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Abstract

Abbas [1] proposed new hierarchical representation of the adaptive Bayesian lasso model as uniform
density , mixing with standard exponential distribution based on a transformation of the mixture of
uniform density and a particular gamma distribution formulation provided by Mallick & Yi [2] They
consider the new proposed hierarchical formulation model and prior distributions, as well as the full
Conditional posterior distributions structural under non conditioning on o which makes the
uncertainty, of a unimodal full posterior, Conditioning on o is important, because it guarantees a
unimodal full posterior Park and Casella [3]. So, we can conclude that [1] proposed new hierarchical
representation utilizing a Non- scale mixture distributions, which needs to deal with this problem . To
address this problem we consider new hierarchical representation of the adaptive Bayesian lasso for
Tobit model based on scale mixture of Uniform density, mixing with standard exponential distribution.
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1. Introduction

Traditional least squares method used to estimate the mean of response variable in the regression
function through the data provided by predictor variables. The least squares method provided best
quality of the estimate especially when n > p which implies that the smallest variance of the estimate
and then the prediction accuracy will be adequate. However, when the number of predictor variables
(p) approach the sample size (n), or when p > n, least squares cannot be used. Horel & Kennard [4]
proposed a solution to address the problem of p > n through introducing Ridge regression by adding
the penalty function to the residual sum of squares (RSS),

RSS(p) + penalty function ,(5),

where A is the regularization parameter. Tibshirani [5] realized the Lasso method that set the value of
irrelevant predictor variables to Zero (sparsity), as well as make shrinkage to the relevant predictor
variables estimates. Lasso and Ridge have the same technique which minimize the penalized residual
sum of squares, but with different penalty functions. Consequently, we can say that Lasso provide
”Variable Selection” techniques.

The widely popular regularization method least Absolute Shrinkage and Selection Operator (Lasso) [5]
used in regression to shrinkage and variable selection. The difference between Lasso and Ridge method
is the penalty function that refer to constraint of L, norm in ridge, whereas in Lasso the constrain is
penalty function of L; norm. The Lasso estimate minimize the following penalized residual sum of
square (RSS)

Biasso = argming(y — XB)'(y — XB) + A X%_ || (1)

where the regularization parameter is A > 0. We can see from (1), the penalty function is consist of
Lasso penalty L, norm. Since the penalty function is Lasso is non-differential at zero, then it has the
ability to reduce the parameter estimates to be zeros. Here, X is the matrix of standardized predictors , y
is the vector of centered value of the response variable .

Frank & Friedman [6] suggested the bridge regression with penalty function L,—norm). Mienshausen [7]
suggested new regularization method called relaxed lasso to control the bias in the Lasso estimate. Zou
[8] proposed new penalized function which is called Adaptive Lasso (AL) to address the problem of
bias in Lasso estimate by scaling each parameter with different weights, the AL coefficients are
estimated by minimize,

i AL argnvinag||ly — X ||:: + A E a3, |

)

where w;> 0 and "w = 1/|4 ols|, with y > 0.

Tibshirani et al. [9] proposed fused Lasso that handle predictor variables. It ordered in meaningful
way. Bakin [10] proposed what is called the group Lasso. Zhoa et al. [11] introduced the composite
absolute penalties as generalization of the group Lasso. Zou & Hastie [12] introduced the elastic net
regularization as combination of Ridge and Lasso regression. We consider the above mentioned
methods of regression parameters estimation as “Frequentist” methods. Recently, the Bayesian methods
have become widely used especially in regression techniques. Tibshirani [5] introduced the || term in
the penalty function as proportion to (—log) of Laplace density;
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Tobin [13] defined the censored regression (Tobit model) as follows:

yi 5y <0
YBTlo  ;yrx0
where the latent variable y; = x'; 8 + u;and y; = max{0,y;*} with u; ~ N(0,6%). Park and Casella [3]
introduced the Lasso regression parameter estimates based on subjective Bayes [5] and show that the
Lasso estimate as posterior mode estimate, where the prior density of § is Laplace density. Returning to
[3] they introduced an important feature to the Bayesian analysis of the Lasso estimator under
conditional Laplace prior g on ¢°,
=i 2y ] - )"l $-=|
*Ble”) = a1k '-_u.fﬁ‘“"( f?) (@)
This feature (4) is provided the uni-modality of the full posterior of Lasso estimator. Leng [14]
proposed the following new minimization problem of the Bayesian lasso by assuming that the

regularization parameter A takes different 4; for each parameter § instead of the same A for every
parameter as in lasso method.

