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Abstract

Regression analysis is a difficult method when there are many variables. In other words, as the
number of variables increases, the model becomes more complex. This may lead to a dimensional
problem. Some explanatory variables do not have a significant effect on the dependent variable, and
some of these variables also have an internal correlation with each other, and this requires excluding
such variables in order to increase the accuracy of the model. There are two ways to reduce the
dimensions, namely the method of selecting variables (v.s) variable selection and variables extractions.
Under the assumptions of the theory of SDR (Sufficient dimension reduction), the researchers worked
on proposing methods to reduce the dimensions, including the integration of SDR methods with
regularization methods (Regularization method) and the methods of regulation mean adding a penalty
limit to control the complexity of the model as it greatly reduces the variance of the model, and among
these methods SMAVE-AdEN (Alkenani and Rahman,2020) is a method for selecting a variable under
the assumptions of SDR theory.

The SMAVE-AJEN method is a combination of Adaptive elastic net with MAVE ( Minimum average
variance estimator ) method for estimating minimum average variance. This method is effective when
the variables are highly correlated under SDR assumptions. But the SMAVE-AJEN method is not
immune and it is a sensitive method that is affected when there are outliers in the data, owing to the least
squares criteria that we employ. In this paper, we proposed a robust method (RSMAVE-AdEN), which
can estimate parameters and select variables simultaneously, and is not affected by the presence of
outliers in explanatory variables and response variables. The effectiveness of the proposed method was

verified by a simulation study.
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1.Introduction

The study of regression when there are a large number of variables and a large sample size is a
difficult and complex process, as it increases the complexity of the regression model, which prompted
researchers to use the variable selection process because some explanatory variables are not essential in
their impact on the variable. The dependent variable, or its effect is similar to the effects of other
variables, and many of these variables have an internal connection with each other, which leads to the
emergence of the problem of multicollinearity, and thus its effect is not significant, which calls for the
exclusion of non-significant variables and the selection of significant variables To increase the accuracy

of the model prediction.

This problem led the researchers to work on reducing the high dimensions of the data, as Cook proposed
in (1998) the (Sufficient dimension reduction) method, this method is of high importance as one of the
effective tools to address the issue of high-dimensional data analysis. Several dimension reduction SDR
methods have been presented, one of which is the MAVE method (Xia et al., 2002). However, the
results are linear combinations of all variables. Therefore, these methods suffer from the difficulty of
interpreting the resulting estimates. Many methods have been proposed to combine SDR methods with
regularization methods. These methods are able to deal with high-dimensional data, which are based on
the principle of minimizing the sum of squares of error by adding a certain restriction to the parameters

and reducing some coefficients and set others equal to zero,

It gives a sparse model that includes the least possible number of variables and is interpretable. For
example, the researchers Alkenani and Rahman (2020) suggested the SMAVE-EN method, where the
researchers combined the MAVE (Minimum Average Variance Estimator) method proposed by the
researcher Xia and others in general. (2002) with the flexible EN network proposed by Zou and Hastie
in (2005), and this method is characterized by the ability to deal with variables that are in highly

correlated groups.

The researchers Alkenani and Rahman (2020) suggested the SMAVE-AJEN method, where the
researchers combined the MAVE method (Minimum Average Variance Estimator) proposed by the
researcher Xia et al. (2002) with the Adaptive Elastic Net (Adaptive Elastic Net) proposed by the
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researchers Zou and Helen (2009) to produce the SMAVE-AdJEN method, and this method is
characterized by giving accurate estimates when the variables are highly correlated. Moreover, the
selection of the variable and the estimation of the parameters are done at the same time. Despite these
good advantages of this method, it loses its efficiency if there are abnormal values in its data, and this is
the problem.In this paper, we proposed a robust method (RSMAVE-AJEN), which can estimate
parameters and select variables simultaneously, and is not affected by the presence of outliers in
explanatory variables and response variables and this is the goal of the research. The effectiveness of the

proposed method was verified by a simulation study.

