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 The current study was conducted to detect Listeria monocytogenes, associated antibiotic 

resistance and virulence genes possessed by these strains, and the genotype of identified 

isolates from milk, cheese, beef, and chicken. Accordingly, 203 samples (53 milk samples, 

52 cheese samples, 48 beef samples, and 50 chicken samples) were collected from local 

markets in Al-Qadisiyah Province, Iraq. These samples were used for conventional and 

selective cultivation and biochemical studies. Eight isolates were molecularly detected using 

the PCR and sequencing based on the 16S rRNA gene. All the physically detected isolates 

were recruited for antibiotic resistance tests. Furthermore, all isolates were exposed to the 

detection of virulence genes, which included actin assembly inducing protein (actA), 

listeriolysin (hlyA), invasive associated protein (iap), internalin A (inlA), and phospholipase 

C (plcA). Random amplified polymorphism DND-polymerase chain reaction (RAPD-PCR) 

was utilized to genotype these isolates. The cultivation revealed the identity of 63 isolates 

(16 milk, 14 cheese, 16 beef, and 17 chicken). The molecular detection confirms the identity 

of the eight tested isolates. Various antibiotic and pattern resistance profiles were detected 

for the isolates, which included the highest resistance rates, which reached up to 100% and 

94% in penicillin and ampicillin, respectively. The virulence genes that reached up to 94% 

were identified in all isolates. The sequencing findings demonstrated strong alignment with 

world isolates from the GeneBank. The data here reveal the vital presence of Listeria 

monocytogenes in food products, which pose high health risks to consumers. 
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Introduction 
 

The relationship between food intake and human diseases 

has been known since ancient times. Foodborne pathogens 

or contaminating agents include viruses, bacteria, and 

parasites. An incident of a foodborne illness is defined as two 

or more cases of similar diseases linked to eating a common 

food substance (1). Foodborne illness results from a 

pathogen ingested with food that finds a human niche and 

then, often, proliferates there or a toxigenic pathogen 

ingested with food that finds (and then produces a toxin in) 

a food niche (2). Foodborne illness is divided into either 

foodborne infection or foodborne intoxication. Foodborne 

infections have longer times between ingestion and 

presentation because of an incubation period. More than 200 

different food-borne illnesses have been identified. The 

worst cases are in the very old, young, 

immunocompromised, and otherwise robust individuals 

exposed to many of a particular organism (3). The 

pathogenic bacterium that causes listeriosis is called L. 

monocytogenes. Listeriosis is a sporadic disease in humans 

and animals, with high rates of hospitalization and death, and 
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it is considered one of the most severe foodborne diseases 

(4). Of the 21 known species of Listeria, a small rod-shaped 

found virtually everywhere, only L. ivanovii and L. 

monocytogenes are pathogenic in mammals (5). Avoiding 

foodborne zoonoses is an excellent procedure for human 

health and creates demand for certified food. Listeria species 

emerged as a critical foodborne pathogen in Western 

countries around the mid-20th century, and both human and 

animal listeriosis have brought high costs to society and the 

food industry. Listeriosis has increased in Europe since 2008 

(6). Although members of the Listeria genus evolved from a 

bacterium fed by decaying organic matter, their ability to 

find tolerance for abiotic stressors can be a key to their 

evolutionary success. Listeria stress tolerance allows it to 

make its way in food from contaminated food to the 

mammalian gastrointestinal tract. Upon entering the host, L. 

monocytogenes employs many sophisticated mechanisms to 

invade different eukaryotic cells, survive inside them, avoid 

host immune detection, and disseminate throughout the 

body's other organs (7). L. monocytogenes is a food-borne 

pathogen that primarily afflicts immunocompromised 

individuals and can provoke septicemia, meningitis, and fetal 

infection or abortion in infected pregnant women (8). L. 

monocytogenes can cause diseases in humans and farm 

animals, and it is one of the most important causes of food 

poisoning; therefore, it is urgently needed to develop 

targeted therapies to control the mortality. Consequently, the 

molecular and cellular pathogenesis of Listeria has become 

an attractive field of investigation (9,10).   

