M_{τ} - TIME AND TIME PROJECTION

Mohammed H. Saloomi

Abstract.

In this paper we discuss new random time which is called M_{τ} -time with some of its properties. In addition, we find the time projection associated with M_{τ} - time. Finally we compute the supremum of increasing family $\{M_{\tau}^{t}: t \in [0,\infty]\}$ into two cases, the first case when $\lor q_{t} = I$, while the second case when $\lor q_{t} = q \neq I$.

المستخلص في هذا البحث نناقش زمن عشوائي جديد يدعى الزمن من النمط - $M_{\mathcal{T}}^{t}$ مع بعض خواصه كذالك سوف نجد المسقط الزمني المرفق بهذا الزمن واخيرا سوف نحسب ادنى حد اعلى للعائلة { $M_{\tau}: t \in [0,\infty] \}$ وذالك في حالتين الاولى عندما $|q_{\tau}| = q \vee$ بينما الثانية في حالة $q_{\tau} = q \neq 0$.

INTRODUCTION

In this paper we develop some of the concepts in [1], [2] and [5] within the non - commutative context. It was shown in [7] that one can define the general random time τ as a map from a subset $[0, t] \subseteq [0, +\infty]$ into proj A, such that $\tau(t) = q_t$, $\tau(0) = q_0 = 0$ and $\tau(s)$ is projection in A_s where $s \in (0, t)$.

In [7] it was shown that for each general random time $\tau = (q_t)$ the orthogonal projection M_{τ}^t is called time projection associated with general random time, also we prove when t = o, $t = \infty$ this implies $M_{\tau(\theta)}^t = 0$, M_{τ} respectively. Therefore we can define new time that is M_{τ} -time as following: An increasing family of projections $\hat{\tau} = (M_{\tau}^t)$ is called M_{τ} - time such that $\hat{\tau}(o)=0$, $\hat{\tau} = (\infty)=M_{\tau}$ and $\hat{\tau}(t)=M_{\tau}^t$ for each $t \in (0, \infty)$.

This paper divided into two sections:

The first section contains a brief review of notation non - commutative stochastic base, definitions of (random time, q-time, general random time) and time projection associated by general random time with some of its properties. The second section contains the definition of M_{τ} - time with some of its properties. Also we compute the supremum of increasing family of projections { $M_{\tau} : t \in [0,\infty]$ } in two cases, the first case when τ is a random time while the second case when τ is q-time.

1. Notions And Preliminaries

Let B (H) be bounded linear operator on complex Hilbert space H, and let $A \subset B(H)$ be a von Neumann algebra. For each non – negative real t, let A_t be von Neumann sub algebra of von Neumann algebra A. A non-commutative stochastic base which is a basic object of our considerations consists of the following elements: A von Neumann algebra $A \subset B(H)$ acting on Hilbert space H, a filtration $\{A_t: 0 \le t \le +\infty\}$ which is an increasing ($s \le t$ implies $A_s \subseteq A_t$) family of von Neumann sub algebra of A such that:

$$A = A_{\infty} = (\bigcup_{t \ge 0} A_t)^{n} \text{ and } A_s = \bigcap_{t \ge s} A_t \text{ (right continuous)}$$

Journal of Kerbala University, Vol. 8 No.2 Scientific . 2010

Also there is unite vector Ω belong to Hilbert space H and separating for A.Now if we denote the closure $A_t\Omega$ in Hilbert space H by H_t , we get that H_t is a closed subspace of H and hence H_t is a Hilbert space itself. Moreover for each $t \in R^+$, let P_t denote the orthogonal projection from H onto H_t . The family { $P_t: 0 \le t \le +\infty$ } of orthogonal projection is an increasing and lies in the commutant of A_t .

Now we introduce the following definitions:

Definition (1.1) [7]

A random time τ , is a map $\tau : [0, \infty] \to \text{proj A}$ such that $\tau(0) = q_0 = 0$, $\tau(\infty) = q_{\infty} = I$ and $\tau(t)$ is projection in A_t , and $\tau(s) \le \tau(t)$, whenever $s \le t$.

Definition (1.2) [7]

By q – time we mean a map $\tau:[0, \infty] \to \text{proj } A$ such that $\tau(0) = q_0 = 0$, $\tau(\infty) = q$ and $\tau(t)$ is projection in A_t , and $\tau(s) \le \tau(t)$, where $s \le t$.

Note that in more general case we introduce the following definition:

Definition (1.3)[8]

A general random time on interval [0, t] we mean a map $\tau : [0, t] \rightarrow \text{proj. A such that } \tau(0) = q_0 = 0, \tau(t) = q_t \text{ and } \tau(s) \text{ is projection in } A_s$, where $s \in (0, t)$.

