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Abstract: An algorithm for solving variational
problems with fixed and free boundary conditions
using Hermite polynomials is proposed. The
properties of Hermite polynomials with the
operational matrix of integration are used to reduce
a variational problem to the solution of algebraic
equations. The method verifies an accurate
approximate solution with using small numbers of
polynomials comparing to other methods. Several
examples have been applied to the proposed
method.
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1. Introduction

Orthogonal functions and polynomial series have received
consideration attention in dealing with various problems of
dynamic system. The main characteristic of this technique is to
reduce these problems to those of solving a system of algebraic
equations thus greatly simplifying the problem and making it
computationally plausible.
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The available sets of orthogonal functions can be divided into
three classes. The first class is the set of piecewise constant basis
function, the second class consists of the set of orthogonal
polynomials and the third class is the widely used set of sine-
cosine functions in Fourier series. In these methods, a truncated
orthogonal series is used for solving variational problem with the
goal of obtaining efficient computational solutions. Typical
examples are the rationalized Haar functions [1], Walsh-hybrid[2],
generalized Laguerre polynomials[3], block pulse function [4],
Chebyshev polynomials[5], Fourier series [6] and Bernstein[7].

In this paper we use Hermite polynomials for solving
variational problems. The method consists of reducing the
variational problem into a set of algebraic equations by first
expanding the candidate function as a Hermite function with
unknown coefficients. The operational matrix of integration is
given. The matrix used to evaluate the coefficients of Hermite
functions in such a way that the necessary conditions for
extremization are imposed. The proposed method is
computationally attractive and applications are demonstrated
through illustrative examples.

2. Hermite Polynomials with Some New Properties

Hermite polynomials are a classical orthogonal polynomial
sequence that arises in probability. They are named after Charles
Hermite (1864).

The explicit expression of Hermite polynomials of degree N is
defined by [8]:

e N G N 2l
H”(t)_n!g‘(ZI)!(nIZ—I)!(Zt)

The recurrence relation is given by the formula[8]:

Hn+1(t) = ZtHn(t) - Zan—l(t)
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The function approximation by Hermite polynomials is
defined as fellow:

A function f(t) defined over [0, tf) may be expanded as
f(t)=> cH () (1)
i=0

Where
¢ =< f (1), Hy () >
in which <, > denotes the inner product.

If the inner infinite series in eq.(1) is truncated, then eq.(1)
can be written

f(t)= ici H =c"H(t) (t) (2)

where
c = [cg,Cq s Cn]T

H(t) = [Ho(t), H; (1), ..., Hy(D]” 3)

The integration of H,,(t) of order n can be obtained using
the following formula:

1

——H
[H, @t = ) 20 70
1

2(n+1)

if n even

[H,. (O + (2—“) H, ifnodd @)

2

The first few integration of Hermite polynomials are:

[HoOdt =2 Hy(0)

R @t = M, 0+ 2H, 0]
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JH.O =2 H,©

JH@dt = ([H, 0+ 12H, (]

1
jH4(t)dt=EH5(t)

[Hs(®)at =é[H6(t)+120Ho(t)]

The integration of the vector H(t) defined in eq.(3) may be
approximated by

j H(t)dt = B, ,H (t) (5)

Where P is the N+ 1 x N + 1 operational matrix for integration
and from eq.(4) we can written this matrix as:

0 % 0 0 0 0 0
1 1
> 0 7 0 0 0 0
0 0 0 é 0 0 0
P = ; - .
2n! 1
000 -0 0
2(n+1)(”2—1 ! 2(n+1)
1
_ 0 00 0 0 0 2D |
If N even, and
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0 % 0 0 0 0 0
1 1
5 0 7 0 0 0 0
0 o o L 0O o 0
P . .. 6 .
: : : ;
0 0 00 2(n+1)
2n! 1
O 0 0 --- 0 0
iﬂ-i| 2(n+1)
_2(n+1) > ) |
If N odd.

3. Application of Hermite Polynomials for Solving
Variational Problem

Consider the problem of finding the extremum of the
functional

J(X)= j. F(t, x(t), x(t))dt (6)

with the boundary conditions

x(0) = xo, x(1) = x4 (7)

The necessary condition for x(t) to extremize J(x) is that it
should satisfy the Euler-Lagrange equation

doF d(@F)_O
ox dt\ox/
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With appropriate boundary conditions, However, the above
differential equation can be integrated easily only for simple
cases. Thus numerical and direct methods such as the well-known
Ritz and Galerkin methods [9], have been developed to solve
variational problem. In this paper the Hermite polynomials are
used to establish the direct method for the variational problems.

