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 المستخلص:-
 

يخُأل ْذا انبحث دراست يسأنت انسيطزة الايثهيت انخقهيذيت  ينٍ اننًُظ انًسنخًز نُ ناو ينٍ انًعنادلاث انخفاضنهيت انجز ينت           

نًعنادلاث وبزْناٌ ٔجنٕد ٔٔاذاَينت انحنم شبّ انخطيت ينٍ انُنٕا انًكنافيء وٕجنٕد قينذ انخسنأ  ٔقينذ ان يسنأاث م أٔلا  قًُنا 

ثننى نسننيطزاث حقهيذيننت يخخهفننت واسننخخذاو طزيقننت كننانيزكٍ  نخقزينن  انحهننٕل  حفاضننهيت جز يننت شننبّ خطيننت  نسننيطزة حقهيذيننت ثاوخننت

انٕجٕد نسيطزة أيثهيت حقهيذيت ححج قيذ انخسنأ  ٔقينذ ان يسنأاثم اخينزا  قًُنا وبزْناٌ َ زيت  وبزْاٌانًضبٕطت م ثاَيا  قًُا 

 سيطزة ايثهيت حقهيذيت ححج انقيذيٍ اع ِمانشٕط انضزٔريت نٕجٕد 

Abstract 
 

 We deal with in this work the continuous classical optimal control problem of a 

semilinear parabolic equation with equality and inequality constrains.  First we prove for fixed 

classical control the existence and uniqueness for the solution of parabolic equation using the 

Galerkin method to approximate the exact solution and then for different classical controls. 

Second we prove the existence theory of a classical optimal control with equality and inequality 

constraints. 

Finally we prove the necessary conditions for existence of a classical optimal control with the 

above constraints.   

 

Introduction 
During the last decades, many researchers interested to study relaxd optimal control problems 

for systems governed by differential equations as in [1], [4], [5], [6], [7] and many others. And since 

many applications in different fields of natural sciences lead to mathematical modules represent a 

classical optimal control governed by semilinear partial differential equations (heat equation)[2], so 

we interested in this work to study such optimal control problem with equality and inequality 

constraints. First, and for fixed classical control under some assumptions the existence and 

uniqueness of a solution (corresponding state) of a semilinear partial differential equations is proved 

by using the Galerkin method to approximate exact solution of this equation. With suitable 

assumptions, we state and prove the existence theorem for a classical optimal control with equality 

and inequality constrains, during this proof we show that for a convergence sequence of classical 

optimal control to a classical optimal control the corresponding sequence of states satisfying the 

states equations converges to a state satisfies the state equation. Finally we state and prove the 

necessary conditions for a classical optimal control problem under suitable assumptions. 
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0. Basic concepts:- 

Definition 0.1[10] :- Let 1dQ  R , a function ( , , , ) :f x t y u Q     is said to be of 

Caratheodory type if it is continuous w.r.t. y and u for fixed ( , )x t Q , and measurable w.r.t  

( , )x t  for fixed ( , )y u . 

Theorem 0.1(Alaoglu)[3]:- Let V be a Hilbert space , and { }kv be a bounded sequence of V  , then 

there exists a subsequence of  { }kv  which converges weakly to some v V . 

 

Lemma 0.1 [2]:-  The Continuous Bellman-Gronwall (B-G) inequality:- 

Let [ , ]I a b , z , y and : I  are non-negative, [ ]z C I and it is increasing on I ,   is 

integrable on I ,  [ ]y C I , if ( ) ( ) ( ) ( )
t

a
y t z t y d      , t I  , then  

( )( ) ( ) ty t z t e , t I  , where ( ) ( )
t

a
t d     , ( ) ( )t t   , ( ) 0a  . 

 

Lemma 0.2[2]:- Let f ,and : n m

xf D   , are of the Caratheodory type, let 

: ( , )p n mF L D   be a functional such that ( ) ( , ( ))
D

F x f v x v dv  , where dD  is 

measurable set, and ( , ( )) ( ) ( )xf v x v v v x   , ( , ) mv x D    

Where 2( ) ( , )v L D   , 2( ) ( , )v L D  , then the Fréchet Derivative of F exists for each 
2 ( , )nx L D , and is given by :- ( ) ( , ( )) ( )x

D
x h f v x v h v dx   . 

Theorem 0.2 (Egorov's theorem)[10]:- Let dD  be a measurable subset , : D  , and 

1( , )L D , if ( ) 0
S

v dv  (or 0 or 0 ), for each measurable subset S D , then ( ) 0v  (or 

0 or 0 ) almost every where in D .  

 

 

1. Description of the problem: -  Let  (0, )I T , T   , d R  be an open and bounded region 

with Lipschitz boundary   , Q I  , I   . We consider the following semilinear 

parabolic equations (in continuous form):  

( ) ( , , , )ty A t y f x t y u   in Q                                                                        (1) 

( , ) 0y x t   on  ,                                                                                           (2) 
0( ,0) ( )y x y x  in  ,                                                                                    (3) 

where uy y  is the state, u  is the classical control, and ( )A t  is the 2
nd

 order elliptic differential 

operator, i.e. 