151 arg vir ||y X3 . X Al
=1 (5)

Griffin and Brown [15] introduced a Bayesian regularization method that analogue to the adaptive lasso
method whereby allowing to the scale parameter A in the mixing density of the scale mixture of normals
to vary from parameter to parameter.

Mallick and Yi [2] proposed new scale mixture of densities as new hierarchical representation of
subjective Bayesian Lasso, i.e.,

A ( A .-|) / 1 AS o (Al of
[k ) —_— — —_ L ) ARa | erie
ay/as o2 S Azl 22 {2 !
e

(6)

which is the scale mixture of uniform density, mixing with Gamma(2,1) the new scale mixture in (6)
leads with the (4) to new hierarchical representation. In this paper, we proposed new representation of
Laplace prior as scale mixture of uniform mixing with standard exponential distribution.

Prposition: A Laplace density can be written as a scale mixture of uniform density mixing with
standard exponential distribution, i.e.,

A Al " A
,__1'.\|a( _,L ) / _I,_q'.\hf 2y dE
22 W o JEn Al B2

Mep 2 @)

Proof: Mathematically, it is well-known that:

Al :
[ e 5] [ ,lJ__ ] / Aenp [ — A ) duw
v oF e Ll
WS

multiple both side of (8) by = m_z and letting z = Aw, then we can get:

(8)
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Hence, we get (7), we can say that the Laplace distribution is a scale mixture of uniform(—Lf= w;?E)
mixing with standard exponential distribution. Abbas [1] introduced the following hierarchical model
based on non-scale mixture of Uniform distribution mixing with standard exponential density, by
reparametrization the scale mixture of Mallick and Yi [2],

A ' A
o exp — A3} = }! = expl—z i ez
= Sry=h |8y =

/A ~ Uniform(—1/X1/X)

z; ~ Standard exponential density

The proposed hierarchical model based on (9) consist of the probability density function of (5|4)
which is uniformly distributed but does not involve the scale parameter 4°. Following [2],[3]we can state
that (9) is not conditional on o?, where [3] state that conditioning on ¢* is important to guarantee the
unimodal of the full posterior distribution and to make the point estimation more meaningful. In this
paper we address this problem through adding o as conditional on .

2. The Hierarchical Model and Prior Distribution

Following Park and [2,3,1] and by using (4) and (6), the hierarchical model formulation based
on (7) is as follows:

. _{yi‘ P yi <0
' 0 ;y; >0
y*lxrﬁro-z ~ Nn(Xﬂra-ZIn);
14 ,O_Z /GZ

B|A, 0% ~ nUniform - ,
j=1 4 A

14

zZ~ 1_[ Standard exponential,
j=1

o2~ n(c?),

. . 2 . 2.
Where z(c?) could be 1/02 or any inverse gamma prior for o~ , where the inverse gamma for o~ is

(o) = %(02)'“ exp(—%); 5%ab >0

Aj ~ Gamma(h, d).
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3. Full Conditional Posterior Distributions
Suppose we have the vector z = (23,25, - ,zp)o, then the full conditional posterior

Jo? Jo? ©)

Zj

Bly*'X' z,2 ~Np(BOLS' (X,X)_lo-z) H;}:1I [TZJ < ﬁj < T] .

” 4 144]
z~| |Exp(=z ).1[z; > ——=11]. (10)
1:1[ J ' Y, 02
) n+p-—1 1
o°ly*.X,z, B ~InvGamma (T + a,z(y* -XB)'(y* —XB) + b). (11)

g
4]

Aj|8;, 0% o« Gamma(h + 1,d) I[ A; < 1. (12)

See the Appendix (A) for the derivatives.

4. MCMC Sampling for the proposed Bayesian Lasso

Regularization path computations under Bayesian Lasso with Gibbs Sampler
algorithm and based the scale mixture (7) and initial values for £,z,4, and o” are given
with iterations the following steps:

1- Sampling the latent variable y : generating y from truncated normal (Xg,6°l,).
2- Sampling z : generating z;as follows:

Vit
where z; generates from left truncated exponential and z,-* generates from standard
exponential distribution with rate parameter equal to one in (11).

3- Sampling B: generating B can be done from truncated multivariate normal distribution
proportional to the full conditional posterior distribution in (10).