The current study was performed to identify Listeria 

monocytogenes and its virulence antibiotic resistance genes 

and to genotype isolated strains from milk, cheese, beef, and 

chicken. 

 

Materials and methods 

 

Ethical approve 

The study protocol was approved for the ethical 

procedures by the Committee of Research Ethics, College of 

Veterinary Medicine, University of Al-Qadisiyah, Al-

Diwaniyah City, Iraq, under the issue No. 4413 at 

23/11/2023.  

 

Samples and cultivation 

Two hundred three samples (53 milk samples, 52 cheese 

samples, 48 beef samples, and 50 chicken samples) were 

collected from local markets in Al-Qadisiyah Province, Iraq. 

These samples were employed in conventional and selective 

cultivation and biochemical methods.  

 

DNA extraction and 16S rRNA gene identification and 

sequencing 

The DNA of L. monocytogenes was extracted by 

employing the Wizard Genomic DNA Purification Kit 

(Promega, USA). All isolates were subjected to the kit 

protocol. The primers 27F: 5′-

AGAGTTTGATCATGGCTCAG-3′) and 1492R: 5′-

GGTTACCTTGTTACGACTT-3′ were used (10-12). In 

total reaction, 50 µl, 10-100 ng DNA, 1.5 mM MgCl2, 2 μl 

dNTPs, each primer at 0.4 μM, and 2.5 U DNA polymerase 

were included in the PCR reaction. The conditions were 

initial denaturation (denaturation, annealing, and extension) 

and final extension at one cycle at 120 s-94 °C, 35 cycles at 

(60 s-94 °C, 90 s-55 °C, and 60 s-72 °C), and one cycle at 

180 s-72°C. The PCR product was at 1500 bp. The 

electrophoresis runs a 1% agarose gel at 80-90 Volt for 60 

mins. The products were visualized using GeneSys G: BOX 

EF2 (Syngene, USA). These eight PCR-purified products 

were sent out for sequencing (Bioneer, Korea). The 

phylogenetic tree was computed using NCBI websites and 

MEGA X software. 

 

RAPD-PCR 
All 63 isolates were subjected to RAPD-PCR in a total 

reaction of 50 μl, 0.5 µl RP1: 5’GGTGTGCTGT’3, 25 µl 10x 

master mix (EconoTaq®, Lucigen), 1.0 µl DNA, and H2O to 

complete the volume. The conditions were initial 

denaturation (denaturation, annealing, and extension) and 

final extension at one cycle at 300 s-94 °C, 45 cycles at 60 s-

94 °C, 60 s-35 °C, and 120 s-72 °C, and one cycle at 420 s-

72°C, respectively. Agarose gel at 1% was performed for 

electrophoresis analysis. The products were screened using a 

UV-transilluminator imager followed by ImageJ.  

 

Antibiotic resistance profile and multi-resistance index 

(MAR) 
All isolates were exposed to antibiotic resistance tests 

using 10 antibiotics, which included 10 µg ampicillin (AM), 

30 μg chloramphenicol (C), 10 μg gentamicin (GN), 15 μg 

erythromycin (E), 5 μg flucloxacillin (FL), 30 μg kanamycin 

(K), 10 μg penicillin (P), 10 μg streptomycin (S), 30 μg 

sulfisoxazole (ST), and 30 μg tetracycline (TE) (Oxoid, UK). 

The disk diffusion method (13) was followed using Muller-

Hinton agar media. After 24 hrs, the zones of inhibition were 

read. Matyar et al. (14) employed a method for detecting the 

multi-resistance index (MAR). MAR = Number of resistant 

antibiotics / Number of antibiotics tested. MAR >0.2: 

indicates an isolation source with high usage of antibiotics. 