            
, 1

( ) ( , )
d

ij

i j i j

y
A t y a x t

x x

  
   

   
  

The control constraints (The controls set) are 

u W , 2 ( )W L Q  

where W  is defined by one of the following forms: - 

            
2{ ( ) ( , ) ,UW W w L Q w x t U     a.e. in Q }, with U R  

  

the cost functional is 

0 0( ) ( , , , )
Q

G u g x t y u dxdt  ,                                                                            
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the constraints on the state and the control variables are 

1 1( ) ( , , , ) 0
Q

G u g x t y u dxdt  ,                                                                       

2 2( ) ( , , , ) 0
Q

G u g x t y u dxdt  ,                                                                      

The set of admissible controls is 

            1 2{ ( ) 0, ( ) 0}AW u W G u G u    . 

 

The Continuous Classical Optimal Control Problem (CCOCP) is to minimize the cost 

functional subject to the above constraints, i.e., to find   u  such that 

         Au W    and   0 0( ) ( )
Aw W

G u MinG w


 ,                                                                  

 We denote by . the Euclidean norm in n , by .


the norm in ( )L  , by (.,.)  and  

0
. the inner product and norm in 2 ( )L  , by 1(.,.)  and  

1
. the inner product and norm in Sobolev 

space 1

0( )V H  , by .,.   the duality between V and its dual 
*V , and finally by .

Q
the norm in 

2 ( )L Q . 

 

2. The Solution of the State Equation:- in order to find the classical solution of problem (1-3), 

first we shall interpret these equations in the following weak form 

   , , , ( , , , ),ty v a t y v f x t y u v    ,  v V  , a.e. on I ,                            (4) 

(., )y t V , a.e. on I ,  0(0)y y ,                                                                   (5) 

where  
, 1

( , , ) ( , )
d

ij

i j j i

y v
a t y v a x t dx

x x


 


 
 , and 0 2 ( )y L  . 

We suppose the operator ( )A t  satisfies the elliptic conditions  

1( , )ija x t  , ( , )x t Q   & 2

2

, 1 1

( , )
d d

ij j i i

i j i

a x t v v v
 

  , 
dvR  

which imply that ( , , )a t v w  is symmetric and for some 1 , 2  , for each ,v w V , and t I , we 

obtain  1 1 1
( , , )a t v w v w , and  

2

2 1
( , , )a t v v v . 

We suppose also that f  is of Caratheοdory type on ( )Q R R  ( e.g. continuous), it satisfies the 

following sublinearity condition w.r.t. y  & u , and Lipschitz w.r.t. y  , i.e. 

1 1( , , , ) ( , )f x t y u x t c y c u    ,  

where ( , )x t Q , ,y uR , and 
2 ( , )L Q   (Growth condition) 

1 2 1 2( , , , ) ( , , , )f x t y u f x t y u L y y   , where ( , )x t Q , 1 2, ,y y uR . 

Theorem 2.1: For each control 
2 ( )u L Q , the state equations (4-5) has a unique solution uy y , 

such that 
2 ( , )y L I V , 2 *( , )ty L I V  

It can be proved also that ( ) ( )y t y t a.e. on I , where  2( , ( ))y C I L  . 

 

Proof:- Let for each n , nV  be the set of continuous and piecewise affine functions in  . Let 

 
1n n

V



 be a sequence of subspaces of V , such that v V  , there exists a sequence  nv , with 

,n nv V n  , and 
S

n V
v v  2 ( )

S

n L
v v


 . 

Let  , 1,2,..., ( )iv i M n  be a finite basis of nV , and we use the Galerkin method [8] to approximate 

the exact solution of y ,  to the approximation solution ny , such that 
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1

( , ) ( ) ( )
n

n n i i

i

y y t x c t v x


  ,                                                                             

where ( )ic t  is unknown function of t , 1, 2,...,i n  . 

 

We approximate the weak form of the state equation (4-5) w.r.t. x , using the Galerkin’s method, 

i.e. for 1,2,...,i n , we have 
2, ( , , ) ( ( , ), ) , , ( , ), a.e in

tn i n i n i i n n ny v a t y v f y u v v V y L I V I       ,     (6) 

0

0( , ) ( , )n i iy v y v , i nv V  ,                                                                             (7) 

where 0 0 2( ) ( ,0) ( )n n n ny y x y x V V L       is the projection of 2

0 ( )y L   onto nV  w.r.t. the 

norm 
0

. , i.e. 2

0

0( )

S

n L
y y


  

 

Substituting the approximate solution ny  in equations (6&7), then these equations reduce to the 

following nonlinear system of ordinary differential equations with its initial condition, i.e. 

 ( ) ( ) ( ( ) ( ))TAC t DC t b V x C t   ,                                                                   (8) 

 0(0)AC b ,                                                                                                    (9) 

where ( ) , ( , )ij n n ij j iA a a v v  , ( ) , ( , , )ij n n ij j iD d d a t v v  ,  
1( ) ( ( ))j nC t c t  , 

1( ) ( ( ))j nC t c t 
  , 

1(0) ( (0))j nC c  ,
1( )i nV v  , 1( )i nb b  , ( ( ( ), ), )T

i ib f V C t u v , and 0 0( )ib b , 0

0( , )i ib y v . 