2. Several dimension reduction (SDR)

A response variable's regression-type model ye R* on a Px1 predictor vector X and the error term e,
Suppose the following model:
y = f(xuXe, Xp) +€ 1 1)
where f (X1,Xo,...,Xp) =E(Y/X), E(e/x)=0.
The aim of SDR for the mean function is to select a subset S of the predictor space
where y[1 E(y/X)/psX , (2)
Thus, ] denotes independence, p(.)is an operator that performs projections.

Mean DRS are subspaces that satisfy condition (2) (Cook and Li ,2002).

If d=dim(s) ,6 = (64,6,,..,0,)is a basis for S. The linear combinations can be used in place of the
predictor X.

0Tx,0Ix,..,07x = f(61). (3)

The intersection of all subspaces (2) is referred to as the intersection. that is called the d< p without loss
of information on E(y/x) that is ,

f (X1,X2,...,xp) called the central mean subspace SE(y|x) (Cook and Li 2002). Many methods for
estimation SE(y/x) have been proposed, with MAVE(Xia et al.,2002) being one of the most well-known.
Methods used by them.

2.1 Minimum average variance estimator (MAVE )

In(2002) It has been suggested before Xia et al. the MAVE method and it means the least variance
rate estimation method. This method is used on a wide range of regression models, and it is one of the
SDR method to reduce dimensions, and this method has advantages, the most important of which is
flexibility, its ability to combine with other methods, and its ability to choose variables. The estimation
of the parameters simultaneously, as well as the availability of its algorithms and the ease of
implementation, but the disadvantages of this method are that it does not give a single solution, but
rather includes all the linear structures of all the original variables:

SO BTB = Id y
The provided conditional variance 87 x is
05 (0"X)=E[{y-E(v/ 6 " X)}| 6 'x] (4)
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So,

min, E[y- E(y| 6 'x) ]* = min E { 03 (6™ x)}, (5)

For any given Xo, o4(67 x) can be approximated using local Linear smoothing as
Uez(eTxo) ~ Z?=1{3’i — E(y:/0"x;)Ywio }

~ Yialyi- (aos by 67 (Xi-X; )} wy | (6)
where , ag+b? 8T (xi-Xo)is the local linear expansion of E(yi/67 x; )

at Xo and wjp= 0 are the kernel weights centered at 87 x, with
Y1 wio=1 And you know like this

wy =k {87 (X — X))}/ S ke 0T (Xi - X)) )
Mine:9T9=1d(27=1 2?:1[% - {aj + bjTeT(xi - xj)}]]z Wij, (8)

2.2 Sparse minimum average variance estimator(SMAVE)

Although the MAVE method is an effective dimensionality reduction method, its outputs are still
linear combinations of all variables, so it suffers from the difficulty of interpretation as other DR
(dimensionality reduction) methods do. Therefore, several methods were proposed to combine V.S
methods and SDR methods in one step. In 2008, researchers Wang and Yin proposed a (SMAVE)
method that combines the Lasso method with the MAVE method. SMAVE has advantages over Lasso in
that it extends multidimensional and nonlinear settings without assuming any particular form. SMAVE
is defined by the following equation:

min(X7o, X [vi-{a; + b7 07 (o = x) 12 Wi+ A Xhes 1 Omie| 9)

2.3 SMAVE-EN

The researchers Alkenani and Aljobori (2021) presented a study on the sensitivity of the SMAVE-EN
method to outliers and proposed a robust enhancement to SMAVE-EN that can estimate trends in the
mean regression function and identify covariates simultaneously, while it is impervious to the presence
of possible outliers in each of dependent and independent variables. It is defined by the following
equation: (10):

P Ty — (@b 07 (i = x)3PW « 241613+ 22116 1 (10)

2.4 SMAVE-AdJEN

In the year (2020) the researchers (Alkenani and Rahman) proposed a new method (SMAVE-
AdEN), the SDR method is integrated, Resulting from a combination of MAVE (Xia, 2002) with with
the Adaptive Elastic Net method (Zou and Zhang, 2009), which is to combine the ridge regression
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method with the Lasso penalty function method to get an accurate scattered estimate. The SMAVE-
AdEN method is defined by the following equation:

T Xty — (@+b] 07 (o — X)W 4|6 13+ Wi Ao |6 Il (12)

3. Robust Estimation

The most used methods for estimating the parameters of the statistical model are the maximum
possibility (ML) Maximum liklihooh, the least squares (OLS) Ordinary Least Sequared and moments
(M.OM) and others. In recent years, we have dealt with the case of anomalies in the data. In other
words, when there are anomalies in the data, how are they dealt with? The answer is dealt with through
robust estimation methods or robust estimation methods, where robust capabilities with high
efficiency are obtained compared to the usual methods in the event that there are abnormal values in the
data. It is also assumed that the robust method’s capabilities are very close to the capabilities of the
ordinary method when No outliers.