MAR≤ 0.2: indicates less usage of antibiotics (15). 

 

Results 
 

The cultivation findings revealed the identity of 63 

isolates (16 milk, 14 cheese, 16 beef, and 17 chicken) (Table 

1). The molecular detection confirms the identity of the eight 

tested isolates. The results were further confirmed using 

sequencing (Figures 1 and 2). Various antibiotic and pattern 

resistance profiles were detected for the isolates, including 

the highest resistance rates, which reached up to 100% and 

94% in penicillin and ampicillin, respectively (Table 2, 
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Figures 3 and 4). The highest resistance genes were detected 

of ermB with 74%. The lowest was of the aad6 gene, which 

had 23.92%. Beef isolates were of blaSHV gene with 87.5% 

(the highest). The least was of the aad6 gene, with 25%. In 

the case of the cheese isolates, the highest was of the ermB 

gene, with 78.57 %. The least was of aad6 and aac (3)-I 

genes, both at 21.42%. Chicken isolates showed the highest 

blaSHV gene at 94.11%. The lowest was the aad6 gene at 

11.76%. Milk isolates showed the ermB gene at 81.25% (the 

highest). The lowest was the aad6 gene at 37.5%. The 

patterns that showed frequent appearance were the A1 

pattern (aac (3)-I, aad6, blaSHV, catA, ermB, sul, tetA) 

(Table 3 and Figures 5-8). All eight isolates had virulence 

genes identified, reaching up to 94%. All eight isolates had 

all tested genes (V4); however, at least two genes were 

present in each isolate. On the other hand, WB02, WB13, 

WC01, WC08, WK05, WK15, WM04, and WM10 had five 

genes. The V3 pattern of genes was the most frequent, while 

V1 and V5 were the least frequent in the isolates (Table 4, 

Figures 9-11). The RAPD-PCR generated different patterns, 

including 6-12 bands. The RAPD-PCR separated these 

isolates into 11 clusters (Figure 12). 

 

Table 1: Incidence rates of Listeria monocytogenes 

 

Type  Total Positive (%) 

Cheese 52 14 (26.92) 

Beef 48 16 (33.33) 

Chicken 50 17 (34) 

Milk 53 16 (30.18) 

Total 203 63 (31.03) 

 

Table 2: Rates of antibiotic resistance of Listeria monocytogenes isolates 

 

Antibiotics (µg) Beef n=16 (%) Cheese n=14 (%) Chicken n=17 (%) Milk n=16 (%) Total % 

Ampicillin (10)  13(81.25) 13(92.85) 16(94.11) 15(93.75) 90.49 

Chloramphenicol (30) 3(18.75) 5(35.71) 6(35.29) 5(31.25) 30.25 

Gentamicin (10) 8(50) 9(64.28) 11(64.7) 11(68.75) 61.93 

Erythromycin (15) 5(31.25) 11(78.57) 11(64.7) 10(62.5) 59.25 

Flucloxacillin (5) 6(37.5) 9(64.28) 11(64.7) 11(68.75) 58.8 

Kanamycin (30) 3(18.75) 5(35.71) 10(58.82) 11(68.75) 45.5 

Penicillin (10) 16(100) 14(100) 17(100) 16(100) 100 

Streptomycin (10)  5(31.25) 7(50) 9(52.94) 8(50) 46.04 

Sulfisoxazole (30) 11(68.75) 11(78.57) 14(82.35) 11(68.75) 74.6 

Tetracycline (30)  12(75) 5(35.71) 14(82.35) 12(75) 67.01 

 

 
 

Figure 1: Listeria monocytogenes 16S rRNA-dependent 

analysis via agarose gel. M: ladder; Lane1: Positive control; 

Lane 2: WB02; Lane 3: WB13; Lane 4: WC01; Lane 5: 

WC08; Lane 6: WK05; Lane 7: WK15; Lane 8: WM04; Lane 

9: WM10.  