 

This system has a unique solution w.r.t. 
jc , with 

jc  continuous on I [8]. in particular  problem (6-

7) has a unique solution ny . 

So we got that for each n , with nV V , problem (6-7) has a unique solution ny , hence 

corresponding to the sequence  
1n n

V



, we have the following  sequence of approximation problems 

, for 1,2,...n  , i.e. 
2, ( , , ) ( ( , ), ) , ( , ), a.e in

tn n n n n n n ny v a t y v f y u v y L I V I     ,                 (10) 

0 0( , ) ( , )n n ny v y v , ,n nv V n   ,                                                                (11) 

which has a sequence of solutions  
1n n

y



. 

Replacing iv  in (6) by ny  and then taking the integral from 0  to T , i.e. 

0 0 0
, ( , , ) ( ( , , , ), ) ( ( , ), )

t

T T T T

n n n n n n n n
o

y y a t y y dt f x t y u y dt f y u y dt        ,       (12)   

 

Since 
2 * 2( , ) ( , )

tny L I V L I V  , & 2( , )ny L I V  in the 1
st
 term of the left hand side (L.H.S.) of  

(12), hence for this term we can use Lemma1.2 in the ref. [9] and since that the 2
nd

 term is positive, 

taking [0, ]T t T  , for the upper bound of the integral in (12), we get  

            
2

00 0 0

1
( ) ( ( , ), ) ( , )

2

t t t

n n n n n

d
y t dt f y u y dt f y u y dxdt

dt


      

using the assumptions on the function f  in the R.H.S. (right hand side), we have 

2 2

1 20 00
( ) ( )

t

n ny t c c y t dt   , where 1 2,c c  denote to the various constants. 

By using the Continuous Bellman-Gronwall’s inequality, we get  

             
2

0
( ) ( ) , 0,ny t b c t T      2( , ( ))

( ) ( )n L I L
y t b c 

   1( ) ( )n Q
y t b c   
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Again by using Lemma1.2 (in the ref. [9]) for the 1
st
 term in L.H.S. of (12), from the assumptions 

on ( ,.,.)a t  for the 2
nd

 term in the same side, using the assumptions on the function f  in its R.H.S., 

with t T , and the above result we get 

            
22 2 2 2 20

2 1 20 10 0
( ) 2

T

n n n nQ Q Q
y t y y dt c u c y        

       2

2 2

2( , )
( )n L I V

y b c   

       2 2( , )
( ) ( )n L I V

y b c b c   , where ( )b c denote for various constant. 

 

From the above last steps we got that 2 ( )
( )n L Q

y b c , and 2 ( , )
( )n L I V

y b c , then by Alaoglu’s 

theorem[3], there exists a subsequence of  n n
y

N
, say again  n n

y
N

, such that 
*

2 ( )

W W

n L Q
y y , and 

*

2 ( , )

W W

n L I V
y y . 

Our aim now, is to prove that the sequence  
1n n

y



 of the solutions of the problem (10-11) 

converges to the solution of the problem (4-5), by using Galerkin method, and then applying the 

compactness theorem involving partial fraction [9], to get that 2 ( )

S

n L Q
y y [see 2], and it remains 

that to passing the limit in the state equations (10-11), to get that y  satisfies equations (4-5). To do 

this, again consider the weak state equations (10-11), and take any arbitrary v V , then there exists 

a sequence  nv , with ,n nv V n  , such that 
S

n V
v v , which gives 2 ( )

S

n L
v v


 . 

 Let  1( ) 0,t C T  , such that ( ) 0T  . Now by multiplying both sides of (10) by ( )t , taking the 

integral from 0 to T , rewriting the 1
st
 term in the L.H.S. of the obtained equation in another manner 

and then using integration by parts for this term  we get that 

      
0 0 0

, ( ) , , ( ) ( , ), ( )
T T T

n n n n n ny v t dt a t y v t dt f y u v t dt        

                                                                                   0 , (0)n ny v                           (13) 

 

Since 2 ( )

S

n L
v v


 , then 2 ( )

S

n L Q
v v   , and since 2 ( )

W

n L Q
y y , then  

    
0 0

, ( ) , ( )
T T

n ny v t dt y v t dt    .                                                           (13a) 

 

Since 
S

n V
v v , then 2 ( , )

S

n L I V
v v  , and since 2 ( , )

W

n L I V
y y , then  

    
0 0

, , ( ) , , ( )
T T

n na t y v t dt a t y v t dt   .                                                  (13b) 

 

Also since 2

0

0( )

S

n L
y y


 , and 2 ( )

s

n L
v v


 , then  

 0

0( , ) (0) ( , ) (0)n ny v y v  .                                                                          (13c) 

 

From some of the above convergent and the assumption on f , we get   

    
0 0

( , ), ( ) ( , ), ( )
T T

n nf y u v t dt f y u v t dt   .                                           (13d) 