4- Sampling ¢ : generating o° can be implemented from left truncated inverse gamma
distribution proportional to the full conditional posterior distribution in equation (12). [2]
generate (o) from right truncated gamma density,

Gamma(”*Tp_l+a,(y “X B)(y =X B) I[67 <
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replacing, o® =1/  then we can imitative sampling from truncated Inverse Gamma in
(12).

5- Sampling the regularization parameter /;: we can update the regularization parameter 4; from
gamma distribution by generating the samples from (13).

5. Simulation Analysis

Simulation study is performed in two examples based the proposed scale mixture of
unifroms and to identify many scenarios in which the New Bayesian adaptive Lasso
(NBALasso) performs well. For simulated examples, we use the statistic "Mediam of Mean
Absolute Deviations” (MMAD) to compare the performance of different regression models
(Lasso, Bayesian Lasso (BLasso), Adaptive Lasso(Alasso), Bayesian Adaptive Lasso
(BALasso), NBALasso). by using the following formula,

MMAD =median[mean(X 8—X £")]

true
Here, B is the vector of true parameter values. The generating process of data is as
follows

y =X f+e,

Where X is distributed from normal with mean zero and variance one, and the error term
with following scenarios:
1. The distribution of the error is a normal distribution: N(u, 1).
2. The distribution of the error is a mixture of two normal distributions:

0.IN(w, 1) + 0.9N(w, 9).
3. The distribution of the error is a Laplace distribution: Laplace(y, 1).
4. The distribution of the error is a mixture of two Laplace distributions:

0.1Laplace(y, 1) + 0.9Laplace(y, 3).

]
The correlation between predictors Xi and Xj is P " and the matrix of predictor variable

observations are X UN(0,Z) , here Zij = 0.5l . Before carry out any regression model, we

standardized the predictors values and centered the response variable values. The Bayesian lasso and
the new Bayesian adaptive lasso estimates are the posterior means, we use the Gibbs sampler to
implement the proposed conditional posterior distributions. In R package lars for lasso, we used the
LARS algorithm to select the penalty parameter with (k = 10)-fold cross validation.
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In this example, we generate dataset of 50 each with 20 observations, this example used by [5] , here
the true vector is S =(0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85) and o =3. Table (1)

Shows the proposed method (NBALasso) performed better with error distributed on (Normal,
Laplace) than the other methods based on the values of MMAD criterion as well as based on the
Standard Deviation (SD) values. But under (Normal Mix) the (BALasso) perform better and under
(Laplace Mix) the (Alasso) performs well, so we can say the proposed new regularization method is

comparable.

Table (1) MMAD values with SD

Methods Error Distributions _ _
Normal Normal Mix Laplace Laplace Mix
Lasso 1.3491 (1.2154) 2.1028 (1.6769) 1.6834 (1.4071) 3.1969 (2.8276)
BLasso 1.2154 (1.1409) 2.3560 (1.7701) 1.7793 (1.6539) 2.6957 (2.3942)
AlLasso 1.1883 (1.0739) 2.5364 (1.8482) 1.6026 (1.3479) 2.4231 (2.2947)
BALasso 1.1409 (1.0577) 1.9587 (1.3398) 1.5087 (1.1917) 2.5993 (2.3228)
NBALasso 1.0739 (1.0024) 1.9934 (1.3989) 1.3729 (1.0407) 2.4581 (2.2156)

The following trace plot figures (1) shows that the Gibbs sampler algorithm of the posterior
distributions of the regression parameters convergence to the stationary distribution, there is

no flat bits in trace plot figures of parameters pattern.
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Figure (1) Trace Plots of Proposed NBALasso Tobit Parameters 3, — f3;
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Also, we provide our analysis with Boxplots figures, where figure (2) shows the boxplots of the Tobit
regression parameters which exhibits that NBALasso does not suffer from the deviations pf the
coefficients estimates compared with the other regression estimation methods, the value of the median
of the estimated parameter values is very close to the true of the regression parameter (Red Line).
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Example 2

In this example, we generate dataset of 50 each with 20 observations, this example used by [5] , here
the true vector is S =(5,0,0,0,0,0,0,0) and o =2. Table (2) Shows the proposed method

(NBALasso) performed better with error distributed on (Normal, Laplace) than the other methods
based on the values of MMAD criterion as well as based on the Standard Deviation (SD) values. But
under (Normal, Laplace, Laplace Mix ) the (NBALasso) perform better and under (Normal Mix) the
(Alasso) performs well, so we can say the proposed new regularization method is comparable and
performs better with the lower values of standard errors.

