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Abstract 

       Regression analysis is a difficult method when there are many variables. In other words, as the 

number of variables increases, the model becomes more complex. This may lead to a dimensional 

problem. Some explanatory variables do not have a significant effect on the dependent variable, and 

some of these variables also have an internal correlation with each other, and this requires excluding 

such variables in order to increase the accuracy of the model.   There are two ways to reduce the 

dimensions, namely the method of selecting variables (v.s) variable selection and variables extractions. 

Under the assumptions of the theory of SDR (Sufficient dimension reduction), the researchers worked 

on proposing methods to reduce the dimensions, including the integration of SDR methods with 

regularization methods (Regularization method) and the methods of regulation mean adding a penalty 

limit to control the complexity of the model as it greatly reduces the variance of the model, and among 

these methods SMAVE-AdEN (Alkenani and Rahman,2020) is a method for selecting a variable under 

the assumptions of SDR theory.                                              

   The SMAVE-AdEN method is a combination of Adaptive elastic net with MAVE ( Minimum average 

variance estimator ) method for estimating minimum average variance. This method is effective when 

the variables are highly correlated under SDR assumptions. But the SMAVE-AdEN method is not 

immune and it is a sensitive method that is affected when there are outliers in the data, owing to the least 

squares criteria that we employ. In this paper, we proposed a robust method (RSMAVE-AdEN), which 

can estimate parameters and select variables simultaneously, and is not affected by the presence of 

outliers in explanatory variables and response variables. The effectiveness of the proposed method was 

verified by a simulation study.                         

Key words: Adaptive Elastic Net, Robust estimation, MAVE, Dimension reduction. 
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1.Introduction    

    The study of regression when there are a large number of variables and a large sample size is a 

difficult and complex process, as it increases the complexity of the regression model, which prompted 

researchers to use the variable selection process because some explanatory variables are not essential in 

their impact on the variable. The dependent variable, or its effect is similar to the effects of other 

variables, and many of these variables have an internal connection with each other, which leads to the 

emergence of the problem of multicollinearity, and thus its effect is not significant, which calls for the 

exclusion of non-significant variables and the selection of significant variables To increase the accuracy 

of the model prediction. 

This problem led the researchers to work on reducing the high dimensions of the data, as Cook proposed 

in (1998) the (Sufficient dimension reduction) method, this method is of high importance as one of the 

effective tools to address the issue of high-dimensional data analysis. Several dimension reduction SDR 

methods have been presented, one of which is the MAVE method (Xia et al., 2002). However, the 

results are linear combinations of all variables. Therefore, these methods suffer from the difficulty of 

interpreting the resulting estimates. Many methods have been proposed to combine SDR methods with 

regularization methods. These methods are able to deal with high-dimensional data, which are based on 

the principle of minimizing the sum of squares of error by adding a certain restriction to the parameters 

and reducing some coefficients and set others equal to zero, 

It gives a sparse model that includes the least possible number of variables and is interpretable. For 

example, the researchers Alkenani and Rahman (2020) suggested the SMAVE-EN method, where the 

researchers combined the MAVE (Minimum Average Variance Estimator) method proposed by the 

researcher Xia and others in general. (2002) with the flexible EN network proposed by Zou and Hastie 

in (2005), and this method is characterized by the ability to deal with variables that are in highly 

correlated groups. 

The researchers Alkenani and Rahman (2020) suggested the SMAVE-AdEN method, where the 

researchers combined the MAVE method (Minimum Average Variance Estimator) proposed by the 

researcher Xia et al. (2002) with the Adaptive Elastic Net (Adaptive Elastic Net) proposed by the 
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researchers Zou and Helen (2009) to produce the SMAVE-AdEN method, and this method is 

characterized by giving accurate estimates when the variables are highly correlated. Moreover, the 

selection of the variable and the estimation of the parameters are done at the same time. Despite these 

good advantages of this method, it loses its efficiency if there are abnormal values in its data, and this is 

the problem.In this paper, we proposed a robust method (RSMAVE-AdEN), which can estimate 

parameters and select variables simultaneously, and is not affected by the presence of outliers in 

explanatory variables and response variables and this is the goal of the research. The effectiveness of the 

proposed method was verified by a simulation study. 