From (13a,b, c, &d), (13) becomes 

      
0 0 0

, ( ) , , ( ) ( , ), ( )
T T T

y v t dt a t y v t dt f y u v t dt         

                                                                                0 , (0)y v  .                            (14) 
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Case1: - Choose  0,D T  , i.e. (0) ( ) 0T   , so (14) becomes 

                 
0 0 0

, ( ) , , ( ) ( , ), ( )
T T T

y v t dt a t y v t dt f y u v t dt        

by using integration by parts for the 1
st
 term in the L.H.S. of the above eq., we have 

               
0 0 0

( , ) ( ) , , ( ) ( , ), ( )
T T Td

y v t dt a t y v t dt f y u v t dt
dt

        

    
0 0 0

, ( ) , , ( ) ( , ), ( )
T T T

ty v t dt a t y v t dt f y u v t dt                              (15) 

i.e. y  (the limit point) is a solution of state equation (4). 

 

Case2: - Choose  1 0,C T , such that ( ) 0 & (0) 0T   . 

Let we rewrite (15) in the following form 

               
0 0 0

( , ) ( ) , , ( ) ( , ), ( )
T T Td

y v t dt a t y v t dt f y u v t dt
dt

       

By using integration by parts for the 1
st
 term in L.H.S. of the above eq., we get 

      
0 0 0

, ( ) , , ( ) ( , ), ( )
T T T

y v t dt a t y v t dt f y u v t dt        

                                                                           (0), (0)y v                                (16) 

subtracting (14) from (16), we get that 

                 0 , (0) (0), (0) , (0) 0, 0,y v y v T       ,    0 , (0),y v y v   

i.e. the initial condition (5) holds.  

 

           We will prove here that ny y  strongly in 2 ( , )L I V . We begin by substituting nv y  in 

weak form (6), and taking the integral from 0 to T , and by using Lemma1.2 (in the ref. [9]) we get 

that  

               
2

00 0 0

1
, , ( , , ),

2

T T T

n n n n n

d
y dt a t y y dt f t y u y dt

dt
      

   
2 2

0 0 0 0

1 1
( ) (0) , , ( , , ),

2 2
   

T T

n n n n n ny T y a t y y dt f t y u y dt .               (16a) 

Since y  is solution of the weak form state eq. (4), then by substituting v y  in (16a), and also by 

the same above way, we get that  

   
2 2

0 0 0 0

1 1
( ) (0) , , ( , , ),

2 2
   

T T

y T y a t y y dt f t y u y dt                          (16b) 

Since   

2 2

0 0

1 1
( ) ( ) (0) (0)

2 2
n ny T y T y y      

                             
0

, , Eq(17 ) Eq(17 ) Eq(17c)
T

n na t y y y y dt a b                    (17)                               

where                                                                                    

(17a)  
2 2

0 0 0

1 1
( ) (0) , ,

2 2

T

n n n ny T y a t y y dt    , 

(17b)      
0

1 1
( ), ( ) (0), (0) , ,

2 2

T

n n ny T y T y y a t y y dt    , 

 (17c)      
0

1 1
( ), ( ) ( ) (0), (0) (0) , ,

2 2

T

n n ny T y T y T y y y a t y y y dt      . 

 

Now, by substituting (16a) in (17a), the last one is equal to  
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0

( , , , ),
T

n nf x t y u y dt   

From the assumptions on ( ,.,.)a t , and on f , and since 2 ( )

S

n L Q
y y ,  we get that  

   
0 0

( , , , ), ( , , , ),
T T

n nf x t y u y dt f x t y u y dt  .                                          (18a) 

 

By using the same way that we used in the beginning of the proof of this theorem to get that  

2

0 0

( )
(0) (0)


  S

n n L
y y y y ,                                                                    (18b) 

Also, by the same way we can get that 

2 ( )
( ) ( )S

n L
y T y T


 .                                                                                  (18c) 

From (18b, & c), and that 2 ( , )

W

n L I V
y y , we get that equation (17b) converges to the L.H.S. of 

(16b), and we get that  

   
from

2 2

0 0 0 0(16 )

1 1
( ) (0) , , ( , , ),

2 2

T T

b
y T y a t y y dt f t y u y dt                          (18d)   

Also, from (18b, & c), we get that  

     (0), (0) (0) 0 & ( ), ( ) ( ) 0   n ny y y y T y T y T                          (18e) 

and     
2 2

0 0
(0) (0) 0 & ( ) ( ) 0   n ny y y T y T                                            (18f) 

again since 2 ( , )

W

n L I V
y y  then 

 
0

, , 0
T

na t y y y dt  .                                                                              (18g) 

 

Now, when n  in both sides of (17), we get the following results: - 

(1) The first two terms in the L.H.S. of (17) are tending to zero (from (18f)). 

(2) Eq. (1.17a)    
from from

0 0(16a) (18a)
( , , , ), ( , , , ),

T T

n nf x t y u y dt f x t y u y dt   . 

(3) Eq. (1.17b) L.H.S. of (18d)  
from

0(16b)
( , , ),

T

f t y u y dt   

(4) The 1
st
 two terms in (17c) are tending to zero (from (18e), and the last one term also tends to 

zero (from (18g)). 