3.1 Robust SMAVE

The least squares criteria used by the SMAVE method make it sensitive to outliers In their 2006
investigation of the susceptibility of MAVE to outliers, researchers Cizek and Hardle proposed a
significant improvement over SMAVE by the following equation Definition of the RMAVE method :

Y X, Bly; — {a; + b 0T(X; — X)Hwy; (12)

Researchers Wang and Yao (2013) suggested the R SMAVE method and added a penalty term to
equation 12), so that equation (13) is as follows:

T 2ty By — {aj + b] 07 (X; = X)Ywij + Xfeca A 16k (13)

Alkenani (2021) proposed the (RSSIR) method to select a immune variable in the SIR method, using
Tukeys Biweight, Criterion for Bioweight and Ball Covariance.

3.2 Robust SMAVE-EN

The researchers Alkenani and Aljobori (2021) presented a study on the sensitivity of the SMAVE-
EN method to outliers and proposed a robust reinforcement for RSMAVE -EN, which can estimate
trends in the mean regression function and identify covariates simultaneously, while it is immune to the
presence of possible outliers in each of the dependent and independent variables. It is important to know
this method by equation:

o1 D=1 Bly; — {a; + bjTHT(xi - xj)}] Wi+ A4 10 15+ 22 11011, (14)

3.3 Robust SMAVE-AdJEN
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Although the SMAVE-AdEN method proposed by researchers (Alkenani and Rahman) in
(2020) has good advantages for selecting variables and estimating parameters, easy to implement,
and has good prediction accuracy compared to the current methods, it is not vulnerable to outliers,
and we suggested a robust enhancement for SMAVE- AdEN by replacing the local least squares with an
estimate of -L or -M. The RSMAVE-AdEN immune method can be defined by (15) as follows:

i 2i=1 By —{q; + bl 07 (x; — x;)b/ 6T (x; — x;)wy; + A N6 15+wWi A, 10111, (15)

We utilize @ (.) as a Tukey's biweight function to get an estimate in both x and y. As a result, the loss
function is robust and resistant to outliers in both x and y when it has a redescending derivative
[Rousseeuw and Yohai (1984)].This is a characteristic of Tukey's biweight's loss
function[Tukey(1960)]. As a result, the proposed RSMAVE-AdEN is not sensitive to x and y outliers.
By substituting Tukey's biweight function for the least squares loss function used in the minimizing in
(8), the minimizing in (11) is a robust version of the minimizing in (8). And Tukey’s function can be
expressed in equation (16) as follows:

CZ
O{1-1-&p
= if lul > c
RSMAVE-AJEN estimates can be obtained according to the following algorithm:

Pc(u)= , if lul<c , (16)

1-Let m=1,e=6y, any arbitrary Px1 vector
2-To know e,get(aj,b;),where j=1,.,...,n,from

Mingjoi-1.....n(X o1 2ieq yi — {@j + b] 07 (X; — X))} 1wy, (17)
3-For a given(d;,b; ),j=1,2,......,n,50lve @mrsmAvE —aden from

mln 00T 9:|m(25'l=1 Z?=1 P[yl - {d} + BJT (él’ éz, TR ém—l,' ém,)T

(i =2 )3wij + A0 lI53+wWid, 16,11

4-Substitute the mth colom of e by 8 mrsmave _aden @and use 2 and 3 unit convergence.

5- Upgrade o by(8, rsmave -aden: O2rsmave -adens+ -+ Omrsmave -adens 00)
And group m to be m+1.

6-In case m<d,keep on with 2 to 5 until m=d.