 
 

Figure 2: Listeria monocytogenes 16S rRNA-dependent 

analyses via phylogenetic tree. 
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Table 3: Antibiotic resistance genes of Listeria monocytogenes 

 

Strain Beef Cheese Chicken Milk Total 

Aminoglycosides resistance (aac(3)-I) 8(50%) 3(21.42%) 9(52.94%) 8(50%) 43.59 

Streptomycin resistance (aad6) 4(25%) 3(21.42%) 2(11.76%) 6(37.5%) 23.92 

β-lactamase resistance (blaSHV) 14(87.5%) 8(57.14%) 16(94.11%) 8(50%) 72.18 

Chloramphenicol Resistance (catA) 12(75%) 8(57.14%) 10(58.82%) 12(75%) 66.49 

Macrolides resistance (ermB) 12(75%) 11(78.57%) 11(64.7%) 13(81.25%) 74.88 

Sulfonamides (sul) 9(56.25%) 5(35.71%) 8(47.05%) 8(50%) 47.25 

Tetracycline Resistance (tetA) 9(56.25%) 10(71.42%) 7(41.17%) 10(62.5%) 57.83 

 

 
 

Figure 3: Antibiotic pattern distribution frequency among 

isolates of Listeria monocytogenes.  

 

 
 

Figure 4: Pie chart of antibiotic pattern distribution among 

isolates of Listeria monocytogenes.  

 

 
 

Figure 5: Antibiotic gene pattern distribution frequency 

among isolates of Listeria monocytogenes.  

 

 
 

Figure 6: Pie chart of antibiotic gene pattern distribution 

among isolates of Listeria monocytogenes.  
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Figure 7: Antibiotic resistance genes in Listeria 

monocytogenes isolates. Image of 1.5 % agarose gel. M: 

Ladder. Lanes 1: sul gene in WB02. Lanes 2: blaSHV gene 

in WC01. Lanes 3: aad6 gene in WB02. Lanes 4: tetA gene 

in WK05. Lanes 5: catA gene in WM04. Lanes 6: ermB gene 

in WM10. Lanes 7: aac (3)-I gene in WC08. 

 
 

Figure 8: Percentage of antibiotic resistance genes in Listeria 

monocytogenes isolates. 

 

Table 4: Percentage of virulence genes of Listeria monocytogenes 

 

Gene Milk n=16 (%) Cheese n=14 (%) Beef n=16 (%) Chicken n=17 (%) Total % 

actA 9 (56.25) 7 (50.00) 7 (43.75) 10 (58.82) 52.3 

hlyA 13 (81.25) 11 (78.57) 14 (87.05) 16 (94.11) 85.7 

iap 13 (81.25) 10 (71.42) 12 (75.00) 9 (52.94) 69.8 

inlA 3 (18.75) 5 (35.71) 7 (43.75) 10 (58.82) 39.7 

plcA 6 (37.5) 11 (78.57) 9 (56.25) 11 (64.70) 58.7 

 

 
 

Figure 9: Image of 1.5 % agarose gel of virulence genes of 

Listeria monocytogenes. Lane M: ladder. Lanes 1: plcA gene 

in WB01. Lanes 2: iap gene in WC08. Lanes 3: hlyA gene in 

WK05. Lanes 4: inlA gene in WM10. Lanes 5: plcA gene in 

WM10. 

 

 
 

Figure 10: Virulence gene pattern distribution frequency 

among isolates of Listeria monocytogenes.  

 
 

Figure 11: Pie chart of virulence gene pattern distribution 

among isolates of Listeria monocytogenes.  
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Figure 12: Dendrogram of typeable Listeria monocytogenes 

isolated from milk, cheese, beef, and chicken generated by 

RAPD-ImageJ-UPGMA analysis. 