 

From these results, the both sides (17) become 

     where

0 0 0
, , ( , , , ), ( , , ), 0 0

T T T

n n n
a t y y y y dt f x t y u y dt f t y u y dt


         

 

From assumption on ( ,.,.)a t , we have that  

             
2 where

2 10 0
, , 0

T T

n n n n
y y dt a t y y y y dt


     

2 0 

  

            
2

10
0

T

ny y dt     2 ( , )

S

n L I V
y y   

 

To prove the uniqueness of the solution, let 1 2&y y  be two solutions of state equation (4), 

subtracting the 2
nd

 obtained equation from the 1
st
 obtained equation we get  

                 1 2 1 2 1 2( ) , , , ( , ) ( , ),ty y v a t y y v f y u f y u v        , v V  . 

 

Let we substitute 1 2v y y  , in the above equation, so we have 

               1 2 1 2 1 2 1 2 1 2 1 2( ) , , , ( , ) ( , ),ty y y y a t y y y y f y u f y u y y          . 



Journal of Kerbala University , Vol. 8 No.3 Scientific . 2010 
 

 64 

The 1
st
 term in the L.H.S. of the above equation will written in another way (using Lemma1.2 in ref. 

[9]), and using assumption on ( ,.,.)a t , for the 2
nd

 term, we get that 

             
2 2

1 2 2 1 2 1 1 1 20 1

1
( , ) ( , ),

2

d
y y y y f y u f y u y y

dt
                              (19) 

The L.H.S. of the above eq. is positive, taking the integral from 0 to t , for its both sides, then using 

the Lipschitiz condition, we get that 

            
2 2 2

1 2 1 2 1 20 00 0 0
2 2

t t td
y y dt L y y dxdt L y y dt

dt 
         

         
2 2

1 2 1 2 00 0
( ) 0 2

t

y y t L y y dt     

By Bellman-Gronwall’s inequality, we get 

             
2

1 2 0
( ) 0y y t  , t I                                                                            (19a)                                                                        

Now, integrating both sides of (19)  from 0t  , to t T , using the initial conditions and the 

property of norm (positive) for the 1
st
 term in L.H.S. of the obtained equation, and the Lipschitz 

property for the function in the R.H.S and then using (19a), we get  

           
2 0

2

1 2 10
0

T

y y dt
 

   2

2

1 2 ( , )
0

L I V
y y   1 2y y .                                         

  

3. Existence of an Optimal Control:-  In order to prove the existence of a classical optimal 

control, we suppose now in addition to the above assumptions the function lg  is of Caratheodory 

type on ( )Q R R  (e.g. continuous), and satisfies the following subquadratic condition w.r.t. 

&y u , i.e. for each 0,1, 2l  , we have 

            2 2

2 2 2( , , , ) ( , )l l l lg x t u y x t c y c u    , where, &y uR , with 1

2 ( )l L Q  .   
 

Lemma3.1: -  If the function f  is Lipschitz w.r.t. y , and u , then the operator 

uu y , from 2 ( )L Q  into 2( , ( ))L I L  , or 2 ( , )L I V , or 2 ( )L Q  is continuous. 

 

Proof: - Let u  and u u  are two given bounded controls on 2 ( )L Q , so by Theorem2.1 uy y  and 

u uy y y y      are the corresponding solutions and are satisfied the weak form (4-5), satisfying 

these solutions in (4-5) and then subtracting one of the other we get that 

   , , , ( , , , ) ( , , , ),ty v a t y v f x t y y u u f x t y u v                           (20) 

(0) 0y  .                                                                                                      (21) 

By substituting 2v y  in (20) using the same way that we used to get (19), we get also an equation 

like to (19) with y in position of ny , and taking the integral from 0 toT , one gets that 

 
2

00 0
( , , , ) ( , , , ), 2

T Td
y dt f x t y y u u f x t y u y dt

dt
         , 

by the assumptions on ( ,.,.)a t , and f is Lipschtitz w.r.t. &y u , and substituting  0,T t T  , in 

the upper bound of the above integrals, we get 

2

00 0
2 ( , , , ) ( , , , )

t td
y dt f x t y y u u f x t y u y dxdt

dt 
          . 

       
2 2 2

2 30 00
( ) ( )

t

Q
y t L u L y t dt       , where 2 3,L L denote various constant 

By Bellman –Grownwall’s inequality, one gets that 

       
0

( )
Q

y t M u             ,  0,t T   
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i.e.       2( , ( ))u L I L Q
y M u 

         2 ( )u L Q Q
y M u   . 

Again by using the same above technique we can get that 2 ( , )u L I V Q
y M u    

Now, let 
1uy  and 

2uy  are the correspond states to the controls 1u  and 2u , so 1 2u u u   , and 

1 2y y y   . From the above steps we got that 2( , ( ))u L I L Q
y M u 

   , i.e. the operator uu y  is 

Lipschitz continuous from 2 ( )L Q  into 2( , ( ))L I L  . By the same way we can prove that this 

operator is also Lipschitz continuous from 2 ( )L Q  into 2 ( , )L I V , and into 2 ( )L Q . 

 

Lemma 3.2:-  Dropping the index l , the functional ( )G u is continuous  on 2 ( )L Q . 