Table (2) MMAD values with SD

Methods Error Distributions _ _
Normal Normal Mix Laplace Laplace Mix
Lasso 4.7317 (4.3920) | 8.9440 (7.7034) | 5.8908 (4.5547) | 10.0509 (9.3654)
BLasso 5.0468 (4.6356) | 7.2779 (6.6309) | 4.7793 (4.3555) | 9.6124 (8.8980)
AlLasso 3.4735 (3.3835) | 6.2129 (5.7648) | 4.9195 (4.4090) | 9.4318 (8.5260)
BALasso 3.3536 (3.2465) | 7.1679 (6.6201) | 4.1479 (3.7184) | 9.0051 (8.3433)
NBALasso 3.2292 (3.0113) | 6.4708 (5.8303) | 4.1258 (3.6369) | 8.7288 (8.0855)
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The following trace plot figures (3) shows that the MCMC sampler algorithm of the posterior
distributions of the regression coefficients convergence to the stationary distribution, we can see the
well mixing of MCMC samples with target distribution.
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Figure (3) Trace Plots of Proposed NBALasso Tobit Parameters 3, — f3;

Also, we provide our analysis with Boxplots figures, where figure (4) shows the boxplots of the Tobit
regression parameters which exhibits that NBALasso does not suffer from the deviations of the
coefficients estimates compared with the other regression estimation methods, the value of the median
of the estimated parameter values is very close to the true of the regression parameter (Red Line).
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Conclusions

-5

In this paper, new Bayesian lasso method for variable selection have proposed based on the
Laplace prior distribution as scale mixture of Uniforms mixing with standard exponential
distribution on their variances. New hierarchical model representation and new MCMC
algorithm have developed. Two simulation examples conducted to explore the path solution of
the proposed method. The results of simulation presented some evidence of competition of the
proposed Bayesian Adaptive Lasso with the others methods.
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Appendix A
The derivations of the full conditional posterior distributions are as follows: We suppose
that joint posterior distribution of all parameters is:

1(B,z,0 Ay, X) o n(y|X, .07 (Blz,0”)n(zA)m(2)m(c”)do?.
Now we can write down the posterior distributions as:

1- The posterior distribution of A conditioning y,X,z,A,6° is:

7(Bly.,X,z,6%)cx(y I X,B,c)x(pBlz2,1)

N
wexpl- 55 (v ~X Ay X ML 11| <27
o /’LJ'
B _ . , 2
oC exp[—212 (y _ﬂoLs )'X X (y _ﬂOLS )]ij:ll [ |ﬂj|< ZJ i ]
o 4

J

Then,

A

]

B1Y,X,2,6° ON (B, 0* (X X)) TILT [ |B]< ]

Hence we have proved (10).

2— The posterior distribution of z is:
504



New Scale Mixture for Bayesian Adaptive Lasso Tobit Dr. Ahmad N. Flaih; Dr. Muhannad F. Al-Saadony; Dr.
Regression

Hassan Elsalloukh

The (15th & the 2nd International) Conference of Statistical Applications [ ISSN (1681- 6870) |

7@z | B, A, c)ca(Blz,0% A)x(z)

o< I10_ exp(-z ;)1 [zj>/1] 18] ]
Voo
Then
A B
z /0% 4, Bclll exp(-z )1 [ z;> J‘ﬂJ‘ 1

3

Hence we proved (11).

3— The posterior distribution of &% is:

w(c? 1y, X ,z,8,0Dca(y I X ,8,c)x(BIlA,c*)r(A)7x(c?)dc?

(2 2 expl-—1o(y —X B)(y — X )]
o 20
A b b 2 * By
= 70" = I (@) exp( ) 110" > max 5]

J

Then

2 2
c?ly,X,z,8,A0 InverseGamma(n+TF)_l+a,(y -X B)'(y =X B)+b) I[c? > ma)(/1 Ai 1
j

2
ZJ

Hence we proved (12).

4— The posterior distribution of /;is:
(A, 1 B,) (B, | A,)7(4,;)

d"
o< A, ﬁ}“ih texp[-d 4]

VRN
oc AN D2 exp[—d 4,1 1[4, < ﬁ]
]

Then

Z .
A; 1 B; DGamma(h +1,d) T[4, <J|,8—|]
j

Where the prior density of 4; has a Gamma(h,d).
Hence we proved (13).
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