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THE CONTINUOUS CLASSICAL OPTIMAL CONTROL
PROBLEM of A SEMILINEAR PARABOLIC EQUATION

(COCP)
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Abstract

We deal with in this work the continuous classical optimal control problem of a
semilinear parabolic equation with equality and inequality constrains. First we prove for fixed
classical control the existence and uniqueness for the solution of parabolic equation using the
Galerkin method to approximate the exact solution and then for different classical controls.
Second we prove the existence theory of a classical optimal control with equality and inequality
constraints.

Finally we prove the necessary conditions for existence of a classical optimal control with the
above constraints.

Introduction

During the last decades, many researchers interested to study relaxd optimal control problems
for systems governed by differential equations as in [1], [4], [5], [6], [7] and many others. And since
many applications in different fields of natural sciences lead to mathematical modules represent a
classical optimal control governed by semilinear partial differential equations (heat equation)[2], so
we interested in this work to study such optimal control problem with equality and inequality
constraints. First, and for fixed classical control under some assumptions the existence and
uniqueness of a solution (corresponding state) of a semilinear partial differential equations is proved
by using the Galerkin method to approximate exact solution of this equation. With suitable
assumptions, we state and prove the existence theorem for a classical optimal control with equality
and inequality constrains, during this proof we show that for a convergence sequence of classical
optimal control to a classical optimal control the corresponding sequence of states satisfying the
states equations converges to a state satisfies the state equation. Finally we state and prove the
necessary conditions for a classical optimal control problem under suitable assumptions.
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0. Basic concepts:-

Definition 0.1[10] :- Let Q < R***, a function f (x,t,y,u):Q xU xlI — I is said to be of
Caratheodory type if it is continuous w.r.t. y and u for fixed (x,t) €Q , and measurable w.r.t
(x,t) for fixed (y,u).

Theorem 0.1(Alaoglu)[3]:- Let V be a Hilbert space , and {v, }be a bounded sequence of V , then
there exists a subsequence of {v, } which converges weakly to some v €V .

Lemma 0.1 [2]:- The Continuous Bellman-Gronwall (B-G) inequality:-
Let I =[a,b], z,y and ¢:1 — 1[I are non-negative, z eC[l ]and itis increasingon I , ¢ is

integrable on | , y eC[l1], if y(t)Sz(t)+_[;go(r)y(r)dr, vtel , then

y)<z@)e'®, vt el , where () :jt o)z, v'{t) =), w@)=0.

Lemma 0.2[2]:- Let f ,and f _:DxO"—>0", are of the Caratheodory type, let
F:L°(D,0")—>0™ be a functional such that F(x):IDf v,xW)dv, where Dcl%is
measurable set, and |f, & ,x ))|<S@)+n0) x|, Y&, x)eDxO ™

Where ¢()el?(D,0) , n{v)el?*(D,0), then the Fréchet Derivative of F exists for each
x eL*(D,0"), and is given by :- ®'(x)h :.[Dfx (v,xV))h)dx .

Theorem 0.2 (Egorov's theorem)[10]:- Let D <[] ¢ be a measurable subset, ¢:D — [ , and
pel’(D,0),if L @ )dv >0 (or <0or =0), for each measurable subset S =D, then ¢( ) >0 (or

<0or =0) almost every where in D .

1. Description of the problem: - Let 1 =(0,T), T <o, QcR? be an open and bounded region
with Lipschitz boundary T'=0Q, Q=QxI, X=Tx1. We consider the following semilinear
parabolic equations (in continuous form):

Y.+ Ay = f(xtyu) in Q 1)
y(x,t)=0 on X, 2
y(x,0)=y°(x) in Q, ®)

where y =1y, is the state, u is the classical control, and A(t) is the 2" order elliptic differential
operator, i.e.
d a ay

At)y = —Z&{a, (xt) a—xj}
The control constraints (The controls set) are

ueW, W cl*(Q)
where W is defined by one of the following forms: -

W =W, ={we L*(Q)| w(x,t) U, ae.in Q}, with U =R

the cost functional is
G,(u) = '[Q 0o (X, t, y,u)dxdt,
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the constraints on the state and the control variables are
G,(u) = jQ g,(x,t, y,u)dxdt =0,
G,(u) =jQ g,(x.t, y,u)dxdt <0,

The set of admissible controls is
W, ={ueW| G,(u)=0, G,(u) <0}.

The Continuous Classical Optimal Control Problem (CCOCP) is to minimize the cost
functional subject to the above constraints, i.e., to find u such that

ueW, and Go(u):MVianO(w),

We denote by |.|the Euclidean norm in 0", by |.| the norm in L*(Q), by (,.) and
|||, the inner product and norm in L*(Q2), by (.,.), and |.||;the inner product and norm in Sobolev

space V =H;(Q), by <.,.> the duality between V and its dual V", and finally by |. ||Q the norm in
L*(Q).