The kernel weights defined by the following equation:

Wii= kn{87 (xi ;) }kn{ 87 (xi -} )} (18)

4. Simulation Study

This section’s goal is to evaluate our suggested RSMAVE-AJEN method's finite sample performance
using simulation tests. We evaluate the SMAVE-AJEN (Alkenani and Rahman,2020)and the
recommended approach (RSMAVE-AJEN), RSMAVE-EN Alkenani and Aljobori (2021). We compare
the results to show how well the RSMAVE-AdEN method performs in terms of prediction accuracy and
variable selection. The researcher wrote a code in R language to calculate the proposed method,The
reported simulation results were based on 200 iterations of the data.
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1. Normal (0, 1), the standard normal.
2. t3 W3, t- distribution with( 3) degree of freedom.
3- (1-a) N(0,1)+ a N(0,10%).

4- (1-a) N(0,1)+ a U(-50,50)

With regard to the distributions in cases 4 and 3, (1-a)% of the data comes from the standard normal
distribution and a% from other distributions.(Wang &Ya0,2013)
Example: First example: y = 1+2(87 x+ 3) xlog(3|67x| + 1) + ¢, Let d = 1,n=100,200, p = 40.
Consider 6 = (0,...,0,2,...,2,0,...,0, 2,...,2,)",
10 10 10 10

Example: Second example: y = 1+2(87 x+ 3) xlog(3|67x| + 1) + ¢, Let d = 1,n=100,200, p = 40.

Consider 8 =, 3,...,3,0,...,0)",
15 25

corr(i,j) = 0.5 for all I and j.where, for every I and j, corr (i, j) = 0.5.

Xi=z1+e i=1,...,5, Xi=2Zy+¢1=6,...,10,

Xj=z3+e i=11,...,15, X, i=16,...,40.

When, I = 1, ...., 15. In this model, there are three groups and five predictors in each group.
Additionally, we set the coefficients of 25 predictors.

Table 1: Results of the first example, when( Sample volume ) n =100, p = 40 and contamination percentage is 5% for two distributions. 3 and 4.

Distribution Method Ave.0’s MSE |Corr (87x,07 X) |

1 RSMAVE-AJEN 14 0.073717 0.957768
RSMAVE-EN 14 0.074843 0.956479
SMAVE-AJEN 13 0.065121 0.969947

2 RSMAVE-AJEN 15 0.098880 0.975045
RSMAVE-EN 14 0.231806 0.952287
SMAVE-AJEN 11 0.382312 0.867518

5 RSMAVE-AJEN 15 1.954264 0.783236
RSMAVE-EN 14 1.545765 0.786991
SMAVE-AJEN 11 2.275063 0.683299

4 RSMAVE-AJEN 15 0.656871 0.972751
RSMAVE-EN 15 0.862388 0.791489
SMAVE-AJEN 13 2.888324 0.653346
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Table 2: Results of the first example, when ( Sample volume ) n = 100, p = 40 and contamination percentage is 10% for two

distributions. 3 and 4..

Figure (1) at n= 100 and a pollution rate of 5%

Distribution | Method Ave.0’s MSE |Corr (67x,087 x) |

1 RSMAVE-AdJEN 16 0.103626 0.957768
RSMAVE-EN 15 0.103893 0.956479
SMAVE-AJEN 12 0.101244 0.966947

2 RSMAVE-AdJEN 17 0.188978 0.925891
RSMAVE-EN 15 0.287284 0.894435
SMAVE-AJEN 11 0.474869 0.817289

3 RSMAVE-AdJEN 16 2.236655 0.674032
RSMAVE-EN 15 2.667088 0.542085
SMAVE-AJEN 11 4.825417 0.400728

4 RSMAVE-AdJEN 17 0.827871 0.961538
RSMAVE-EN 15 1.437581 0.940663
SMAVE-AJEN 12 3.993977 0.850105
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Figure (2) at n= 100 and a pollution rate of 10%

Table 3:

Results of the first example, when( Sample volume )n = 200, p = 40 and contamination percentage is 5% for two distributions. 3
and 4.

