A Decision – Theoretic Bayesian Approach For Selecting the Best of Gamma Populations With General Loss Function

Samira Faisal Hathot Dept. of Mathematics College of Education for Girls / University of Kufa samirafaisal@yahoo.com

Abstract

Statistical selection procedures are used to select the best of a finite set of alternatives. This paper derives a procedure for selecting the best of two Gamma populations employing a decisiontheoretic Bayesian framework with general loss function with Exponential prior .

The numerical result of this procedure are given with different loss functions constant , linear and quadratic , where in one equation we can obtain the Bayes risk for the three types of the loss functions : constant , linear and quadratic . in this paper the numerical results are given by using Math Works Matlab ver. 7.0.1 .

Keywords and phrases : selection procedure, general loss function , Bayesian decision theoretic , Exponential prior , Bayes risk .

الخالصــة تستخدم طر ق الاختيار الاحصـائية لاختيـار الافضـل من بين مجموعـة محدودة مـن البدائل . هذا البحث يتضـمن اشتقاق طريقة لاختيار الأفضل من بين مجتمعيين يتوزعان توزيع كاما مستخدمين منهج القرار البيزي مع دالة خسارة مشتركة مع توزيع سابق للتجربة متمثل بالتوزيع الآسي . النتائج العددية لهذا الاجراء تم إيجادها لدوال خسارة مختلفة ثابتة ، خطية وتربيعية حيث في معادلة واحدة بالامكان الحصول على الخطورة البيزية للأنواع الثلاثة من دوال الخسارة : الثابتة ، الخطية والتربيعية . وفي هذا البحث قدمنا نتائج عددية تم الحصول عليها باستخدام نظام الـ Matlab ver 7.0.1 .

1-Description of the Problem

The Gamma distribution has an important role for modeling the life time distribution of a variety of random phenomena . This distribution arises in many areas of application , including reliability , life – testing and survival analysis .

A common problem that arises in practice is the selection of the best of two Gamma populations with unknown parameters .

Formally , we can state the problem as follows : Consider two independent Gamma populations Π_1, Π_2 with known probability density function

$$
h_i(y_i|\alpha_i, \theta_i) = \frac{\theta_i^{\alpha_i}}{\Gamma(\alpha_i)} y_i^{\alpha_i - 1} e^{-\theta_i y_i}, y_i > 0, \alpha_i > 0, \theta_i > 0
$$

With known shape parameter α_i and unknown scale parameter θ_i (i=1,2). We consider the problem : how to find the best population (i.e. the one associated with the largest scale parameter

). Let $\theta_{[1]} \leq \theta_{[2]}$ be the ordered values of the parameters θ_1, θ_2 . It is assumed that the exact pairing between the ordered and unordered parameters is unknown. The population Π_i with $heta_i = \theta_{[2]}(i=1,2)$ is called the best population. A correct selection is defined as the selection of the population associated with $\theta_{[2]}$.

 θ). Let $\theta_{[1]} \leq \theta_{[2]}$ be the ordered values of the pairing between the ordered and unordered paraming between the ordered and unordered paramoptoplation associated with $\theta_{[2]}$.

Many researchers have considered t Many researchers have considered this problem under different types of formulations .Shanti S. Gupta (1962) considered the problem of selecting a subset of k Gamma populations which includes the "best" population . P.Vellaisamy , D. Sharma (1988) considered classic procedure for selected Gamma population from two Gamma populations . Neeraj Misra , et.al. (2006) consider selected Gamma population under the scale invariant squared error loos function . Paul Van Der Laan & Constance Van Eden (1996) study the subset selection procedure for studied selecting the Best of Two Gamma population . Neeraj Misra (1994) considered subset selection procedure for selected Gamma populations . Dailami , N. ; Rao , M. Bhaskara ; Subramanyam , K. (1985) study the selection of the best Gamma population , determination of minimax sample size . Studied Nematollahi (2009) estimation of the scale parameter of the selected Gamma population under Entropy loss function .

The aim of this present paper is to derive approach for selecting the best of two Gamma populations, that is the one having the largest scale parameter θ_{2} by using Bayesian decision – theoretic framework with exponential prior and general loss function .