 

Discussion 
 

Listeria spp. bacteria are found in soils, water, vegetation, 

and animals, and 27 species are currently described. At least 

five of these are pathogens. Listeria monocytogenes is 

particularly well-studied and is common in the environment 

and in food and animal feed. Listeriosis presents clinically as 

meningoencephalitis, abortions, sepsis, and gastroenteritis 

both in humans and ruminants (16). Many mechanisms that 

L. monocytogenes uses to cause disease to have been 

described, and important molecular factors have been 

identified. The main components are the six virulence genes 

(prfA, plcA, plcA, mpl, actA, and plcB) located in the Listeria 

pathogenicity island (LIPI) - 1 which are transcriptionally 

controlled by the transcriptional regulator PrfA. The 

infection cycle follows mechanisms utilizing phagosome 

lysis and actin-dependent intercellular bacteria motility for 

the bacterial release into the cytoplasm (17). 

DNA sequencing techniques are presently performed in 

many areas of biology. In particular, this technique has 

numerous advantages in molecular biology research, 

genetics, anthropology, forensic sciences, biotechnology, 

and many other areas. 16S rRNA gene sequencing is 

commonly used for insights into the phylogeny and 

taxonomy of many bacteria, mainly for all the above-

mentioned reasons (18). One of these is the possibility of 

identifying phylogeny and taxonomy using the 16S rRNA 

molecule itself, which is 1500 base pairs long. Another 

reason is that the molecule has not been modified through the 

evolutionary centuries, and third, 16S rRNA is present in all 

bacterial species. Secondly, finally, and probably most 

importantly, it can re-classify a bacterium into a rock-bottom 

novel bacterial species or even a genus. Furthermore, it can 

determine newly isolated species that are not yet successfully 

grown in culture (19). The VITEK 2 system does not have 

the same level of specificity as the 16S rRNA gene sequence, 

so the 16S rRNA gene sequence assembly-based tree is an 

optimal way to identify a species (20). 

This study was one that determined the sequence of 16S 

rRNA for the genus Listeria. However, it is still not known 

whether it is unique for a certain species and also why the 

branches in the tree split at the nodes with a low bootstrap 

value, especially for the small number of strains in each 

taxonomic group. If chemotaxonomy and chemotherapeutic 

data are insufficient, it is important to fully compile the 16S 

rRNA sequence database for all the type strains of the 

unidentified taxa of the Listeria genus and to determine the 

sequence for as many strains as possible for each taxonomic 

group (21). Efforts continue to carry out additional searches 

for such sequences. Identification of a sequence that can 

detect pathogens is more important and beneficial for 

researching infections than isolating the bacterium, culturing 

it, and determining it using the standard biochemical tests of 

previously typed strains due to phenotypic divergence 

among strains of the genus (22). The phylogenetic position 

of all selected isolates was determined by sequence 

comparison. However, we could not determine the 

subspecies of the isolates due to the lack of a sequence 

database for the unidentified taxa. Efforts for building a 

database continuously improve the efficiency of 16S rRNA 

sequencing as a tool for bacterial classification. To get more 

reliable identification of closely related taxa, it is advisable 

to proceed with additional analyses and sequencing, for 

example, the 16S-23S intergenic spacer regions. These 

regions are known to be more variable for the bacterial 
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classification than 16S rRNA itself, and sequencing may 

give more exact results. These techniques of sequencing are 

highly advantageous for determining the necessity of 

performing the tedious and unreliable test (23). 

In contrast to our study, the prevalence of L. 