2. Several dimension reduction (SDR) 

   A response variable's regression-type model yє R
1
 on a Px1 predictor vector X and the error term ɛ, 

Suppose the following model: 

y = ƒ(x1,x2,….,xp) + ɛ             ,                                                                 (1) 

where ƒ (x1,x2,…,xp) =Ε(y/x), Ε(ɛ/x)=0. 

The aim of SDR for the mean function is to select a subset S of the predictor space  

where yꓕ Ε(y/x)/psx              ,                                                                 (2) 

              Thus,ꓕ denotes  independence, p(.)is an operator that performs  projections. 

Mean DRS are subspaces that satisfy condition (2) (Cook and Li ,2002). 

If d=dim(s) ,𝜃 = (𝜃1, 𝜃2, . . , 𝜃𝑑)is a basis for S. The linear combinations can be used in place of the 

predictor X. 

𝜃1
𝑇𝑋, 𝜃2

𝑇𝑋,… , 𝜃𝑑
𝑇𝑋 = ʄ(𝜃𝑥

𝑇).                                                              (3) 

The intersection of all subspaces (2) is referred to as the intersection. that is called the d≤ p without loss 

of information on Ε(y/x) that is , 

 ƒ (x1,x2,…,xp) called the central mean subspace SE(y|x) (Cook and Li 2002). Many methods for 

estimation SE(y/x) have been proposed, with MAVE(Xia et al.,2002) being one of the most well-known. 

Methods used by them. 

 2.1 Minimum average variance estimator (MAVE )   

    In(2002) It has been suggested before Xia et al. the MAVE method and it means the least variance 

rate estimation method. This method is used on a wide range of regression models, and it is one of the 

SDR method to reduce dimensions, and this method has advantages, the most important of which is 

flexibility, its ability to combine with other methods, and its ability to choose variables. The estimation 

of the parameters simultaneously, as well as the availability of its algorithms and the ease of 

implementation, but the disadvantages of this method are that it does not give a single solution, but 

rather includes all the linear structures of all the original variables: 

       so    𝜃𝑇𝜃 =   𝐼𝑑 , 

The provided conditional variance  𝜃𝑇 𝑥 is 

𝜎𝜃
2(𝜃𝑇x)=E[{y-𝐸(𝑦/ 𝜃 T 

x)}
2
| 𝜃 T

x]                                        (4)                                      
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So, 

minɵ E[y- E( y| 𝜃 T
x) ]

2
 = min E { 𝜎𝜃

2(𝜃𝑇𝑥)},                       (5)            

                

              For any given  X0 , 𝜎𝜃
2(𝜃𝑇𝑥) can be approximated using local  Linear smoothing  as        

               𝜎𝜃
2(𝜃𝑇𝑥0)    ≈ ∑ {𝑦𝑖 − 𝐸(𝑦𝑖/𝜃

𝑇𝑥𝑖)}
2𝑤𝑖0 }

𝑛
𝑖=1  

            ≈ ∑ [𝑛
𝑖=1 yi- (𝑎0+ 𝑏0  

𝑇 𝜃𝑇(𝑋𝑖−𝑋𝑗    )}]
2  𝑤𝑖0   ,                                                          (6) 

              where , a0+𝑏0 
𝑇𝜃𝑇(xi-x0)is the local linear expansion of E(yi/𝜃𝑇𝑥𝑖 )  

             at  x0 and wi0≥ 0 . are the kernel weights centered at 𝜃𝑇𝑥0 with 

              ∑ 𝑤𝑖0
𝑛
𝑖=1 =1 And you know like this 

𝑤𝑖𝑗 = 𝑘ℎ {𝜃̂ 
𝑇(𝑋𝑖 − 𝑋𝑗)} /∑ 𝑘ℎ

𝑛
𝑖=1 {𝜃̂ 𝑇(𝑋𝑖 − 𝑋𝑗)}        ,                                         (7) 

        Minθ:𝜃𝑇𝜃=𝐼𝑑(∑ ∑ [𝑦𝑖 − {𝑎𝑗 + 𝑏𝑗
𝑇𝜃𝑇(𝑥𝑖 − 𝑥𝑗)}]

𝑛
𝑖=1

𝑛
𝑗=1 ]

2
 wij,                              (8)            

2.2 Sparse minimum average variance estimator(SMAVE) 

         Although the MAVE method is an effective dimensionality reduction method, its outputs are still 

linear combinations of all variables, so it suffers from the difficulty of interpretation as other DR 

