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Abstract 
 

Statistical selection procedures are used to select the best of a finite set of alternatives. This 

paper derives a procedure for selecting the best of two Gamma populations employing a decision-

theoretic Bayesian framework with general loss function with Exponential prior . 

 The numerical result of this procedure are given with different loss functions constant , 

linear and quadratic , where in one equation we can obtain the Bayes risk for the three types of the 

loss functions : constant , linear and quadratic . in this paper the numerical results are given by 

using Math Works Matlab ver. 7.0.1 . 
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 ةــالخلاص
هتت ت تلب تتض ٌخ تت م ت تتخ حلا  تلبتتمتيم    تستخدم  رتتالا تياخٍتتحص تية تتحيٍر ياخٍتتحص تين تتم عتتم دتتٍم ع   ػتر ع تتم    عتتم

 تلر اسحص  عشخاكر عغ ت زٌتغ عسخدمعٍم عههج تل اتص تلبٍزي عغ  ٌخ زػحن ت زٌغ كحعحراٌ ر ياخٍحص تين م عم دٍم ع خ ؼٍٍم 

  َسً سحدق للخ ادر عخ ثم دحلخ زٌغ ت

عكتتحن ةٍتتض نتتً عؼح لتتر  تةتتم  دحي تلهختتحيج تلؼم ٌتتر لهتت ت تيمتتاتا تتتل وٌ ح هتتح لتتم ت  استتحص  عدخلوتتر عحدختتر   ا ٍتتر  تادٍؼٍتتر 

 نً ه ت تلب ض قمعهح نخحيج ػم ٌر    تلثحدخر   تلد ٍر  تلخادٍؼٍر : للأن تع تلثلاعر عم   ت  تلدسحص  رتل     ػلى تلد  ص  تلبٍزٌ

  Matlab ver 7.0.1 .دحسخدمت  نظح  تلـ تل تل     ػلٍهح
 

 

1-Description of the Problem 
 

The Gamma distribution has an important role for modeling the life time distribution of a 

variety of random phenomena . This distribution arises in many areas of application , including 

reliability , life – testing and survival analysis . 

A common problem that arises in practice is the selection of the best of two Gamma 

populations with unknown parameters . 

Formally , we can state the problem as follows : Consider two independent Gamma 

populations 
21, with known probability density function  
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With known shape parameter  i and unknown scale parameter i  (i=1,2) . We consider the 

problem : how to find the best population (i.e. the one associated with the largest scale parameter 
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i ) . Let    21    be the ordered values of the parameters 21,  . It is assumed that the exact 

pairing between the ordered and unordered parameters is  unknown . The population i  with 

 2 i
(i=1,2) is called the best population . A correct selection is defined as the selection of the 

population associated with  2  . 

Many researchers have considered this problem under different types of formulations .Shanti 

S. Gupta (1962) considered the problem of selecting a subset of k Gamma populations which 

includes the "best" population . P.Vellaisamy , D. Sharma (1988) considered classic procedure for 

selected Gamma population from two Gamma populations . Neeraj Misra , et.al. (2006) consider 

selected Gamma population under the scale invariant squared error loos function . Paul Van Der 

Laan & Constance Van Eden (1996) study the subset selection procedure for studied selecting the 

Best of Two Gamma population . Neeraj Misra (1994) considered subset selection procedure for 

selected Gamma populations . Dailami , N. ; Rao , M. Bhaskara ; Subramanyam  , K. (1985) study 

the selection of the best Gamma population , determination of minimax sample size . Studied 

Nematollahi (2009) estimation of the scale parameter of the selected Gamma population under 

Entropy loss function . 

The aim of this present paper is to derive approach for selecting the best of two Gamma 

populations , that is the one having the largest scale parameter  2  by using Bayesian decision – 

theoretic framework with exponential prior and general loss function . 

 

2-Basic Definitions and Concepts 
2-1-Statistical Decision Theory 

(i) Basic Ideas 

Statistics may be consider as the science of decision making in the presence of uncertainty . 

The problems of statistical inferences can fit into the decision theory framework , for example , 

testing of a hypothesis Ho against a hypothesis H1 may be regarded as a decision between two 

actions (i) accepting Ho or (ii) accepting H1 . 