monocytogenes in foods is relatively lower in China 5.5%, 

Chile 7.5%, Uruguay 11.9%, Turkey 8.5%, and Poland 

13.5%. Our investigation was able to identify specifically 

tetA and tetC genes, which confer resistance against 

tetracycline. Mafuna and coworkers (24) isolated various 

resistance genes (including fosX, lin, mprF and norB) from 

several sample strains. They indicated a continuous increase 

in the global prevalence of resistance genes in the food chain 

(25). The virulence genes extensively studied in these 

isolates are hlyA (listeriolysin O), which produces pores that 

allow pathogens and certain organelles containing virulence 

factors to enter the cell and prfA, which activates the 

virulence genes, particularly prfA and inlA. prfA is a global 

regulator of virulence gene expression in pathogenic strains 

of L. monocytogenes, and its activity is affected by 

environmental factors, such as high temperature and stress 

(26). The presence of Internalin A (inlA) was detected in all 

the isolated species to attach to intestinal cells (27). The 

genotyping method used in the present study showed high-

quality results. This agrees with those of Kalekar et al. (28), 

who detected clusters in the genotypes of isolates from 

different samples. The relationship between food intake and 

human diseases has been known since ancient times. 

Foodborne pathogens or contaminating agents include 

viruses, bacteria, and parasites (29-50). 

 

Conclusion 
 

The data, here, reveal important presence of Listeria 

monocytogenes in food products, which apply high health 

risk on consumers. 
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المسببة للضراوة ومقاومة التوصيف الجزيئي للجينات 

للستيريا  المضادات الحيوية والنمط الجيني

المعزولة من الجبن، ولحوم البقر، مونوسايتوجينز 

 والدجاج، والحليب
 

، مريم غضنفر 1، شيماء عباس صبيح1عروبة متعب فجة

 1باسمة جاسم محمد و 1، هيفاء جمعة حسن2علوان
 
ية، فرع الصحة العامة، كلية الطب البيطري، جامعة القادسية، الديوان1
د، فرع العلوم الأساسية، كلية طب الأسنان، الجامعة العراقية، بغدا2

 العراق

 

 الخلاصة
 

 أجريت الدراسة الحالية للكشف عن جينات اللستيريا مونوسايتوجينز

ادات الحيوية المرتبطة بها والتي تمتلكها وجينات الفوعة المقاومة للمض

هذه السلالات وكذلك النمط الجيني للعزلات التي تم تحديدها من الحليب 

 53عينات ) 203والجبن ولحم البقر والدجاج. وبناء على ذلك تم جمع 

عينة دجاج( من  50عينة لحم بقر،  48عينة جبن،  52عينة حليب، 

دمت هذه العينات للزراعة التقليدية محافظة القادسية، العراق. واستخ

والانتقائية والدراسات البيوكيميائية. تم الكشف جزيئياً عن ثماني عزلات 

باستخدام تفاعل البلمرة المتسلسل وتسلسل القواعد النتروجينية لجين ال 

16S rRNA تم تجنيد جميع العزلات المكتشفة لاختبار مقاومة المضادات .

ك، تم تعريض جميع العزلات للكشف عن جينات الحيوية. علاوة على ذل

(، actAالفوعة، والتي شملت البروتين المحفز لتجميع الأكتين )

listeriolysin (hlyA( البروتين المرتبط الغازي ،)iap ،)internalin A 

(inlA)و ، phospholipase C (plcA) تم استخدام تفاعل البلمرة .

التنميط الجيني لهذه العزلات. كشفت المتسلسل التكثيفي العشوائي في 

 17لحم بقر،  16جبن،  14لبن،  16عزلة ) 63نتائج الزراعة عن هوية 

دجاج(. وتم الكشف الجزيئي عن هوية العزلات الثمانية التي تم اختبارها. 

تم الكشف عن أنماط مقاومة مختلفة للمضادات الحيوية والنمطية 

لمقاومة التي وصلت إلى للعزلات، والتي تضمنت أعلى معدلات ا

في البنسلين والأمبيسيلين، على التوالي. تم التعرف على  %94و 100%

. أظهرت %94جينات الضراوة في جميع العزلات والتي وصلت إلى 

نتائج التسلسل توافقاً قوياً مع العزلات العالمية من بنك الجينات. وتكشف 

يتوجينز الهامة في البيانات هنا عن وجود بكتيريا اللستيريا مونوسا

المنتجات الغذائية، والتي تشكل مخاطر صحية عالية على المستهلكين.

 
 