(dimensionality reduction) methods do. Therefore, several methods were proposed to combine V.S 

methods and SDR methods in one step. In 2008, researchers Wang and Yin proposed a (SMAVE) 

method that combines the Lasso method with the MAVE method. SMAVE has advantages over Lasso in 

that it extends multidimensional and nonlinear settings without assuming any particular form. SMAVE 

is defined by the following equation: 

   

min(∑ ∑ [𝑦𝑖
𝑛
𝑖=1

𝑛
𝑗=1 -{𝑎𝑗 + 𝑏𝑗

𝑇𝜃𝑇(𝑥𝑖 − 𝑥𝑗)}]
2 𝑊𝑖𝑗+𝜆∑ |𝜃𝑚,𝑘|

𝑝
𝑘=1  ,                             (9) 

2.3 SMAVE-EN 

  The researchers Alkenani and Aljobori (2021) presented a study on the sensitivity of the SMAVE-EN 

method to outliers and proposed a robust enhancement to SMAVE-EN that can estimate trends in the 

mean regression function and identify covariates simultaneously, while it is impervious to the presence 

of possible outliers in each of dependent and independent variables. It is defined by the following 

equation: (10): 

∑ ∑ [𝑦𝑖 − {𝑎𝑗
𝑛
𝑖=1

𝑛
𝑗=1 +𝑏𝑗

𝑇𝜃𝑇(𝑥𝑖 − 𝑥𝑗)}]
2
W  +  𝜆1‖𝜃𝑚‖2

2+ 𝜆2‖𝜃𝑚 ‖1 ,                        (10)  

2.4 SMAVE-AdEN 

       In the year (2020) the researchers (Alkenani and Rahman) proposed a new method (SMAVE-

AdEN),  the SDR method is integrated, Resulting from a combination of MAVE (Xia, 2002) with with 

the Adaptive Elastic Net method (Zou and Zhang, 2009), which is to combine the ridge regression 
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method with the Lasso penalty function method to get an accurate scattered estimate. The SMAVE-

AdEN method is defined by the following equation: 

∑ ∑ [𝑦𝑖 − {𝑎𝑗
𝑛
𝑖=1

𝑛
𝑗=1 +𝑏𝑗

𝑇𝜃𝑇(𝑥𝑖 − 𝑥𝑗)}]
2
W + 𝜆1‖𝜃𝑚‖2

2+ 𝑤𝑘
∗𝜆2‖𝜃𝑚 ‖1 ,      (11)     

 

3. Robust Estimation 

      The most used methods for estimating the parameters of the statistical model are the maximum 

possibility (ML) Maximum liklihooh, the least squares (OLS) Ordinary Least Sequared and moments 

(M.OM) and others. In recent years, we have dealt with the case of anomalies in the data. In other 

words, when there are anomalies in the data, how are they dealt with? The answer is dealt with through  

robust  estimation  methods or  robust  estimation  methods, where robust capabilities with high 

efficiency are obtained compared to the usual methods in the event that there are abnormal values in the 

data. It is also assumed that the robust method’s capabilities are very close to the capabilities of the 

ordinary method when No outliers.  

3.1 Robust SMAVE 

        The least squares criteria used by the SMAVE method make it sensitive to outliers In their 2006 

investigation of the susceptibility of MAVE to outliers, researchers Cizek and Hardle proposed a 

significant improvement over SMAVE by the following equation Definition of the RMAVE method : 

∑ ∑ ꝓ[𝑦𝑖 − {𝑎𝑗 + 𝑏𝑗
𝑇𝑛

𝑖=1
𝑛
𝑗=1 𝜃𝑇(𝑋𝑖 − 𝑋𝑗)}]𝑤𝑖𝑗  ,                                       (12) 

Researchers Wang and Yao (2013) suggested the R SMAVE method and added a penalty term to 

equation 12), so that equation (13) is as follows: 

      ∑ ∑ ꝓ[𝑦𝑖 − {𝑎𝑗 + 𝑏𝑗
𝑇𝑛

𝑖=1
𝑛
𝑗=1 𝜃𝑇(𝑋𝑖 − 𝑋𝑗)}]𝑤𝑖𝑗 + ∑ 𝜆𝑘

𝑑
𝐾=1 |𝜃𝑘|    ,           (13) 

Alkenani (2021) proposed the (RSSIR) method to select a immune variable in the SIR method, using 

Tukeys Biweight, Criterion for Bioweight and Ball Covariance. 