 

Proof:-  Since g is defined on  Q U  , measurable w.r.t. ( , )x t for fixed y and u , and is 

continuous w.r.t. y and u  for fixed ( , )x t and satisfies the above conditions, then from proposition 

1.2 in [6] follows that ( )G u  is continous on 2 ( )L Q .           

Theorem 3.1:  In addition to the above assumptions, we assume that the set of controls W  is of the 

form UW W , with U  convex, and compact, AW   , where f  has the form 

1 2( , , , ) ( , , ) ( , , )f x t y u f x t y f x t y u   

where 1 1 1( , , ) ( , ) f x t y x t c y , 2 2 2( , , ) ( , )f x t y x t c y   ,  

with 2

1 2, ( )L Q   , and 1 20, 0c c  , 

1g  is independent of u , 0g  and 2g  are convex w.r.t. u , for fixed ( , , )x t y . Then there exists an 

optimal control. 

 

Proof:- Since U  is convex, then W  is convex, and since U  is compact, i.e. U  is closed and 

bounded then by Egorov’s theorem W  is closed but U R , 2( ) ( )L Q L Q  then W is  bounded  and 

then W is weakly compact. 

Since AW   , then there exits a point Aw W , such that 1( ) 0G w  , & 2 ( ) 0G w  , and then there 

exists a minimum sequence  ku , such that k Au W , k , and  

             0 0lim ( ) inf ( )
 


A

k
k w W

G u G w . 

 

Since k Au W , k , then ku W , k , but W  is weakly compact, there exist a subsequences of 

 ku , say again  ku  which convergence weakly to some point u  in W , i.e.   2 ( )

W

k L Q
u u , 

and
k Q

u c , k . 

From Theorem 2.1, we got that for each control ku , the state equation has a unique solution
kk uy y , 

and we got that the norms 2( , ( ))k L I L
y  

, 2 ( )k L Q
y  and 2 ( , )k L I V

y  are bounded, then by Alaoglu 

theorem [3]there exists a subsequence of ky , say again  ky  which convergence to some point y  

w.r.t. the above norms, i.e. 

           
*

2( , ( ))L I L

W W

ky y
 

 , 
*

2 ( )L Q

W W

ky y , and 
*

2 ( , )L I V

W W

ky y  

 

Now, we want to show that the norm 
2 *( , )tk

L I V
y  is bounded; to do this we rewrite the weak form 

state equation in the form 

           , ( ( , , , ), ) ( , , ),    
tk k k ky v f t x y u v a t y v v V  
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Integrating both sides of this equation from 0  to T , taking the absolute vales, using the Caschy –

Schwarz inequality and then the assumptions on f to the R.H.S. for the obtained equation we get 

that 

               
1/ 2 1/ 2

2 2

1 1 10 0 0
,

t

T T T

k ky v dt y dt v dt      

                                           1 1k kQ Q Q Q
c y c u v    , 

                                    2 2 21 3( , ) ( , ) ( )
( )k L I V L I V L Q

y v b c v   

where 
3( )b c denotes for various constants,  

Since  2 2( ) ( , )L Q L I V
v c v and 2 2( , )

( )k L I V
y b c , then 

        
2

0

3

( , )

,

( )

 


 t

T

k

L I V

y v dt

b c
v

 , * 
tky V ,  

        
2

0

3
( , )

( , )

,

sup ( )


 


 t

T

k

x t Q
L I V

y v dt

b c
v

,           
2 * 3

( , )
( )

tk
L I V

y b c . 

 

Now, since  

            2 2 2 * 2 *( , ) ( ) ( ( )) ( , )  L I V L Q L Q L I V ,  

then  

            
 

*
2 2 2 * 2 2( ) ( , ) ( , ) ( ) ( )

&
L Q L I V L I V L Q L Q

y c y y c y c y   . 

 

Which give that the injections of 2 ( , )L I V  into 2 ( )L Q , and of 2 *( ( ))L Q  into 2 *( , )L I V  are 

continuous, and since the injection of 2 ( , )L I V  into 2 ( )L Q  is compact,. So we get all the hypotheses 

of the first compactness theorem [9], we get that there exists a subsequence of  ky , say again 

 ky , such that 2 ( )
( , )S

k L Q
y x t y . 

Now we want to prove that the limit point y  is uy , since for each k , ky  is a solution of the sate 

equation (corresponding solution to the control ku ), then  

             1 2, ( , , ) ( , , ) ( , , ) ,
tk k k k ky v a t y v f x t y f x t y u v     . 

