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Abstract: 

In this search obtain the results on pre-door space: 

       Door space is pre-door, space  Submaximal pre-door space is pre-door space,Irreducible 

submaximal space is pre-door space , Quasi-precompact images of pre-door space are pre-door 

space and A pre-Hausdorff pre-door space has at most one a pre-ccumulation point.  

 المستخلص:

   Pre-door :فً هذا البحث حصلنا على النتائج فً الفضاءاث التبولوجٍت

(  submaximalفلً الفضلاء    ( door( و  pre-door( وتكلاف  الفضلائٍ)  pre-doorهلو فضلاء   (door)وهً كل  فضلاء 

ودراسلللت اليا لللٍت  التبولوجٍلللت للفضلللاء    (    pre-door( ٌعطٍنلللا الفضلللاء  submaximal( و  Irreducibleوالفضلللائٍ)  

 pre-door وٌحتوي الفضاء )  pre-door و pre-Hausdorff   . على نقطت تجمع واحدة 
 

1.  Preliminaries: 

In this section we recall the basic definitions and results needs in this work, we study be recall the 

definition of door space and preopen set. 

Definition 1.1 [ 4 ]: A topological space  ,X  is called a door space if every subset of X is either 

open or closed. 

Definition 1.2 [ 2 ]: A subset A of  ,X  is called a preopen set if  AClIntA , XB  is 

preopen set then cB  is called preclosed set. Where  AClInt  is interior clouser of A.  

Remarks 1.3 [2]: 

1. Every open (closed) subset of  ,X  is preopen (preclosed) set, but the converse is not true. 

2. If XU   is open set and V is preopen set in X, then VU   is preopen in X, and if XYV  , 

then V is preopen in Y. 
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Definition 1.4 [1]: Let  ,X  be a topological space and A subset of X. A point Xx  is called a 

pre-ccumulation point of A if every preopen set G containing x contains a point of A other then x. 

Definition 1.5 [1]: A topological space  ,X  is called a pre-Hausdorff space if every two disjoint 

points can be separated by disjoint preopen sets. 

Remark 1.6 [1 ]: Every Hausdorff space is pre-Hausdorff, but the converse is not necessarily true. 

2.  Pre-door space  

Definition 2.1: A topological space  ,X  is called a pre-door space if every subset of X is either 

preopen or preclosed. 

Examples 2.2: 

1. The discrete space  D,X  is a pre-door space. 

2. Let  = {X,  , {a}, {b}, {a, b}}  be a topology on X = {a, b, c}, then  ,X  is pre-door space. 

Proposition 2.3: Every door space is a pre-door space. 

Proof: Let  ,X  be a door space.  

Since every open (closed) set is a preopen (preclosed) remark 1.3.1.  

Thus every subset of X is preopen or preclosed set.  

Therefore  ,X  is a pre-door space. 

Remark 2.4: The converse of proposition 2.3 is not true, for example: 

Let  = {X,  , {a}}  be a topology on X = {a, b, c}. Then  ,X  is pre-door space, but is not door 

space, since {b}, {c}, {a, b} and {a, c} are subsets of X, not either open or closed sets in X. 

 

Recall that a topological space  ,X  is called submaximal if every dense subset of X is open. 

Reilly and Vamanamurthy [3] have shown that  ,X  is submaximal if and only if each preopen 

subset of  ,X  is open. 

Proposition 2.5: Every submaximal pre-door space is door space. 

Proof: Let  ,X  be a pre-door space, then every subset of X is a preopen or preclosed set. Let S 

subset of X, therefore S is preopen or preclosed set. 

If S is a preopen, then S is open (in submaximal space), if S is preclosed, then cS  is preopen, where 
cS  is open, then S is closed, therefore X is door space. 

Proposition 2.6: Every subspace Y of a pre-door space X is a pre-door space. 

Proof: Let A subset of Y .Since X is pre-door space,  

Then A is either preopen or preclosed in X and hence in Y. 

Thus Y is also a pre-door space. 
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A non-void space X is irreducible [6] if it satisfies the following conditions: 

a) Every two non-void open subset of X intersect. 

b) X is not the union of a finite family of closed proper subsets. 

c) Every non-void open subset of X is dense. 

d) Every open subset of X is connected. 

Proposition 2.7: Every irreducible submaximal space X is a pre-door space. 

Proof: Let XA , if A is dense in X, then by submaximality A is open. 

If A is not dense, then we can find a non-void open set
cAB  . 

Since X is irreducible, then B is dense and hence cA is also dense.  

Again by submaximality of X, cA is open or equivalently A is closed.  

Thus in any case A is either open or closed.  By remark 1.3.1,  

A is either preopen or preclosed. This shown that X is pre-door space. 

Theorem 2.8: Let  
IiiX


 be a family of topological spaces for the topological 




Ii

iXXsum  the 

following conditions are equivalent: 

1- X is pre-door space. 

2- Each Xi is a pre-door space and Xi is non-discrete for at most one index. 

Proof: (1)    (2) by proposition 2.6 each Xi is a pre-door space. 