3.2 Robust SMAVE-EN 

          The researchers Alkenani and Aljobori (2021) presented a study on the sensitivity of the SMAVE-

EN method to outliers and proposed a robust reinforcement for  RSMAVE -EN, which can estimate 

trends in the mean regression function and identify covariates simultaneously, while it is immune to the 

presence of possible outliers in each of the dependent and independent variables. It is important to know 

this method by equation: 

  ∑ ∑ ꝓ[𝑦𝑖  − {𝑎𝑗  + 𝑏𝑗
𝑇𝜃𝑇(𝑥𝑖 − 𝑥𝑗)}]

𝑛
𝑖=1

𝑛
𝑗=1  𝑤𝑖𝑗+𝜆1‖𝜃𝑚‖ +2

2 𝜆2‖𝜃𝑚‖1,                    (14) 

 

3.3 Robust SMAVE-AdEN 
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            Although the SMAVE-AdEN method  proposed  by  researchers (Alkenani and Rahman) in 

(2020) has good  advantages  for  selecting  variables  and  estimating  parameters, easy to implement, 

and has good  prediction  accuracy  compared  to the  current   methods, it is not vulnerable to outliers, 

and we suggested a robust enhancement for SMAVE- AdEN by replacing the local least squares with an 

estimate of -L or -M. The RSMAVE-AdEN immune method can be defined by (15) as follows: 

∑ ∑ ꝓ[𝑦𝑖 − {𝑎𝑗
𝑛
𝑖=1

𝑛
𝑗=1 + 𝑏𝑗

𝑇𝜃𝑇(𝑥𝑖 − 𝑥𝑗)𝑏𝑗
𝑇𝜃𝑇(𝑥𝑖 − 𝑥𝑗)𝑤𝑖𝑗 + 𝜆

1
‖𝜃𝑚‖ +𝑤𝑘

∗
2
2 𝜆

2
‖𝜃𝑚‖1,                                     (15) 

     We utilize ꝓ (.) as a Tukey's biweight function to get an estimate in both x and y. As a result, the loss 

function is robust and resistant to outliers in both x and y when it has a redescending derivative 

[Rousseeuw and Yohai (1984)].This is a characteristic of Tukey's biweight's loss 

function[Tukey(1960)]. As a result, the proposed RSMAVE-AdEN is not sensitive to x and y outliers. 

By substituting Tukey's biweight function for the least squares loss function used in the minimizing in 

(8), the minimizing in (11) is a robust version of the minimizing in (8). And Tukey’s function can be 

expressed in equation (16) as follows: 

PC(u)= {
(
𝐶2

6
) {1 − [1 − (

𝑢

𝑐
)2]3

𝑐2

6
, 𝑖𝑓 |𝑢| > 𝑐

, 𝑖𝑓 |𝑢| ≤ 𝑐                   ,                                            (16) 

     RSMAVE-AdEN estimates can be obtained according to the following algorithm: 

  1-Let m=1,ɵ=ɵ0, any arbitrary Px1 vector 

   2-To know ɵ,get(aj,bj),where j=1,.,…,n,from 

     Minajbj=1,….,n(∑ ∑ 𝑝[𝑦𝑖 − {𝑎𝑗 + 𝑏𝑗
𝑇𝑛

𝑖=1
𝑛
𝑗=1 𝜃𝑇(𝑋𝑖 − 𝑋𝑗)}]𝑤𝑖𝑗,                                   (17) 

  3-For a given(𝑎̂𝑗,𝑏̂𝑗 ),j=1,2,……,n,solve ɵmRSMAVE –AdEN from 

     min ɵ:ɵT ɵ=Im(∑ ∑ 𝑃[𝑦𝑖 − {𝑎𝑗̂
𝑛
𝑖=1

𝑛
𝑗=1 + 𝑏̂𝑗

𝑇(𝜃1, 𝜃2, … . . , 𝜃𝑚−1,, 𝜃𝑚,)
𝑇 

(𝑥𝑖 − 𝑥𝑗)}𝑤𝑖𝑗 +     𝜆
1
‖𝜃𝑚‖ +𝑤𝑘

∗
2
2 𝜆

2
‖𝜃𝑚‖. 

4-Substitute the mth colom of ɵ by ɵ̂ mRSMAVE –AdEN and  use 2 and 3 unit convergence. 