Let  1C I , with ( ) 0T  , now by rewriting the 1
st
 term in the L.H.S. of the above equation by 

another way, multiplying its both sides by ( )t , and then taking the integral from 0 to T , for the 

both sides of the obtained above relation, we have  

      1 2
0 0 0

, ( ) , , ( ) ( ) ( ) , ( )
T T T

k k k k k

d
y v t dt a t y v t dt f y f y u v t dt

dt
          (22) 

 

To passage the limit in (22), for the L.H.S. we can use passage it using the same steps that we used 

in the proof of Theorem 2.1, while for the R.H.S., first from the assumptions on 1f , and 

2 ( )
( , )S

k L Q
y x t y , we have  

 1 1( ) ( ) ( ) ( )k
Q Q

f y v t dxdt f y v t dxdt   , .                                              
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On the other hand, Let we choose [ ]v C  , set ( )w v t , 

[ ]w C Q ( , )L I V 2 2( , ) ( )L I V L Q  , then  

       2 2 2 2
0 0 0

( ) , ( ) , ( ) ( ) ,
T T T

k k kf y u w dt f y u w dt f y f y u w dt                        

                                                                           2
0

( )( ),
T

k kf y u u w dt      

since  , ku u U  , then also from the assumptions on 
2f  , and 2 ( )

( , )S

k L Q
y x t y , we get that 

            
2 2( ( ) ( )) 0k

Q
f y f y uwdxdt  , &  2

0
( )( ), 0

T

k kf y u u w dt  , [ ]w C Q                                       

 by substituting w v , we get  

 1 2 1
0 0 0

( ( ), ) ( ) ( ( ) , ( )) ( ( ), ) ( )
T T T

k k kf y v t dt f y u v t dt f y v t dt       

                                                                                    2
0

( ( ) , ( ))
T

f y u v t dt , [ ]v C     

since [ ]C   is dense in V , then this holds also for every v V . Then we can passage the limit also 

in the R.h.S. of (22), and we get  

              1 2, ( , , ) ( , , ) ( , , ) ,ty v a t y v f x t y f x t y u v     , , a.e.onv V I  . 

 0

0( , ) ( ( ), )y v y x v . 

which gives k uy y y  , is a solution of the state equation.  

 

From Lemma 3.2, we get that ( )lG u  is continuous on 2 ( )L Q , for each 0,1, 2l  . 

Now, since 1g  is independent of u , and 
2 ( )L Q

S

ky y , then  

             1 1( ) lim ( ) 0k
k

G u G u


   

From the assumptions on lg , (for each 0,2l  ), we get that  

             
2 2( ) lim ( ) 0k

k

G u G u


   2 ( ) 0G u  ,  

on the other hand we have that 
0 0 0 0( ) lim ( ) lim ( ) inf ( )

A
k k

k w Wk

G u G u G u G w
 

    

i.e.  u  is an optimal control of the considered problem.                                                                                                                                                 

    

4. The necessary conditions for optimality:- In order to state the necessary conditions for 

classical optimal control problem, we suppose in addition that the functions   
yf , uf , 

lyg , lug , 

0,1, 2l  , are of the Caratheodory type (or continuous), on ( )Q R R  and satisfy 

3( , , , )yf x t y u c  &  4( , , , )uf x t y u c , 
3 40, 0c c   

5 5 5( , , , ) ( , )ly l l lg x t y u x t c y c u     , 
5 50, 0l lc c   

6 6 6( , , , ) ( , )lu l l lg x t y u x t c y c u     , 
6 60, 0l lc c   

where ( , )x t Q , ,y uR , 2

5 ( )l L Q  , and 2

6 ( )l L Q  . 

 

Lemma 4.1: For simplicity we drop the index l  in &l lg G , the Hamiltonian which is denoted by:- 

            ( , , , , ) ( , , , ) ( , , , )H x t y z u zf x t y u g x t y u   

and the adjoint state uz z (where uy y ) equation  satisfies:-  

, ( , , ) ( ( , , , ), ) ( ( , , , ), )t y yz v a t v z zf x t y u v g x t y u v      , v V               (23) 

   ( ( , ), ) 0z x T v  , in                                                                                   (24) 

Then the Fréchet derivative of G  is given by 
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'( ) ( , , , , )u
Q

G u u H x t y z u udxdt   , 

and the operators  uu z , and '( )u G u  are continuous. 

 

Proof: - From the above assumptions the adjoint-state equations (23-24), has a unique solution 

uz z , for a given control u W  this can be proved by using the same way which used to prove the 

existence and uniqueness of the state equation (Theorem 2.1). 

Now, let  u  is a given control, and uy y , is the corresponding solution of the state equation, and  

let u uy y y y     , be the correspond solution for the control u u . 

Now, from Lemma 3.1, we get that y  is depend on u , hence 0y  , when 0u  , from the 

assumptions on g , the Fréchet derivative of g  exists , we get that  

    1( ) ( ) ( , ) ( , ) ( )y u QQ
G u u G u g y u y g y u u dxdt u u          ,          (25) 

where    
1 0 0
( ) 0 & 0

u uQ
u u

   
    .                                                                                

 

On the other hand, substituting the solutions y  and y y   in (4-5), taking the integral for the 

obtained equations from 0t   to t T , with v z , and then subtracting the 1
st
 obtained equation 

from the 2
nd

 obtained equation and the same for the initial conditions , we get          

   
0 0 0

, , , ( , , , ) ( , , , ) ,
T T T

ty z dt a t y z dt f x t y y u u f x t y u z dt                 (26) 

with       (0) 0y   

 

Now, from the assumptions on f ,  the Fréchet derivative of f  in the R.H.S. of (26) exists, and  

(26) becomes 

     2
0 0 0

, , , ( ), ( )
T T T

t y u
Q

y z dt a t y z dt f y f u z dt u u               (27) 

where    
2 0 0
( ) 0 & 0

u uQ
u u

   
     

 

And by taking the integral from 0 to T , for both sides of the adjoint equation (23), with v y  , 

then integrating by parts the 1
st
 term in the L.H.S. of the obtained equation we get 

    
0 0 0

, , , ,
T T T

t y uy z dt a t y z dt zf g y dt          ,                                (28) 

since   ( ) (0) 0z T y   . 