In decision problems , the state of nature is unknown , but a decision maker must be made – a 

decision whose consequences depend on the unknown state of nature . Such a problem is a 

statistical decision problem when there are data that give partial information a bout the unknown 

state .  

The basic elements of a statistical decision problem can be formalized mathematically as 

follows: 

A set A , the action space , consisting of all possible actions , Aa , available to the decision 

maker ; 

a set   , the parameter space , consisting of all possible 'state of the nature' ,  , one and 

only one of which obtains or will obtain (this 'true' state being unknown to the decision-maker) ; 

a function L , the loss function , having domain A (the set of all ordered pairs of 

consequences A,),,(  aa  ) and codomain R ; 

a set Rx , the space of X , consisting of all the possible realizations , xRx  of a random 

variable X , having a distribution whose probability function (pf) belongs to a specified family 

  );;(xf ; 

A set D , the decision space, consisting of all possible decisions , Dd , each such decision 

function d having domain Rx and codomain A . 

 



  Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010 
 

 

 320 

(ii) The Risk Function 

 

For given ),( a the loss function depends on the outcome x and thus a random variable . Its 

expected value , i.e. its average over all possible outcomes is called the risk function and is denoted 

by  

     

xR

dxxfxdLdR continues) (X         );())(,(),(   

or 

     



xRx

xfxdLdR discrete)  (X          );())(,(),(   

 

(iii) Minimax and Bayes Decision Functions  

 

The decision function d
*
 that minimizes M(d)= d),R( max  is the minimax decision function . 

Similarly , the function d
**

 that minimizes the Bayes risk of a decision d is a Bayes decision 

function . 

      

       continous) (      )(),(),()(  


 ddRdREdB  

or  

    discrete)  (      )(),()( 


 dRdB  

where )( represents the distribution of degree of belief over  . 

 

3- Solution of the Problem      

We term our problem as a two-decision problem and represent it symbolically as  

 

          population:      

and

         population :       

2122

21  11









ifthe bestbetosaidisd

ifthe bestbetosaidisd

………..…….(2-1) 

For parameter   and action a the loos function is defined as : 

 

2)-..(2..................................................1,2.......i ,  )(),(  r

iiiiii akaL   

 

For r=0 , we have a constant loss function  , for r=1 , we have a linear loss function and for 

r=2 , we have a quadratic loss function , k1,k2 give decision losses in units of costs . 

 

Let us suppose that ),...,,(
21 niiii

yyyy   be a random sample of size n arising from population 

i . It follows that the likelihood function is  
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Our first task in the Bayesian approach is the specification of a prior p.d.f g( ) . we take the 

prior distribution to be a member of the conjugate class of Exponential priors )( iExp  , where a 

member of this class has density function 

 

0 ,  0 ,  )( i 
  

iiii
iieg …………………………..….(2-4) 

By Baye's theorem the posterior probability function of   is given by  

 

5)-........(2..................................................   e  )( i-

i
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ii yg

  

 Where 1,2i  ,    
1
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We note , as a function of i  , )(
i

yg i  has the form of Exponential probability density 

function with parameters i  . 

We derive the stopping (Baye's) risks of decision d1 and d2 for general loss function given in 

(2-2) and the stopping risk (the posterior expected looses) of making decision di denoted by 

);,( 21 ii dR   
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If we take r=0 we find from the above equations the posterior expected looses for constant 

loos function for the two decisions d1  and d2 , if we take r=1 we find from the above equations the 

posterior expected looses for  linear loss function for the two decisions , if we take r=2 we find from 

the above equations the posterior expected looses for quadratic loos function for two decision d1 

and d2 . 

For the two – decision problem considered a above , the Bayesian selection procedure is given 

as follows : 

Make decision d1 that is selecting 1  as the best population if );,();,( 22121211 dRdR    

and 

Make decision d2 that is selecting 2  as the best population if );,();,( 22121211 dRdR    
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4- Numerical Results and Discussions 

This section contains some numerical result about this procedure , we take various sample size 

n and various priors . We write a program for this procedure from which we give three types of Risk 

for three types of loss functions (constant , linear and quadratic) . from this numerical result we note 

that : 

 

1-the procedure is well defined , as we seen in table (1) . 