Distribution Method Ave.0’s MSE [Corr (87x,87 X) |
1 RSMAVE-AdJEN 17 0.030207 0.989215
RSMAVE-EN 15 0.031847 0.977498
SMAVE-AdJEN 11 0.026728 0.994402
2 RSMAVE-AJEN 16 0.042231 0.983752
RSMAVE-EN 14 0.156892 0.975321
SMAVE-AdJEN 11 0.228871 0.927181
3 RSMAVE-AdJEN 17 0.307871 0.949726
RSMAVE-EN 15 0.664467 0.925868
SMAVE-AdEN 11 0.953373 0.923392
4 RSMAVE-AJEN 17 0.048539 0.973941
RSMAVE-EN 15 0.193108 0.963446
- SMAVE-AJEN 11 0.500422 0.952597

0.!

0.1
0.!
0.

Figure (3) at n= 200 and a pollution rate of 5%
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Table 4: Results of the first example, when ( Sample volume ) n = 200, p = 40 and contamination percentage is 10% for two distributions 3

and 4.
Distribution | Method Ave.0’s MSE |Corr (87 x,07 x) |
1 RSMAVE-AdJEN 15 0.040297 0.972215
RSMAVE-EN 15 0.051849 0.977498
SMAVE-AdEN 14 0.036728 0.978402
2 RSMAVE-AdJEN 16 0.049932 0.983752
RSMAVE-EN 16 0.159899 0.975321
SMAVE-AJEN 11 0.524359 0.927181
3 RSMAVE-AdEN 16 0.407872 0.949726
RSMAVE-EN 15 0.699467 0.925868
SMAVE-AdEN 11 0.954373 0.923392
4 RSMAVE-AdEN 16 0.098588 0.973941
RSMAVE-EN 15 0.199984 0.963446
SMAVE-AdEN 12 0.587731 0.952597
1
0.8
0.6
0.4
0.2 m MSE
0 T T T T T T T T T T T T T
gf <<§8$8<§ “’éS"%é"% “’%S"%S& f"ét;&
KR R RO
?‘ @V‘ v‘(x V% @?‘ @% §% @?‘ ?*% @% @?‘ @‘o
@ N @ NN\ N @ N
S S S S S

Figure (4) at n= 200 and a pollution rate of 10%

Table5: Results of the second example, when ( Sample volume ) n =100, p = 40 and contamination percentage is 5% for two distributions. 3 and 4.

Distributio | Method Ave.0’s MSE |Corr (87,87 x) |

n

1 RSMAVE-AdJEN 22 0.204056 0.944004
RSMAVE-EN 21 0.210365 0.937518
SMAVE-AJEN 18 0.201173 0.950409

2 RSMAVE-AdJEN 22 0.145295 0.956032
RSMAVE-EN 22 0.207786 0.955059
SMAVE-AJEN 18 0.165431 0.887389

3 RSMAVE-AJEN 22 1.445401 0.703849
RSMAVE-EN 21 1.820911 0.735499
SMAVE-AJEN 19 1.942613 0.713441

4 RSMAVE-AJEN 20 2.020744 0.849991
RSMAVE-EN 20 2.276505 0.791489
SMAVE-AJEN 15 2.883258 0.853346
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Figure (5) at n= 100 and a pollution rate of 5%

Table 6: Results of the second example, when( Sample volume ) n =100, p = 40 and contamination percentage is 10% for two distributions. 3 and 4.

Distribution | Method Ave.0’s MSE |Corr (67x,87 x) |
1 RSMAVE-AdJEN 23 0.248207 0.944208
RSMAVE-EN 22 0.275993 0,949595
SMAVE-AJEN 21 0.241677 0.950898
2 RSMAVE-AdJEN 22 0.217998 0.935793
RSMAVE-EN 21 0.259298 0.899450
SMAVE-AJEN 19 0.292874 0.785773
3 RSMAVE-AdJEN 22 1.007161 0.369866
RSMAVE-EN 22 1.50184 0.260525
SMAVE-AJEN 18 1.87707 0.418881
4 RSMAVE-AdJEN 22 0.959013 0.894399
RSMAVE-EN 22 1.266276 0.889945
SMAVE-AJEN 18 1.443551 0.872766
MSE
2 -
1.8 -
16 -
1.4 -
1.2
1 -
08 m MSE
0.6
0.4 -
0.2
0 — = = = = = = =
«v‘@ 4‘05& vg& }rgﬁ \\‘3& ,v§ ,\>§ ‘v&é }>§ ,v§ 4‘05& ,v§
SIS IO
S T &g TS S TS S S

Figure (6) at n= 100 and a pollution rate of 10%

171



Table 7: Results of the second example, when ( Sample volume ) n = 200, p = 40 and contamination percentage is 5% for two distributions. 3 and 4.