 

Now, by subtracting (28) from (27), then substituting this result in (25), we get 

  

  ( ) ( ) ( )u u QQ
G u u G u zf g udxdt u u                                          (29) 

where  1 2 0
( ) ( ) ( ) 0

u
u u u  

 
      , and 

0
0

uQ
u

 
  . 

 

Finally from the definition of the Fréchet derivative ofG , we obtain (29) becomes  

 ( ) ( )u u
Q

G u u zf g udxdt     ( ) ( , , , , )u
Q

G u u H x t y z u udxdt    .  

 

Lemma 4.1:- the operator uu z  is continuous w.r.t. Lipschitz on 2 ( )L Q . 

Proof:  The proof follows by the same way which is used in Lemma 3.1. 

Lemma4.2:- The operator '( )u G u  is continuous on 2 ( )L Q . 

Proof:  The proof follows by the same way which used in proof of Lemma 3.2.  
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Theorem 4.1:  Necessary Conditions for Optimality (Multipliers Theorem): - 

If the control Au W  is an optimal classical control with W  convex, then u  is (classical wakly) 

minimum , i.e. there exist multipliers l R , 0,1, 2l  , with 0 0  , 2 0  , 
2

0

1l

i




 , such that  

( , , , , ) 0u
Q

H x t y z u udxdt  , w W  , u w u                                        (30) 

where  
2

0

l l

l

g g


  in the definition of H  and z , and also 

2 2 ( ) 0G u  , (Transversality condition)                                                       (31) 

The above relations are equivalent to the (weak) pointwise minimum principle 

( , , , , ) ( ) min ( , , , , )u u
v U

H x t y z u u t H x t y z u v


 , a.e. on  Q                                  (32) 

 

Proof: - From Lemma 3.2 and for each 0,1, 2l  , the functional ( )lG u , is continuous of each 

u W , hence ( )lG u  is   local continuous at each u W , for each 0,1, 2l  , for every  . 

From Lemma 4.1 we get that the functional ( )lG u  has a continuous Fréchet derivative at each 

u W , hence ( )lG u  is   differentiable at each u W  for each  , and since 2 ( )W L Q , 2 ( )L Q  

is open, then  

            ( , ) ( )( ), 0,1,2l lDG u w u G u w u l    . 

Since the control Au W  is optimal, therefore by using the Khuan-Tanger-Lagrange theorem there 

exists multipliers l R , 0,1, 2l  , with 0 0  , 2 0  , 
2

0

1l

i




 , such that (30) & (31) are 

satisfied, from Theorem 3.1, with setting u w u    inequality (30) becomes  

                0 0 0 1 1 1 2 2 2 0
u u uu u u

Q
z f g z f g z f g udxdt         

  , 

       0,u u
Q

zf g udxdt w W      , where 
2

0

l l

l

g g


 and 
2

0

l l

l

z z


  

     ( , , , , ) 0u
Q

H x t y z u udxdt   , w W  . 

 

Now, we prove that (30) is equivalent to the Minimum principle in pointwise weak form (32). 

First, let 
2{ ( , ) ( , ) , a.e. on }UW w L Q w x t U Q   R , and  ku  be a dense sequence in UW , 

and let S Q , be a measurable set such that 

            
( , ) , if ( , )

( , )
( , ) , if ( , )

kw x t x t S
w x t

u x t x t S


 


. 

Hence (31), becomes  

            ( , , , )( ) 0u k
S

H x t y u w u  . 

By using the Egorove's  theorem, we get  

            ( , , , , )( ) 0u kH x t y z u w u  , a.e. on Q , 

i.e. it holds in a set k kP Q Q  , with ( ) 0kQ  , 

        ( , , , , )( ) 0u kH x t y z u w u   , in k

k

P P , 

and this is hold for each k , since P  is independent of k , and we have ( ) ( ) 0k

k

Q P Q    ,  

since  ku  is dense in UW , then  
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            ( , , , , )( ) 0uH x t y z u w u  , w W  , in P , i.e. a.e. on Q , or 

            ( , , , , )( ) 0uH x t y z u w u  , a.e. on Q , 

       ( , , , , ) min ( , , , , )u u
w U

H x t y z u u H x t y z u w


 , a.e. on Q . 

And conversely, suppose that  

            ( , , , , ) min ( , , , , )u u
w U

H x t y z u u H x t y z u w


 , a.e. on Q  

        ( , , , , )( ) 0uH x t y z u w u  , w W  , a.e. on Q   

       ( , , , , ) 0u
Q

H x t y z u udxdt  , w W  .                                                                
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