2. The Solution of the State Equation:- in order to find the classical solution of problem (1-3),
first we shall interpret these equations in the following weak form

<y,v>+a(ty,v)=(f(xt,y,u)v), WweV, ae.onl, (4)
y(,t)eV,ae.on |, y0)=y°, (5)
d
oy ov 0 _ 2
where af(t,y,v) = a; (x,t) =——adx, and L () .
Cy=2 ] 0052 Y e F(©Q)

J
We suppose the operator A(t) satisfies the elliptic conditions

d d
‘aij(x,t)‘Sal, (xt)eQ & D a;(xtvy, 2a,> v’ veR®
i i=1

i,j=1
which imply that a(t,v,w) is symmetric and for some «,,a, , for each v,weV , and tel , we
obtain [a(t,v,w)| < e |V, [w],, and a(t,v,v)>e, ||v||12
We suppose also that f is of Caratheodory type on Qx (R xR) ( e.g. continuous), it satisfies the
following sublinearity condition w.r.t. y & u, and Lipschitzw.rt. y ,i.e.

| (xty,u)|<m(x,t)+c,|y|+c|ul,
where (x,t)eQ,y,ueR ,and 7€ L*(Q,0) (Growth condition)
[f(xty,u)—f(xty,u)<L|y,—V,| where (x,t)eQ, v, y,,ueR.

Theorem 2.1: For each control u e L*(Q), the state equations (4-5) has a unique solution y=y,,

such that ye L’(1,V), y, e *(1,V")

It can be proved also that y(t) = §(t) a.e.on |, where §eC(l,L*(Q)).

Proof:- Let for each n, V, be the set of continuous and piecewise affine functions in Q. Let
{Vn}::1 be a sequence of subspaces of V, such that Vv eV, there exists a sequence {vn}, with
v, €V,,Vvn,and v, ——>V :vnﬁ)v.

Let {vi A=12,...M (n)} be a finite basis of V, , and we use the Galerkin method [8] to approximate
the exact solution of y, to the approximation solution y,, such that
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Yo = (60 = X6 O% (),

where ¢, (t) is unknown function of t,Vvi=12,...,n.

We approximate the weak form of the state equation (4-5) w.r.t. x, using the Galerkin’s method,
i.e. for i=12,...,n, we have

<Y Vi >+a(t,y,,v,)=(f(y,u),v,), Yv, eV, ,y, € L2(I,Vn), aeinl, (6)
(yr?’vi)z(yO’vi)’vviEVm (7
where Yy’ =y°(x)=y (x,0) eV, cV c L*(Q) is the projection of y, e *(Q) onto V, w.r.t. the
norm |||, i.e. Yy —ztg—> Yo

Substituting the approximate solution y, in equations (6&7), then these equations reduce to the
following nonlinear system of ordinary differential equations with its initial condition, i.e.

AC'(t)+ DC(t) =b(V " (X)C(t)), (8)

AC(0) =h°, 9)
where A= (aij)nxn’ a; = (Vj 7Vi) , D= (dij)nxn' dij = a(tlvj 7Vi) , C(t)= (Cj (t))nxl’ C'(t)= (C; (t))nxl’
C(0)=(¢;(0)ya:V =)y D=0, b =(F(VTC(1),u),v;), and b° =(B’) , b7 =(y,,v,)-

This system has a unique solution w.r.t. c;, with ¢; continuous onl [8]. in particular problem (6-
7) has a unique solution vy, .
So we got that for each n, with V. <V, problem (6-7) has a unique solution vy, , hence
corresponding to the sequence {Vn}:’:l, we have the following sequence of approximation problems
,forn=12,...,i.e.
< YooV >+t y,,v,) = (F(y,,u)y,), y, e 2(1LV,), aein I, (10)
(y2,v.)=(y°v,), Vv, eV, vn, (11)
which has a sequence of solutions {y,}" .
Replacing v; in (6) by y, and then taking the integral from 0 to T , i.e.

[0 < Yo Yo >+, alt, Voo yaddt = [ (F 8y, 1), y,)dt < [0 J(F (you) vt (12)

Since y, el*(1,V)=L*(1,V), & y,€?(1,V) in the 1¥ term of the left hand side (L.H.S.) of
(12), hence for this term we can use Lemmal.2 in the ref. [9] and since that the 2™ term is positive,
taking T =t €[0,T], for the upper bound of the integral in (12), we get

1td
Ej;a”yn(t)”s dt < [ (Yo u), Y, )AL [ I (3, 0|y, et
Q

using the assumptions on the function f inthe R.H.S. (right hand side), we have
Iy, [ <c, +j; ¢, |y, (®)|dt, where c,,c, denote to the various constants.

