members of $\delta^* \cdot \beta_*$

3.2 Remark :

If $\delta^*.O(X)$ represent a topology then the tritopology (T,Ω,ρ) has a δ^* -sub base. Proof:

Clearly by using remark (2.2).

<u>3.3 Example :</u>

(X, T), (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 $\delta^*.O(X) = \{X, \varphi, \{a\}, \{a, c\}, \{a, d\}, \{a, c, d\}\}$ Clearly that $\delta^*.O(X)$ represent a topology.

Then the collection $\delta^* - \beta_* = \{\{a, c\}, \{a, d\}\}$ is a δ^* - sub base for the tritopology (T, Ω, ρ)

since the family $\delta^* - \beta$ of finite intersections of $\delta^* - \beta_*$ is given by :

 $\delta^* - \beta = \{\{a\}, \{a, c\}, \{a, d\}\}$

Which is a δ^* -base for the tritopology (T, Ω, ρ) .

3.4 Remark :

If $\delta^*.O(X)$ does not represent a topology then the tritopology (T,Ω,ρ) has not a δ^* -sub base.

Proof :

Clearly by using remark (2.4).

3.5 Example :

Let
$$X=\{a,b,c,d\}$$
, $T=\{X, \phi, \{c,d\}\}$
, $\Omega=\{X, \phi, \{a,b,c\}, \{a\}\}$
, $\rho=\{X, \phi, \{d\}, \{c,d\}, \{a,d\}\}$

(X, T), (X, Ω) , (X, ρ) are three topological spaces, then (X, T, Ω, ρ) is a tritopological space, such that :

 $\delta^* . O(X) = \{X, \varphi, \{a, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$

Clearly that $\delta^* .O(X)$ does not represent a topology.

Then this tritopology has not a δ^* - sub base because it has not δ^* - base because $\delta^*.O(X)$ does not represent a topology, then the second condition of the definition (2.1) is not hold.

Hence there is no a δ^* - sub base .

References :

- [1] Bourbaki, N. "General Topology", Addison Wesley Reading, Mass, 1966.
- [2] Hassan. A. F. "Relation among topological, bitopological and tritopological spaces ", Al-Qadisiya . J., V. 11, No.3, 2006, 217-223 .
- [3] Hassan. A. F. " δ^* -open set in tritopological spaces "MS.c thesis . University of Kufa , 2004 .
- [4] Jaleel. I. D. " δ -open set in bitopological spaces "MS.c thesis . University of Babylon , 2003.