Suppose, the rate variable x(t) can be expressed approximately

as:

x(t) = ZNO:ciHi(t) =cTH(t) (8)
Integrating eq.(8) from 0 to t and using eq.(5), we represent

x(t) as:

x(t) :jx(t)dt+x(0) = cTPy4H®) + x(0) 9)

0

we can also express t in terms of H(t) as:
t = dTH(t) where dT = [d,, d4, ..., dy] (10)

subtitling egs.(8-10) in eq.(6) the functional J(x) becomes a
functions c;,i = 0,1, ..., N and we finally have

J=1](co, €1, -, N) (11)

Hence, to find the extremum of J(x) we solve
2 ~0,i=01,..,n (12)

The above procedure is now used to solve the following
variational problems.
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4. Numerical Examples

Example (1): Consider the problem of finding the extermal of the
functional [7] [10]:

J(X) = j[xz(t) +X(t)]dt (13)

The boundary conditions

x(0) = 0,x(1) = = (14)

4

where the exact solution is obtained by using the Euler equation
as:

kO =-1-19, x®=-(1-2)

using eqs.(8-10) in eq.(13) we get:

1
30 =[[c"B®BT () +c"B1)BT () Jat (15)
0
Let:
1
D=[H(®HH (t)dt (16)
0
then:
J(x) = c™Dc + cTDd (17)
hence, the boundary conditions in eq.(14) substituted in eq.(9)
yields
x(1) = cTPH(1) = - (18)

We minimize eq.(13) subject to eq.(18) using Lagrange multiplier.
Suppose:
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- 1
J60 =109 + ACTPH(D) — )

where A is the Lagrange multiplier. Using eq.(12). We solve
dj _ a

dc 0. oA

By choosing N=2 we obtain

0

1 1 __2
3
D=| 1 ﬂ 0
3
__2 0 @
| 3 15 |

and
1 T
d= [o,—,o] H(D)
2
Therefore,
_ [1 —1 O]T
““l2r 3
x(t) = [—0.125,0.25, —0.0625]TH(t)

then J(x) = 0.166667, Table(1) shows the approximate values of
x(t) using Hermite polynomials approach for N = 2 and 3.
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Table (1): Estimated values for N=2 and 3 and exact values of

x(t)
; N=2 N=3 Analytical Absolute error
X(t) X(t) Solution | [X(£)exact — X(V)app|

0 0.00000000 0.00000000 0.00000000 0.00000000
0.125 0.05859375 0.05859375 0.05859375 0.00000000
0.250 0.10937500 0.10937500 0.10937500 0.00000000
0.375 0.15234375 0.15234375 0.15234375 0.00000000
0.500 0.18750000 0.18750000 0.18750000 0.00000000
0.625 0.21484375 0.21484375 0.21484375 0.00000000
0.750 0.23437500 0.23437500 0.23437500 0.00000000
0.875 0.24609375 0.24609375 0.24609375 0.00000000

1 0.25000000 0.25000000 0.25000000 0.00000000

Example (2): Consider the same functional extremal of eq.(13)

but with unspecified x(1),namely the boundary
[10]:

x(0) = 0,x(1) = unspecified

The exact solution via Euler’s equation is

x(t) = —5 and x(t) = —%

conditions [7]

(19)

substituting egs.(8-9) into eq.(13) with consider eq.(16) we get:

J(x) = ¢"Dc + cTDd

The boundary condition eq.(19) is resulted [11]

Flet = 0, x(1) = -2

1

using eq.(8) ineq.(21) gives

CTH(l) = _E
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Now, we minimize eq.(20) subject to eq.(22) using Lagrange

multiplier. Suppose

J6) =G0 +ACTH(D) +3)

where A is the Lagrange multiplier. Using eq.(12). We solve

0
ac

g

0 oA

0

By choosing N=2, we get the same D and d previously, so we get

c= [0,—%,0]T

x(t) = [-0.125,0,—0.0625]TH(t)

then J(x) = —0.833333, Table (2) shows the approximate values
of x(t) using Hermite polynomials approach for N = 2 and 3.