2-as sample size n increase , the Bayes risk decreases . 

3-The Bayes risk for quadratic loss function is less than the Bayes risk for linear and constant 

loss functions . 

3 ,  2 , 10 2121   

Prior Prob. 

),( 21   
n 

Bayes 

Risk 
Constant Loss Linear Loss Quadratic Loss 

(4,7) 

 

 

 

10 
R(d1) 0.4197 0.0016 2.0194e-005 

R(d2) 1.5803 0.0183 8.3546e-004 

20 
R(d1) 0.3637 5.4201e-041 2.4397e-006 

R(d2) 1.6363 0.0111 1.4006e-004 

30 
R(d1) 0.3343 3.2460e-004 6.4979e-007 

R(d2) 1.6657 0.0086 1.0006e-004 

40 
R(d1) 0.3416 3.8191e-004 6.2400e-007 

R(d2) 1.6584 0.0055 6.8677e-005 

50 
R(d1) 0.3281 2.0458e-004 4.3678e-007 

R(d2) 1.6719 0.0048 2.3776e-005 

 

(6,01) 

10 
R(d1) 0.4522 9.5929e-004 1.7892e-005 

R(d2) 1.5478 0.0222 3.9764e-004 

20 
R(d1) 0.3402 3.9715e-0051 4.4915e-006 

R(d2) 1.6598 0.0137 1.4732e-004 

30 
R(d1) 1 23.0 4.4710e-004 1.2465e-006 

R(d2) 0 6610 0.0077 9.4003e-005 

40 
R(d1) 1 2200 2.6590e-004 4.6549e-007 

R(d2) 0 6603 0.0071 8.2271e-005 

50 
R(d1) 1 3.00 1.8176e-004 2.5639e-007 

R(d2) 0 610. 0.0059 2.6276e-005 

(8,12) 

10 
R(d1) 1 0060 7.2249e-004 3.8048e-006 

R(d2) 0 0036 0.0220 5.1106e-004 

20 
R(d1) 1 226. 4.2249e-0041 1.4942e-006 

R(d2) 0 6630 1 1032 1.9099e-004 

30 
R(d1) 1 20.1 2.9478e-004 9.1622e-007 

R(d2) 1 2006 1 110. 6.5576e-005 

40 
R(d1) 1 2006 2.4135e-004 3.8832e-007 

R(d2) 0 6000 1 116. 4.5099e-005 
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50 
R(d1) 1 2000 1.6914e-004 2.1242e-007 

R(d2) 0 6003 1 1102 2.9020e-005 

(10,14) 

10 
R(d1) 1 0060 1 1133 7.9105e-006 

R(d2) 0 0026 1 1006 4.5275e-004 

20 
R(d1) 1 2060 5.0357e-004 2.5672e-006 

R(d2) 0 6026 1 1000 1.7845e-004 

30 
R(d1) 1 2.02 4.0063e-004 1.1416e-006 

R(d2) 0 6106 1 1166 1.0671e-004 

40 
R(d1) 1 2602 3.0555e-004 7.3245e-007 

R(d2) 0 6206 1 1160 5.0115e-005 

50 
R(d1) 1 2066 1.4337e-004 2.9984e-007 

R(d2) 0 6032 1 1163 3.5540e-005 

 

Table (1) 
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Figure (1) : the influence of the sample size on the posterior expected loss  

for constant  loss function 
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Figure (2) : the influence of the sample size on the posterior expected loss 

 for linear loss function 
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Figure (3) : the influence of the sample size on the posterior expected loss for quadratic loss function 
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Conclusions 

In this paper we derives a procedure for selecting the best of two Gamma populations 

employing a decision – theoretic Bayesian frame work with general loss function with Exponential 

prior . From this paper we note that : 

1- the procedure is well defined , as we seen in table (1) 

2- as sample size n increase , the Bayes risk decreases with all loss functions . 

3- the Bayes risk for quadratic loss function is less than the Bayes risk for linear and constant 

loss function . 
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