5- Upgrade ɵ by(𝜃1RSMAVE –AdEN, 𝜃2RSMAVE –AdEN,….., 𝜃𝑚RSMAVE –AdEN, 𝜃0) 

And group m to be m+1. 

6-In case m>d,keep on with 2 to 5 until m=d.  

The kernel weights defined by the following equation: 

Wij= kh{𝜃𝑇 (xi -xj )}/kh{ 𝜃𝑇(xi -xj )},                                              (18) 

 

4. Simulation Study 

     This section's goal is to evaluate our suggested RSMAVE-AdEN method's finite sample performance 

using simulation tests. We evaluate the SMAVE-AdEN (Alkenani and Rahman,2020)and the 

recommended approach (RSMAVE-AdEN), RSMAVE-EN Alkenani and Aljobori (2021). We compare 

the results to show how well the RSMAVE-AdEN method performs in terms of prediction accuracy and 

variable selection. The researcher wrote a code in R language to calculate the proposed method,The 

reported simulation results were based on 200 iterations of the data. 
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1. Normal (0, 1), the standard normal. 

2. t3 /√3 , t- distribution with( 3) degree of freedom. 

3-  (1-𝛼) N(0,1)+ 𝛼 N(0,10
2
). 

4-  (1-𝛼) N(0,1)+ 𝛼 U(-50,50)    

With regard to the distributions in cases 4 and 3, (1-α)% of the data comes from the standard normal 

distribution and α% from other distributions.(Wang &Yao,2013) 

Example: First example: y = 1+2(𝜃𝑇𝑥+ 3) ×log(3|𝜃𝑇𝑥| + 1) + ɛ, Let d = 1,n=100,200, p = 40. 

Consider  𝜃 = (0, . . . ,0⏟  
10

, 2, . . . ,2⏟  
10

, 0, . . . ,0⏟  
10

, 2, . . . ,2⏟  
10

, )
T
, 

Example: Second example: y = 1+2(𝜃𝑇𝑥+ 3) ×log(3|𝜃𝑇𝑥| + 1) + ɛ, Let d = 1,n=100,200, p = 40. 

Consider  𝜃 = (, 3, . . . ,3⏟  
15

, 0, . . . ,0⏟  
25

 )
T
, 

 

 corr(i,j) = 0.5 for all I and j.where, for every I and j, corr (i, j) = 0.5. 

xi = z1+ ɛ, i = 1, …, 5,          xi = z2 + ɛ, i = 6, …, 10, 

xi = z3+ ɛ, i = 11, …, 15,      xi, i = 16, …, 40. 

When, I = 1, .…, 15. In this model, there are three groups and five predictors in each group. 

Additionally, we set the coefficients of 25 predictors. 

 
Table 1: Results of the first example, when) Sample volume ( n = 100, p = 40 and contamination percentage is 5% for two distributions. 3 and 4. 

 

|Corr (𝜃𝑇𝑥,𝜃𝑇 x) | MSE Ave.0’s Method Distribution 

0.957768 0.073717 14 RSMAVE-AdEN 1 

0.956479 0.074843 14 RSMAVE-EN 

0.969947 0.065121 13 SMAVE-AdEN 

0.975045 0.098880 15 RSMAVE-AdEN 2 

0.952287 0.231806 14 RSMAVE-EN 

0.867518 0.382312 11 SMAVE-AdEN 

0.783236 1.954264 15 RSMAVE-AdEN 3 

0.786991 1.545765 14 RSMAVE-EN 

0.683299 2.275063 11 SMAVE-AdEN 

0.972751 0.656871 15 RSMAVE-AdEN 4 

0.791489 0.862388 15 RSMAVE-EN 

0.653346 2.888324 13 SMAVE-AdEN 
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Figure (1) at n= 100 and a pollution rate of 5% 

 

 

Table 2: Results of the first example, when ) Sample volume ( n = 100, p = 40 and contamination percentage is 10% for two 

distributions. 3 and 4.. 