Let now $\tau = (q_t)$ be general random time for each partition $\theta = \{0 = t_0 < t_1 < ... < t_n = t\}$, of interval [0,t], we define an operator $M_{\tau(\theta)}^t$ on H by the formula

$$M_{\tau(\theta)}^{t} = \sum_{i=1}^{n} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} = \sum_{i=1}^{n} \Delta q_{t_{i}} P_{t_{i}}.$$

Its turns out that $M_{\tau(\theta)}^{t}$ is projection, moreover, $M_{\tau(\theta)}^{t}$ decreases as θ refines. Thus there exist a unique orthogonal projection say M_{τ}^{t} which is called time projection defined as

$$M_{\tau}^{t} = \lim M_{\tau(\theta)}^{t} = \bigwedge_{\theta} M_{\tau(\theta)}^{t}$$
.

The following propositions give some basic properties of linear operator $M_{\tau(\theta)}^{t}$.

Proposition (1.4)[8]

Let $\tau = (q_t)$ be a general random time. Then

1. $M_{\tau(\theta)}^{t}$ is an orthogonal projection.

2. For $\eta, \theta \in \theta$ which is a partition of [0,t] with η finer than θ , then $M_{\tau(\theta)}^t \ge M_{\tau(\eta)}^t$. Proposition (1.5)[8]

1. Let $\tau = (q_t)$ be general random time with $s \le t$, then $M_{\tau}^s = q_s M_{\tau}^t$.

2. Let $\tau = (q_t)$ be general random time then $M_{\tau}^s = q_s M_{\tau}$ when $t = \infty$, then

 $M_{\tau}^{t} = q_{t} M_{\tau}$ for all s, t $\in [0,\infty]$.

$2.M_{\tau}$ -TIME

We begin this section by defined the following concepts.

Journal of Kerbala University, Vol. 8 No.2 Scientific . 2010

Definition (2.1)

An increasing family of projections $\hat{\tau} = (M_{\tau}^{t})$ is called M_{τ} -time such that $\hat{\tau}(0)=0$, $\hat{\tau}(\infty) = M_{\tau}$ and $\hat{\tau}(t)=M_{\tau}^{t}$ is projection in A_{t} .

Definition (2.2)

Let θ denote the set of all partitions of interval $[0,\infty]$. Then for each partitions θ in θ , say $\theta = \{0 = t_0 < t_1 < \dots < t_n = +\infty\}$, we define an operator $M_{\tau}^{\wedge}(\theta)$ on H as

$$\mathbf{M} \stackrel{\wedge}{\tau}_{(\theta)} = \sum_{i=1}^{n} (M_{\tau}^{t_i} - M_{\tau}^{t_{i-1}}) p_{t_i}$$

Proposition (2.3)

Let $\hat{\tau} = (M_{\tau}^{t})$ be M_{τ} -time. Then

- 1. $M_{\tau}^{\uparrow}(\theta)$ is bounded linear operator.
- 2. $M_{\tau}^{(\theta)}$ is self-adjoint projection on H for any θ in θ .

<u>Proof</u> 1. we have $M_{\tau(\theta)}^{\wedge} = \sum_{i=1}^{n} (M_{\tau}^{t_i} - M_{\tau}^{t_{i-1}}) p_{t_i}$. It is clear that $M_{\tau(\theta)}^{\wedge}$ equal to finite sum of bounded

linear operators, therefore $M\stackrel{^{\wedge}}{\tau}{}_{(\theta)}$ is bounded linear operator \blacksquare

2. we must prove that $\mathbf{M}_{\tau}^{\wedge}(\theta)$. $\mathbf{M}_{\tau}^{\wedge}(\theta) = \mathbf{M}_{\tau}^{\wedge}(\theta)$ $\mathbf{M}_{\tau}^{\wedge}(\theta)$. $\mathbf{M}_{\tau}^{\wedge}(\theta) = \sum_{i=1}^{n} (M_{\tau}^{u_{i}} - M_{\tau}^{u_{i-1}}) p_{t_{i}} \cdot \sum_{j=1}^{n} (M_{\tau}^{t_{j}} - M_{\tau}^{t_{j-1}}) p_{t_{j}}$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta M_{\tau}^{t} P_{t_{i}} \Delta M_{\tau}^{t_{j}} P_{t_{j}}$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} P_{t_{i}} \Delta M_{\tau}^{t_{i}} \Delta M_{\tau}^{t_{j}} P_{t_{j}}$ [since $M_{\tau}^{t_{i}} \in \mathcal{A}_{t_{i}}, P_{t_{i}} \in \mathcal{A}_{t_{i}}$].