Distribution | Method Ave.0’s MSE |Corr (67x,87 x) |
1 RSMAVE-AJEN 22 0.365259 0.915231
RSMAVE-EN 22 0.367096 0.911084
SMAVE-AJEN 18 0.327409 0.927016
2 RSMAVE-AJEN 22 0.362877 0.935677
RSMAVE-EN 22 0.391598 0.925903
SMAVE-AdEN 14 1.030230 0.847927
3 RSMAVE-AJEN 22 3.08434 0.456506
RSMAVE-EN 22 3.30445 0.554282
SMAVE-AdEN 19 3.72319 0.583353
4 RSMAVE-AJEN 23 4.577491 0.769963
RSMAVE-EN 22 5.428073 0.769431
SMAVE-AdEN 19 6.175188 0.814019
MSE
9 -
8
7
6
5
4
3 | = MSE
2
14
0 . . — . . . . . . .
%,vés 4‘3& ,v§ ,§ \\‘Js ,vt@ ,vgﬁ ‘J? >>§ ,§ &6 ,\>§
FEF W F W §
Qb@ ¥ Q£$ ¥ 5 qb*\ < N Q&@ €

Figure (7) at n= 200 and a pollution rate of 5%

Table 8: Results of the second example, when( Sample volume ) n = 200, p = 40 and contamination percentage is 10% for two distributions. 3 and 4.

Distribution | method Ave.0’s MSE |Corr (87x,07 x) |
1 RSMAVE-AJEN 20 0.268495 0.942695
RSMAVE-EN 21 0.280064 0.940263
SMAVE-AJEN 20 0.222348 0.950288
2 RSMAVE-AJEN 20 0.078353 0.971359
RSMAVE-EN 20 0.356162 0.961048
SMAVE-AJEN 14 1.280471 0.886569
3 RSMAVE-AJEN 21 1.628861 0.628161
RSMAVE-EN 21 1.928952 0.377362
SMAVE-AJEN 14 2.95167 0.624616
4 RSMAVE-AJEN 20 2.510605 0.895776
RSMAVE-EN 20 3.558851 0.615418
SMAVE-AJEN 15 8.544191 0.685529
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Figure (8) at n= 200 and a pollution rate of 10%
By comparing the results of the tables between the three methods used above, we note the following:

1- The proposed method R SMAVE-AJEN is the best and for all contamination cases (5%, 10%) and for
the sample size (100,200), as it gave the lowest value for MSE, followed by the RSMAVE-EN method,
as it gave the highest value for MSE. It also gave the highest correlation compared to (RSMAVE-EN)
and (SMAVE-AJEN) method.

2-We note from the results of the tables that the MSE value increases with the increase in the pollution
value.

6. Conclusion

Here are the most important conclusions:

1- The proposed method RSMAVE-AdEN in this research is a robust method for selecting variables and
reducing dimensions at one time.

2- This method is efficient when the variables are highly correlated within the SDR numbers.

3- The proposed method has a good and consistent performance and gave the lowest value for MSE by
comparing the three methods and is not affected by the presence of abnormal values for all
contamination cases (5%, 10%) and for the sample size (100,200), but the higher the contamination
percentage MSE value rose.

4- The proposed method works with high dimensions within the framework of SDR.

Abbreviations

SDR  : Sufficient dimension reduction

AdEN : Adaptive elastic net

DR  : Dimension reduction

EN  : Elastic net

Lasso : Least absolute shrinkage and selection operator

MAVE : Minimum average variance estimator

MSE : Mean squared error

OLS : Ordinary least squared

OP’s  : Oracle properties

V.S  :Variable selection
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SMAVE: Sparse minimum average variance estimator
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