|Corr (𝜃𝑇𝑥,𝜃̂𝑇 x) | MSE Ave.0’s Method Distribution 

0.957768 0.103626 16 RSMAVE-AdEN 1 

0.956479 0.103893 15 RSMAVE-EN 

0.966947 0.101244 12 SMAVE-AdEN 

0.925891 0.188978 17 RSMAVE-AdEN 2 

0.894435 0.287284 15 RSMAVE-EN 

0.817289 0.474869 11 SMAVE-AdEN 

0.674032 2.236655 16 RSMAVE-AdEN 3 

0.542085 2.667088 15 RSMAVE-EN 

0.400728 4.825417 11 SMAVE-AdEN 

0.961538 0.827871 17 RSMAVE-AdEN 4 

0.940663 1.437581 15 RSMAVE-EN 

0.850105 3.993977 12 SMAVE-AdEN 

 

0
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Figure (2) at n= 100 and a pollution rate of 10% 

 

Table 3: 
Results of the first example, when) Sample volume (n = 200, p = 40 and contamination percentage is 5% for two distributions. 3 

and 4. 

 

 

 

 

 

 

 

 

 

 
Figure (3) at n= 200 and a pollution rate of 5% 
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|Corr (𝜃𝑇𝑥,𝜃𝑇 x) | MSE Ave.0’s Method Distribution 

0.989215 0.030207 17 RSMAVE-AdEN 1 

0.977498 0.031847 15 RSMAVE-EN 

0.994402 0.026728 11 SMAVE-AdEN 

0.983752 0.042231 16 RSMAVE-AdEN 2 

0.975321 0.156892 14 RSMAVE-EN 

0.927181 0.228871 11 SMAVE-AdEN 

0.949726 0.307871 17 RSMAVE-AdEN 3 

0.925868 0.664467 15 RSMAVE-EN 

0.923392 0.953373 11            SMAVE-AdEN 

0.973941 0.048539 17 RSMAVE-AdEN 4 

0.963446 0.193108 15 RSMAVE-EN 

0.952597 0.500422 11 SMAVE-AdEN 
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Table 4: Results of the first example, when ) Sample volume ( n = 200, p = 40 and contamination percentage is 10% for two distributions 3 

and 4. 

|Corr (𝜃𝑇𝑥,𝜃𝑇  x) | MSE Ave.0’s Method Distribution 

0.972215 0.040297 15 RSMAVE-AdEN 1 

0.977498 0.051849 15 RSMAVE-EN 

0.978402 0.036728 14 SMAVE-AdEN 

0.983752 0.049932 16 RSMAVE-AdEN 2 

0.975321 0.159899 16 RSMAVE-EN 

0.927181 0.524359 11 SMAVE-AdEN 

0.949726 0.407872 16 RSMAVE-AdEN 3 

0.925868 0.699467 15 RSMAVE-EN 

0.923392 0.954373 11 SMAVE-AdEN 

0.973941 0.098588 16 RSMAVE-AdEN 4 

0.963446 0.199984 15 RSMAVE-EN 

0.952597 0.587731 12 SMAVE-AdEN 

 
Figure (4) at n= 200 and a pollution rate of 10% 

 

 
Table5: Results of the second example, when ) Sample volume ( n = 100, p = 40 and contamination percentage is 5% for two distributions. 3 and 4. 

 

|Corr (𝜃𝑇𝑥,𝜃̂𝑇 x) | MSE Ave.0’s Method Distributio

n 

0.944004 0.204056 22 RSMAVE-AdEN 1 

0.937518 0.210365 21 RSMAVE-EN 

0.950409 0.201173 18 SMAVE-AdEN 

0.956032 0.145295 22 RSMAVE-AdEN 2 

0.955059 0.207786 22 RSMAVE-EN 

0.887389 0.165431 18 SMAVE-AdEN 

0.703849 1.445401 22 RSMAVE-AdEN 3 

0.735499 1.820911 21 RSMAVE-EN 

0.713441 1.942613 19 SMAVE-AdEN 

0.849991 2.020744 20 RSMAVE-AdEN 4 

0.791489 2.276505 20 RSMAVE-EN 

0.853346 2.883258 15 SMAVE-AdEN 
 

 

0

0.2

0.4

0.6

0.8

1

MSE 

MSE



171 
 

 

Figure (5) at n= 100 and a pollution rate of 5% 

 

Table 6: Results of the second example, when) Sample volume ( n = 100, p = 40 and contamination percentage is 10% for two distributions. 3 and 4. 