2-Basic Definitions and Concepts

2-1-Statistical Decision Theory

(i) Basic Ideas

Statistics may be consider as the science of decision making in the presence of uncertainty . The problems of statistical inferences can fit into the decision theory framework , for example , testing of a hypothesis H_0 against a hypothesis H_1 may be regarded as a decision between two actions (i) accepting H_0 or (ii) accepting H_1 .

In decision problems, the state of nature is unknown, but a decision maker must be made $-$ a decision whose consequences depend on the unknown state of nature . Such a problem is a statistical decision problem when there are data that give partial information a bout the unknown state .

The basic elements of a statistical decision problem can be formalized mathematically as follows:

A set A, the action space, consisting of all possible actions, $a \in A$, available to the decision maker ;

a set Ω , the parameter space, consisting of all possible 'state of the nature', $\theta \in \Omega$, one and only one of which obtains or will obtain (this 'true' state being unknown to the decision-maker) ;

a function L, the loss function, having domain $\Omega \times A$ (the set of all ordered pairs of consequences $(\theta, a), \theta \in \Omega, a \in A$ and codomain R;

a set R_x , the space of X, consisting of all the possible realizations, $x \in R_x$ of a random variable X , having a distribution whose probability function (pf) belongs to a specified family ${f(x;\theta);\theta \in \Omega};$

A set D, the decision space, consisting of all possible decisions, $d \in D$, each such decision function d having domain R_x and codomain A .

(ii) The Risk Function

For given (θ, a) the loss function depends on the outcome x and thus a random variable. Its expected value , i.e. its average over all possible outcomes is called the risk function and is denoted by

 $=$ \int *R*(θ , *d*) = $\int_{R_x} L(\theta, d(x)) f(x; \theta) dx$ (X continues)

or

$$
R(\theta, d) = \sum_{x \in R_x} L(\theta, d(x)) f(x; \theta)
$$
 (X discrete)

(iii) Minimax and Bayes Decision Functions

The decision function d^* that minimizes $M(d) = max R(\theta, d)$ is the minimax decision function. Similarly, the function d^{**} that minimizes the Bayes risk of a decision d is a Bayes decision function .

$$
f_{\rm{max}}
$$

 $B(d) = E[R(\theta, d)] = \int_{\Omega} R(\theta, d) \pi(\theta) d\theta$ (Θ continous) $B(d) = E[R(\theta, d)] = |R(\theta, d)\pi(\theta)d\theta$

or $B(d) = \sum_{\Omega} R(\theta, d) \pi(\theta)$ (Θ discrete) $B(d) = \sum R(\theta, d) \pi(\theta)$

where $\pi(\theta)$ represents the distribution of degree of belief over Θ .

3- Solution of the Problem

We term our problem as a two-decision problem and represent it symbolically as

 d_2 : population Π_2 *is said to be the best if* $\theta_1 \leq \theta_2$ and d_1 : population Π_1 *is said to be the best if* $\theta_1 > \theta_2$ ………..…….(2-1)

For parameter θ and action a the loos function is defined as :

(,) () ,i 1,2...(2 - 2) *^r ⁱ ⁱ ⁱ ⁱ ⁱ aⁱ L a k*

For $r=0$, we have a constant loss function, for $r=1$, we have a linear loss function and for $r=2$, we have a quadratic loss function, k_1, k_2 give decision losses in units of costs.

Let us suppose that $y_i = (y_{i1}, y_{i2},..., y_{i n})$ be a random sample of size n arising from population Π_i . It follows that the likelihood function is

, 0 , y 0 , 0 () () ⁱ ⁱ 1 1 i ¹ *n j ij y n i i ^o ⁱ P y e y n j i ij i* , ……………(2-3)

Our first task in the Bayesian approach is the specification of a prior p.d.f $g(\lambda)$. we take the prior distribution to be a member of the conjugate class of Exponential priors $Exp(\lambda_i)$, where a member of this class has density function

() , 0 , ⁱ 0 *i i i i ⁱ ⁱ g e* …………………………..….(2-4)

By Baye's theorem the posterior probability function of θ is given by

() e ..(2 - 5) ⁱ i *i i ⁱ g y* Where , i 1,2 1 *i n j ij y*

We note, as a function of θ_i , $g(\theta_i | y_i)$ has the form of Exponential probability density function with parameters λ_i' .