Assume next that for some index i and j, Xi and Xj are a non-discrete. Thus, there exists a non-

preopen iXA  and a non-preclosed jXB  .                           If BA  is a preopen subset of X, 

then   AXBA i   is a preopen subset of Xi, which is contradiction. If BA  is preclosed in X, 

then B must be preclosed in Xj, which is again a contradiction.Thus condition (2) is proved. 

(2)    (1) we can assume that I , since otherwise X  and the claim would be trivial. By (2) 

for some Ij , Xj is a pre-door space and Xi is discrete for every ji  . Let XA . Then 

 AXA i
Ii




 and moreover the set AX i   is preclopen in Xi for each hand AX j   is either 

preopen or preclosed in Xj.  

Thus A is either preopen or preclosed in X or equivalently X is a pre-door space. 

 

Recall that a function YX:f   is called quasi-precompact if it satisfies. 

The following condition: If XU   is preopen such that    UUff 1 , then f(U) is preopen in Y. 

Sets satisfying the condition    UUff 1  are called the inverse sets of the function YX:f  . 
 

Theorem 2.9: Quasi-precompact images of pre-door space are pre-door space. 

Proof: Let YV  . We need to show that V is either preopen or preclosed, since X is a pre-door 

space, and then  VfU 1  is either preopen or preclosed in X. Let U be preopen. 

 Clearly   VUf  and thus        UffUVfUff 111   or equivalently   UffU 1 . By 

assumption        VYVXfVVffUf  1  is preopen in X. Hence 

    VYXfVY   is preopen in Y and thus   VVYY   is preclosed in Y. This shows that 

Y is a pre-door space. 
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Corollary 2.10: preopen images as well as preclosed images of pre-door spaces are pre-door space. 

Proof: Every preopen and every preclosed surjective function is quasi-precompact. 

Proposition 2.11: A pre-Hausdorff pre-door space has at most one a pre-ccumulation point. 

Proof: Let X be a pre-Hausdorff pre-door space, suppose for contradiction that there are two 

distinct a pre-ccumulation points x and y, since we are working in pre-door space it well be 

important to remember that any subset of X is preopen or precolsed set. If {x} (similarly {y}) is 

preopen, then we have a problem in that since x is pre-ccumulation point, and {x} is an preopen 

neighborhood of x, then by the definition,     Xxx  , but clearly      Xxx , since X is 

pre-Hausdorff there are preopen neighborhoods U and V of x and y respectively, such that 

   yxUVU  ,  is preclosed if it where preopen, then we could say that 

       VyxUy   is preopen, so we conclude that as    yxU  is preclosed, thus 

    yxUx   is preopen, and hence we have a contradiction, then X has at most one a pre-

ccumulation point. 

An ideal [5],[7] I on a topological space  ,X  is a non-empty collection of subsets of X which 

satisfies the following two properties: 

1) IA and AB   implies IB (heredity), 

2) IA and IB  implies IBA  (finite additivity). 

Note that the following collections form important ideals in a space  ,X : 

If  – the ideal of finite subset of X, 

Ic – the ideal of countable subset of X, 

Icd – the ideal of closed discrete set in  ,X , 

In  – the ideal of nowhere dense set in  ,X , 

Ik  – the ideal of relatively compact set in  ,X . 

Definition 2.12: A topological space  IX ,, is called an Ipre-door space if every subset of X is 

either preopen or preclosed or belongs to I. 

Clearly every pre door space is an Ipre-door space and in fact the two notions coincide in the case of 

the minimal ideal (i.e., when I=Ø). In what follows we try to find some classes of well-known 

topological spaces in which the concepts of Ipre-door space and pre-door spaces again coincide, but 

this time in the case when the ideal is non-trivial, considering some of the above mentioned 

collections of sets which form a topological ideal on any topological space.  

Recall that a space is called pre-extremally disconnected if the closure of every preopen set is 

preopen. 

Proposition 2.13: For a topological space  ,X  the following conditions are equivalent: 

1)  ,X  is an pre-extremally disconnected pre-door space . 

2) Every subset A of X is either preopen or both preclosed and discrete. 
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Proof: (1)  (2) Note first that cdIA  if and only if A has no accumulation points. Assume now 

that A is not preopen and N(A) )(AN . 

Since X is a pre-door space, then A is preclosed. Let AANx  )( . 

Set }{)|( xAXS  .  Since x is an accumulation point of A, then S can not be preopen, for in that 

case S would be an preopen pre-neighbourhood of x containing appoint of A different that x. Clearly 

this is impossible, since }{xAS  . Since S is not preopen and since X is a pre-door space, then S 

is preclosed. thus }{|}{)|( xAXxAX    and hence }{)|(|| xAXAXAX  . By 

assumption, since X is pre-extremally disconnected. )|( AX is preopen . Since S is preclosed, 

then SxAXAXAX  }{)|(||  . Thus AXAX ||  or equivalently A is preopen. Thus 

contradicts with the assumption A is not preopen and N(A) )(AN . 

(2)  (1) X is trivially a pre-door space. We need to show that X is pre-extremally disconnected. 

Let XA  be preopen. Then )(ANAA  . If )(AN , then AA  is preopen. If )(AN , 

then )(AN  and A  is by (2) preopen.  
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