Table (2): Estimated values for N=2 and 3 and exact values of

x(t)
T N=2 N=3 Analytical Absolute error
X(t) X(t) Solution | |X(D)exact = X(V)app|

0 0.00000000 0.00000000 0.00000000 0.00000000
0.125 | -0.00390652 -0.00390652 | -0.00390652 0.00000000
0.250 | -0.01625000 -0.01625000 | -0.01625000 0.00000000
0.375 | -0.03515625 -0.03515625 | -0.03515625 0.00000000
0.500 | -0.06250000 -0.06250000 | -0.06250000 0.00000000
0.625 | -0.09765625 -0.09765625 | -0.09765625 0.00000000
0.750 | -0.14062500 -0.14062500 | -0.14062500 0.00000000
0.875 | -0.19140625 -0.19140625 | -0.19140625 0.00000000

1 -0.25000000 -0.25000000 | -0.25000000 0.00000000

Example (3): Let us consider the problem of searching of
exteremizing the functional [1] [2] [7]:
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30 = [ [ +tx@®) + O t, (23)
0

With the following boundary conditions
x(0) =0, x(1) =+ (24)

The exact solution of this problem is given by:

—e Y(-1+et)(e—2e2-2et+elth)]
4(—1+e2)

x(t) =
Applying similar approach used in the previous problems led to
J(x) = ¢"Dc + cTDd + cTPDPTc

J6O = J(0) + A(CTPH(D) —5)

By choosing N=3 we obtained

1 1 -2 4
3
°Tl 2, 28 4
4 15 3
o, .24 4 656
L 5 3 35 |

1 T
And d=0,2,0,0] H(t)
2
therefore,
¢ =[0.546828,—0.290529,0.051598, —0.007025]T
x(t) = [-0.057109,0.074033,—0.182898,0.011392]TH(t)

then J(x) = 0.19759399, Table (3) shows the approximate values
of x(t) using Hermite polynomials approach for N = 3,4 and 5.
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Table (3): Estimated values for N =3, 4, and 5 and exact values

of x(t)
N=3 N=4 N=5 . Absolute error at
t Analytical N=4
X(t) X(t) X(t) Solution |X(t)exact - X(t)appl
0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.041947 0.041951 0.041951 0.041951 0.000000
0.2 0.079319 0.079317 0.079317 0.079317 0.000000
0.3 0.112479 0.112473 0.112473 0.112473 0.000000
0.4 0.141755 0.141751 0.141751 0.141751 0.000000
0.5 | 0.1674423 0.167443 0.167443 0.167443 0.000000
0.6 0.189801 0.189807 0.189807 0.189807 0.000000
0.7 0.209060 0.209066 0.209066 0.209066 0.000000
0.8 0.225412 0.225413 0.225413 0.225413 0.000000
0.9 0.239017 0.239013 0.239013 0.239013 0.000000
1 0.250000 0.250000 0.250000 0.250000 0.000000

Example (4): Consider the following functional extremal problem
when the functional is second order with two fixed and two free

boundary conditions [7] [10]:
J(X) = TB X2 (1) +4(1-1) X(t)} dt

With

x(0) =0, x(0) =0

x(1) = free, x(1) = free

The exact solution via Euler’s equation is
X(t) = -2t +4t—2,

X(t)=—§t3+2t2—2t,
_ 1.4 2.3 .2
x(t) = pi i i
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The natural boundary conditions are found from [11]

d
Fy — = (F) s 0

=4(1-1t)-%;=0=%1)=0
Filiey =0=%(1) =0 (26)

Now we expand X(t) into Hermit polynomials, we get

%) = YoM, ~cCHE 27)
Integrating eq.(27) three times gives

%(t) = cTPH(t) + %(0), (28)
%(t) = cTP?H(t) + %(0)t, (29)
x(t) = cTP3H(t) + x(0)dTH(t). (30)

From eq.(26) and eq.(28) we get
%(0) = —cTPH(1) (31)

Expressing4 — 4t = fTH(t), and substituting egs. (28-31), in
eg.(24) and using eq.(16) we get

J(x) = %CTPDPTC — 2cTP2H(D)HT(1)PT + cTPH(1)HT (1)PTc +
fT(P?)Tc — cTPH(1)d"Df (32)

and solve eq.(32) using eq.(12) for N=2, we get:

1 1 __2
3
D=| 1 i (0]
3
-2 5 28
| 3 15 |
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c= [41_21 O]T

x(t) =[-1,2,-0.5]TH(t)

then J(x) = —0.4, Table (4) shows the approximate values of x(t)
using Hermite Polynomials approach for N = 2 and 3.