There are two cases:

The first one if $i \neq j$ this implies $\Delta M_{\tau}^{t_i} \Delta M_{\tau}^{t_j} = 0$ The second case if i = j this implies $\Delta M_{\tau}^{t_i} \Delta M_{\tau}^{t_j} = \Delta M_{\tau}^{t_j} = \Delta M_{\tau}^{t_j}$ and $P_{t_i} P_{t_j} = P_{t_j}$

$$\mathbf{M}_{\tau(\theta)}^{\wedge}, \mathbf{M}_{\tau(\theta)}^{\wedge} = \sum_{i=1}^{n} (M_{\tau}^{t_{i}} - M_{\tau}^{t_{i-1}}) p_{t_{i}} = \mathbf{M}_{\tau(\theta)}^{\wedge}.$$

Hence $M^{\wedge}_{\tau(\theta)}$ is projection.

Now to prove $M^{\hat{\tau}}_{\tau(\theta)}$ is a self a djoint, we must prove $M^{\hat{\tau}}_{\tau(\theta)} = M^{\hat{\tau}}_{\tau(\theta)}$

$$M^{*} \overset{\wedge}{\tau}_{(\theta)} = \left(\sum_{i=1}^{n} \left(M_{\tau}^{t_{i}} - M_{\tau}^{t_{i-1}}\right) p_{t_{i}}\right)^{*} = \sum_{i=1}^{n} P_{t_{i}}^{*} \left(M_{\tau}^{t_{i}} - M_{\tau}^{t_{i-1}}\right)^{*}$$

$$= \sum_{i=1}^{n} p_{t_{i}} \left(M_{\tau}^{t_{i}} - M_{\tau}^{t_{i-1}}\right) = \sum_{i=1}^{n} \left(p_{t_{i}} M_{\tau}^{t_{i}} - p_{t_{i}} M_{\tau}^{t_{i-1}}\right)$$

$$= \sum_{i=1}^{n} \left(M_{\tau}^{t_{i}} p_{t_{i}}^{-} - M_{\tau}^{t_{i-1}} p_{t_{i}}\right) \text{ [since } M_{\tau}^{t_{i}}, M_{\tau}^{t_{i-1}} \in \mathcal{A}_{t_{i}}, P_{t_{i}} \in \mathcal{A}_{t_{i}}', P_{t_{i}}', P_{t_{i}} \in \mathcal{A}_{t_{i}}', P_{t_{i}}', P_{t$$

Hence M $\stackrel{\wedge}{\tau}_{(\theta)}$ is a self adjoint

Corollary 2.4.

Let $\overset{\wedge}{\tau} = (M_{\tau}^{t})$ be M_{τ} -time. Then $M_{\tau(\theta)}^{\wedge} = M_{\tau}$ for all $\theta \in \theta$ and $M_{\tau}^{\wedge} = M_{\tau}$. **Proof** : let $\theta = \{0 = t_0 < t_1 < \dots < t_n = +\infty\}$ be a partition for $[0, +\infty]$.

We know that $\mathbf{M}_{\tau}^{\wedge}(\theta) = \sum_{i=1}^{n} (M_{\tau}^{t_{i}} - M_{\tau}^{t_{i-1}}) p_{t_{i}}$ But $M_{\tau}^{t_{i}} = q_{t_{i}} M_{\tau}$ and $M_{\tau}^{t_{i-1}} = q_{t_{i-1}} M_{\tau}$ proposition (1.5) Thus $\mathbf{M}_{\tau}^{\wedge}(\theta) = \sum_{i=1}^{n} (q_{t_{i}} M_{\tau} - q_{t_{i-1}} M_{\tau}) p_{t_{i}}$ $= \sum_{i=1}^{n} (q_{t_{i}} - q_{t_{i-1}}) M_{\tau} p_{t_{i}}$ $= \sum_{i=1}^{n} \Delta q_{t_{i}} p_{t_{i}} M_{\tau}$ [since $M_{\tau} p_{t_{i}} = p_{t_{i}} M_{\tau}$] $= \mathbf{M}_{\tau}(\theta) M_{\tau}$

By taking limit to both sides to relation (1), we obtain that

 $M_{\tau}^{\hat{\tau}} = \mathbf{M}_{\tau} \blacksquare$

Remark (2.5)

Let $\sigma = (q_t)$ be q- time and let $\tau = (q_t)$ be random time. Then

 $M_{\,\sigma\,(\theta)} {=}\, M_{\,\tau\,(\theta)} {-}\,(\,I {-}\,q) \ \text{and} \ M_{\,\sigma} {=}\, M_{\,\tau\,{-}}\,(\,I {-}\,q)$.