|Corr (𝜃𝑇𝑥,𝜃̂𝑇 x) | MSE Ave.0’s Method Distribution 

0.944208 0.248207 23 RSMAVE-AdEN 1 

0,949595 0.275993 22 RSMAVE-EN 

0.950898 0.241677 21 SMAVE-AdEN 

0.935793 0.217998 22 RSMAVE-AdEN 2 

0.899450 0.259298 21 RSMAVE-EN 

0.785773 0.292874 19 SMAVE-AdEN 

0.369866 1.007161 22 RSMAVE-AdEN 3 

0.260525 1.50184 22 RSMAVE-EN 

0.418881 1.87707 18 SMAVE-AdEN 

0.894399 0.959013 22 RSMAVE-AdEN 4 

0.889945 1.266276 22 RSMAVE-EN 

0.872766 1.443551 18 SMAVE-AdEN 

 
 

 

Figure (6) at n= 100 and a pollution rate of 10% 
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Table 7: Results of the second example, when ) Sample volume ( n = 200, p = 40 and contamination percentage is 5% for two distributions. 3 and 4. 

|Corr (𝜃𝑇𝑥,𝜃̂𝑇 x) | MSE Ave.0’s Method Distribution 

0.915231 0.365259 22 RSMAVE-AdEN 1 

0.911084 0.367096 22 RSMAVE-EN 

0.927016 0.327409 18 SMAVE-AdEN 

0.935677 0.362877 22 RSMAVE-AdEN 2 

0.925903 0.391598 22 RSMAVE-EN 

0.847927 1.030230 14 SMAVE-AdEN 

0.456506 3.08434 22 RSMAVE-AdEN 3 

0.554282 3.30445 22 RSMAVE-EN 

0.583353 3.72319 19 SMAVE-AdEN 

0.769963 4.577491 23 RSMAVE-AdEN 4 

0.769431 5.428073 22 RSMAVE-EN 

0.814019 6.175188 19 SMAVE-AdEN 

 

 

Figure (7) at n= 200 and a pollution rate of 5% 

 

 

Table 8: Results of the second example, when) Sample volume ( n = 200, p = 40 and contamination percentage is 10% for two distributions. 3 and 4. 

 

|Corr (𝜃𝑇𝑥,𝜃̂𝑇 x) | MSE Ave.0’s method Distribution 

0.942695 0.268495 20 RSMAVE-AdEN 1 

0.940263 0.280064 21 RSMAVE-EN 

0.950288 0.222348 20 SMAVE-AdEN 

0.971359 0.078353 20 RSMAVE-AdEN 2 

0.961048 0.356162 20 RSMAVE-EN 

0.886569 1.280471 14 SMAVE-AdEN 

0.628161 1.628861 21 RSMAVE-AdEN 3 

0.377362 1.928952 21 RSMAVE-EN 

0.624616 2.95167 14 SMAVE-AdEN 

0.895776 2.510605 20 RSMAVE-AdEN 4 

0.615418 3.558851 20 RSMAVE-EN 

0.685529 8.544191 15 SMAVE-AdEN 
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Figure (8) at n= 200 and a pollution rate of 10% 

  By comparing the results of the tables between the three methods used above, we note the following: 

1- The proposed method R SMAVE-AdEN is the best and for all contamination cases (5%, 10%) and for 

the sample size (100,200), as it gave the lowest value for MSE, followed by the RSMAVE-EN method, 

as it gave the highest value for MSE. It also gave the highest correlation compared to (RSMAVE-EN) 

and (SMAVE-AdEN) method. 

2-We note from the results of the tables that the MSE value increases with the increase in the pollution 

value. 

6. Conclusion 

Here are the most important conclusions: 

1- The proposed method RSMAVE-AdEN in this research is a robust method for selecting variables and 

reducing dimensions at one time. 

2- This method is efficient when the variables are highly correlated within the SDR numbers. 

3- The proposed method has a good and consistent performance and gave the lowest value for MSE by 

comparing the three methods and is not affected by the presence of abnormal values for all 

contamination cases (5%, 10%) and for the sample size (100,200), but the higher the contamination 

percentage MSE value rose. 

4- The proposed method works with high dimensions within the framework of SDR. 

Abbreviations 

SDR     : Sufficient dimension reduction 

AdEN  : Adaptive elastic net 

DR       : Dimension reduction 

EN       : Elastic net 

Lasso    : Least absolute shrinkage and selection operator 

MAVE : Minimum average variance estimator 

MSE    : Mean squared error 

OLS     : Ordinary least squared 

OP’s     : Oracle properties 

V.S       : Variable selection 
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SMAVE: Sparse minimum average variance estimator 
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