Table (4): Estimated values for N=2 and 3 and exact values of

x(t)
T N=2 N=3 Analytical Absolute error
X(t) X(t) Solution |X(D) exact = X(©)app|

0 0.00000000 0.00000000 | 0.00000000 0.00000000
0.125 -0.01436068 -0.01436068 | -0.01436068 0.00000000
0.250 -0.05273438 -0.05273438 | -0.05273438 0.00000000
0.375 -0.10876465 -0.10876465 | -0.10876465 0.00000000
0.500 -0.17708333 -0.17708333 | -0.17708333 0.00000000
0.625 -0.25329589 -0.25329589 | -0.25329589 0.00000000
0.750 -0.33398438 -0.33398438 | -0.33398438 0.00000000
0.875 -0.41670736 -0.41670736 | -0.41670736 0.00000000

1 -0.50000000 -0.50000000 | -0.50000000 0.00000000

5. Conclusion

The numerical solutions of variational problem were
introduced using Hermite polynomials. Some important formulas
concerning the integration of Hermite polynomials as well as the
operational matrix of integration had been derived which were
essential to our numerical computations. Examples were solved
and good results were achieved.

The uniform approximation capabilities of Hermite
polynomials coupled with the fact that only a small number of
polynomials (three - five to be precise) are needed to obtain
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satisfactory results that makes our method attractive comparing to

other methods.

Tables (5,6,7and 8) shows the superiority of our method over
the other existing methods for examples(1,2,3,and 4), the methods
recently proposed by Hsiao[10], Razzaghi [1], Singh [7],and

Ordokhani[2].

Table (5): Comparison between Hermite solution with Haar

and Bernstein solutions for example (1)

Haar Bernstein Hermite
solution[10] solution[7] solution Analytical
t (N=100) (N=6) (N=2) solution
X(t) X(t) X(t)

0 0.0000 0.000000 0.00000000 | 0.00000000
0.125 0.0586 0.058594 0.05859375 | 0.05859375
0.375 0.1523 0.152344 0.15234375 | 0.15234375
0.625 0.2148 0.214844 0.21484375 | 0.21484375
0.875 0.2461 0.246094 0.24609375 | 0.24609375

1 0.2500 0.250000 0.25000000 | 0.25000000

Max(|X(t) exact — X(Dapp|) 3.475x107* 3.475x10~* | 0.00000000

Table (6): Comparison between Hermite solution with Haar

and Bernstein solutions for example (2)

Haar Bernstein Hermite
solution[1] solution[7] solution Analytical
t (N=100) (N=6) (N=2) solution
X(t) X(t) X(t)
0 0.0000 0.000000 0.00000000 0.00000000
0.125 -0.0039 -0.003906 -0.00390652 -0.00390652
0.375 -0.0352 -0.035156 -0.03515625 -0.03515625
0.625 -0.0977 -0.097656 -0.09765625 -0.09765625
0.875 -0.1914 -0.191406 -0.19140625 -0.19140625
1 -0.2539 -0.250000 -0.25000000 -0.25000000
M;’Ei"‘mm 3.9x1073 5.1999x10~7 0.00000000
— X(0)app))
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Table(7): Comparison between Hermite solution with RH
functions and Walsh-hybrid solutions for example (3)

RH Walsh-hybrid | Hermite
¢ function[1] solution[2] solution Analytical
(N=8) (N=32) (N=4) solution
X(t) X(t) X(t)

0 0.0000 0.00000 0.000000 0.000000
0.2 0.0761 0.07933 0.079317 0.079317
0.4 0.1482 0.14171 0.141751 0.141751
0.6 0.1817 0.18984 0.189807 0.189807
0.8 0.2267 0.22545 0.225413 0.225413

1 0.2515 0.25002 0.250000 0.250000

Max(|X(t) exace = X(Dapp)|) 8.107x1072 4.1x107° 0.000000

Table(8): Comparison between Hermite solution with Haar and
Bernstein solutions for example (4)

Haar Bernstein Hermite
¢ solution[10] | solution[7] solution Analytical
(N=100) (N=6) (N=2) solution
X(t) X(t) X(t)
0 0.0000 0.000000 0.00000000 | 0.00000000
0.250 -0.0518 -0.052735 | -0.05273438 | -0.05273438
0.500 -0.1758 -0.177083 | -0.17708333 | -0.17708333
0.750 -0.3330 -0.333985 | -0.33398438 | -0.33398438
1 -0.4999 -0.500000 | -0.50000000 | -0.50000000
Max(|X(6)exact = X(Dapp|) 1.283x1072 | 6.1999x10~7 | 0.00000000
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