<u>Proof</u> : let $\theta = \{ 0 = t_0 < t_1 < \dots < t_n = +\infty \}$ be a partition for $[0, +\infty]$ we define

$$M_{\sigma(\theta)} = \sum_{i=1}^{n} (q_{t_i} - q_{t_{i-1}}) P_{t_i}$$

= $\sum_{i=1}^{n-1} (q_{t_i} - q_{t_{i-1}}) P_{t_i} + (q - q_{t_{n-1}}) P_{t_n}$
= $\sum_{i=1}^{n-1} (q_{t_i} - q_{t_{i-1}}) P_{t_i} + (I - q_{t_{n-1}}) P_{t_n} - (I - q)$
 $M_{\sigma(\theta)} = M_{\tau(\theta)} - (I - q)$

By taking limit to both sides for previous relation, we obtain that

$$M_{\sigma} = M_{\tau} - (I - q) \blacksquare$$

Proposition (2.6)

Let $\hat{\tau} = (M_{\tau}^{t})$ be M_{τ} - time, where $t \in [0, +\infty]$. Then $\sup M_{\tau}^{t} = M_{\tau}$ where $\sup q_{t} = I$, and sup $M_{\tau}^{t} = M_{\sigma}$, where $\sup q_{t} = q$, and $q \neq I$. **Proof** : (1) If $\sup q_{t} = I$, we have $\sup M_{\tau}^{t} = \bigvee_{t \ge 0} M_{\tau}^{t}$ $= \lor q_t M_{\tau} \quad [\text{since } M_{\tau}^{t} = q_t M_{\tau}]$ $= (\lor q_t) M_{\tau} = I M_{\tau} \quad [\text{since } \lor q_t = I]$ $= M_{\tau} .$ Thus sup $M_{\tau}^{t} = M_{\tau}.$

(2) If sup $q_t=q$, we have

$$\begin{split} \sup M_{\tau}^{t} &= \bigvee_{t \ge 0} M_{\tau}^{t} \\ &= & \lor q_{t} M_{\tau} \\ &= (\lor q_{t}) M_{\tau} \text{ but sup } q_{t} = q, \text{ therefore sup } M_{\tau}^{t} = q M_{\tau}.....(1) \\ \text{Now we compute } q M_{\tau} \text{ as following:} \\ \text{Let } \theta = \{0 = t_{0} < t_{1} < \dots < t_{n} = +\infty \} \text{ be partition for } [0, +\infty] \text{ ,then} \end{split}$$

$$q M_{\tau} = q \sum_{i=1}^{n} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}}$$

$$q M_{\tau} = q \sum_{i=1}^{n-1} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} + q (I - q_{t_{n-1}}) P_{\infty}$$

$$= \sum_{i=1}^{n-1} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} + (q - q_{t_{n-1}}) \text{ [since } P_{\infty} = I]$$

$$= \sum_{i=1}^{n} \Delta q_{t_{i}} P_{t_{i}} = M_{\sigma}(\theta) \text{ [by remark (2.5)]}$$

Thus q $M_{\tau} = M_{\sigma(\theta)}$(2) By the relations (1) and (2) we get that $\bigvee_{t \ge 0} M_{\tau}^{t} = M_{\sigma}$.

Therefore, from (1) and (2) we can say that

$$\operatorname{Sup} M_{\tau}^{t} = \bigvee_{t \ge 0} M_{\tau}^{t} = \begin{cases} M_{\tau} & \text{if sup } q_{t} = 1 \\ M_{\sigma} = M_{\tau} - (I - q) & \text{if sup } q_{t} \neq 1 \end{cases} \blacksquare$$

REFERENCES

- Barnet, C.Streater, R.F, Wilde, I.F., Quantum stochastic integrals under standing hypothesis, J. Math. Anal. Appl. 127(1987),181-192.
- [2] Barnet, C. Thakrar, B., Time projection in Von Neumann algebra, J. Operator Theory. 18(1987),19-31.
- [3] Barnet, C. Thakrar, B., Anon commutative random stopping theorem, J.Funct.Anal.88(1990),(250-342).
- [4] Barnet, C.and Voliotis, S., Stopping and integration in aproduct structure, J. Operator Theory. 34(1995)145-175.
- [5] Barnet, C. Wilde, I. F., Random time and time projection, Proc.Amer. Math.Soc.110(1990),425-440.
- [6] Barnet, C. Wilde, I.F., quantum stopping times and Doob Meyer Decompositions, J. Operator Theory. 35(1996)85-106
- [7] Naji, S.,P- Time and time projections in Von Neumann algebras, Ph.M. Baghdad University, (2008).
- [8] Sloomi, M, H., Time algebras and time projections, Ph.M. Baghdad University, (2008).