We derive the stopping (Baye's) risks of decision d_1 and d_2 for general loss function given in (2-2) and the stopping risk (the posterior expected looses) of making decision d_i denoted by $R_i(\theta_1, \theta_2; d_i)$

$$
R_1(\theta_1, \theta_2; d_1) = k_1 \left[\sum_{i=0}^r \frac{r!(-1)^{r-i}}{(\lambda_2')^{r-i}(\lambda_1')^i} - \sum_{i=0}^r \sum_{j=0}^{r-i} \frac{r!(-1)^{r-i} \lambda_1'(\lambda_2')^{-j}(r-j)!}{i!(r-i-j)!(\lambda_1'+\lambda_2')^{r-j+1}} \right]
$$

$$
R_2(\theta_1, \theta_2; d_2) = k_2 \left[\sum_{i=0}^r \frac{r!(-1)^{r-i}}{(\lambda_1')^{r-i}(\lambda_2')^i} - \sum_{i=0}^r \sum_{j=0}^{r-i} \frac{r!(-1)^{r-i} \lambda_2'(\lambda_1')^{-j}(r-j)!}{i!(r-i-j)!(\lambda_1'+\lambda_2')^{r-j+1}} \right]
$$

If we take $r=0$ we find from the above equations the posterior expected looses for constant loos function for the two decisions d_1 and d_2 , if we take r=1 we find from the above equations the posterior expected looses for linear loss function for the two decisions , if we take r=2 we find from the above equations the posterior expected looses for quadratic loos function for two decision *d¹* and d_2 .

For the two – decision problem considered a above , the Bayesian selection procedure is given as follows :

Make decision d_1 that is selecting Π_1 as the best population if $R_1(\theta_1, \theta_2; d_1) < R_2(\theta_1, \theta_2; d_2)$ and

Make decision d_2 that is selecting Π_2 as the best population if $R_1(\theta_1, \theta_2; d_1) \ge R_2(\theta_1, \theta_2; d_2)$

4- Numerical Results and Discussions

This section contains some numerical result about this procedure , we take various sample size n and various priors . We write a program for this procedure from which we give three types of Risk for three types of loss functions (constant , linear and quadratic) . from this numerical result we note that :

- 1-the procedure is well defined , as we seen in table (1) .
- 2-as sample size n increase , the Bayes risk decreases .
- 3-The Bayes risk for quadratic loss function is less than the Bayes risk for linear and constant loss functions .

Figure (1) : the influence of the sample size on the posterior expected loss for constant loss function

Figure (2) : the influence of the sample size on the posterior expected loss for linear loss function

Figure (3) : the influence of the sample size on the posterior expected loss for quadratic loss function

Conclusions

In this paper we derives a procedure for selecting the best of two Gamma populations employing a decision – theoretic Bayesian frame work with general loss function with Exponential prior . From this paper we note that :

- 1- the procedure is well defined , as we seen in table (1)
- 2- as sample size n increase , the Bayes risk decreases with all loss functions .
- 3- the Bayes risk for quadratic loss function is less than the Bayes risk for linear and constant loss function .

References

- 1- Gupta , S.S. (1962) . On a selection and ranking procedure for gamma populations . Annals of mathematical statistics , vol. 14 , pp. 199-216 .
- 2- Vellaisamy P. and Sharma D. (1988) . Estimation of the mean of the selected Gamma population . Communications in statistics-theory and methods , vol. 117 , issue 8 . pp. 2797- 2817 .
- 3- Misra , N. and van der M. and Edward , C. (2006) . On estimating the scale parameter of the selected Gamma population under the scale invariant squared error loss function . Journal of computational and applied mathematics , vol. 186 , pp. 268-282 .
- 4- Paual van Der laan and Contance van Eeden . (1996) . On using a loss function in selecting the best of two Gamma populations in terms of their scale parameters . vol. 28 , issue 4 , pp. 355-370 .
- 5- Misra , N. (1994) . Estimation of the average worth of the selected subset of gamma populations . The Indian journal of statistics , series B , vol. 56 , pt. 3 , pp. 344 -355 .
- 6- Dailami , N. and Rao , M. Bhaskara and Subramanyam , K. (1985) . On the selection of the best Gamma population , determination of minimax sample sizes .
- 7- N. Nematollahi ; F. Motamed-Shariati . (2009) . Estimation of the scale parameter of the selected Gamma population under the entropy loss function . Communications in statisticstheory and methods , vol. 38 , issue 2 , pp. 208-221 .