By using the Continuous Bellman-Gronwall’s inequality, we get
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Again by using Lemmal.2 (in the ref. [9]) for the 1% term in L.H.S. of (12), from the assumptions
on a(t,.,.) for the 2" term in the same side, using the assumptions on the function f inits R.H.S,,

with t =T, and the above result we get
2 T ,
[, O =[val; + 222 Ival e <[l +ilull, + 2Dyl

= ” yn“i?(LV) < b22 (C)

=¥,z vy <B,(€) =b(c) , where b(c) denote for various constant.

From the above last steps we got that ||y,|| .., <b(c), and |y, | <b(c), then by Alaoglu’s

() (V)
theorem[3], there exists a subsequence of {y,} _ . sayagain {y,} _,suchthaty, “E—Z‘Q’) y, and
W'=wW
Y L2(1V) y-

Our aim now, is to prove that the sequence {yn}:’:l of the solutions of the problem (10-11)
converges to the solution of the problem (4-5), by using Galerkin method, and then applying the

compactness theorem involving partial fraction [9], to get thaty, ——— y[see 2], and it remains
tness th | tial fraction [9], to get that y, —z; 2], and it

that to passing the limit in the state equations (10-11), to get that y satisfies equations (4-5). To do
this, again consider the weak state equations (10-11), and take any arbitrary v eV , then there exists

a sequence {v,}, with v, €V,,vn, such that v, —— v, which gives vnﬁ)v.

Let (t) € C*[0,T], such that ¢(T)=0. Now by multiplying both sides of (10) by ¢(t), taking the

integral from 0 to T , rewriting the 1% term in the L.H.S. of the obtained equation in another manner
and then using integration by parts for this term we get that

[ (Y )@@t + [ a(t v, v, ot = [ (F(y,u)y, o)t

+(y2:¥,)0(0) (13)
H S ' S ' . w
Since Vo gV then v, —zao Ve , and since Yo Y then
T T
[ (Yovo) @'t [ (y,v)'(t)dt. (13a)

H S S H W
Since v,——V, then Vo5 VP and since Yo —zawmy Y then

jOT a(t, y,.v, ) p(t)dt — jOT a(t,y,v)p(t)dt . (13b)

Also since Y, —z > Yo and v, —z—v, then

(¥n:Vn)9(0) = (Y5, v)92(0) . (13¢)

From some of the above convergent and the assumption on f , we get

jOT( (¥, U).V, Jo(t)dt — joT( f(y,u),v)p(t)dt . (13d)
From (13a,b, ¢, &d), (13) becomes

-[; (yV) @' Odt+ [ a(ty.vp@dt= [ (f(y,u).v )t
+( Yo, V) (0). (14)
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Casel: - Choose ¢ € D[0,T], i.e. ¢(0)=¢(T) =0, so (14) becomes
—j y,V) @' (t)dt + j a(t,y,v)p(t)dt = j (f(y,u),v)p(t)dt

by using mtegratlon by parts for the 1% term in the L.H.S. of the above eq., we have
X —(y Vemdt+ [ a(t,y.v)e®dt=[ (f(y.u)v)etd =

;
j <YLV > ¢(t)dt+j a(t,y,v)o(t)dt :jo (f(y,u),v)e(t)dt (15)
i.e. y (the limit point) is a solution of state equation (4).

Case2: - Choose ¢ € C'[0,T], such that ¢(T) =0 & ¢(0) #0.
Let we rewrite (15) in the following form

j —(y, v)(p(t)dt+j a(t,y, v)go(t)dt_j (f(y,u),v)p(t)dt
By using mtegratlon by parts for the 1% term in L.H.S. of the above eq., we get
- j y.v) @' (t)dt + j a(t,y,Vv)p(t)dt = j (f(y,u),V)p(t)dt

+(y(0),v) p(0) (16)
subtracting (14) from (16), we get that
(Yo:V)2(0) =(¥(0),v)(0) ,9(0)#0,Vpe[0,T], =(ys,v)=(y(0),v)
i.e. the initial condition (5) holds.

We will prove here that y. —y strongly inL*(1,V). We begin by substituting v=1y_ in

weak form (6), and taking the integral from 0 to T, and by using Lemmal.2 (in the ref. [9]) we get
that

f [yalldt+ [ a(t,y,, o )t = [} (F(t,y,u),y,)dt =

§||yn(T)||o 1Yo + [ alt yoo v )it = [ (F(ty,u)., ). (162)

Since y is solution of the weak form state eq. (4), then by substituting v=y in (16a), and also by
the same above Way, we get that

—||y(T)||— ||y(0)|| +[ a(ty,y)t=[ (f(ty.u),y)d (16b)
Since

ST =Y -2 v, © - O

+[ a(t,y, — vy, - y)dt =Eq(17a) - Eq(17b) ~ Eq(17c) (17)
where

(17a)——||yn(T)|| ——||yn(0)|| +[ a(t .y, )dt,

(17b) ——(yn(r) y(T))——(yn(O) y(©)+ ], a(t.y, y)dt,

(17c)——(y(F) Ya(T) - y(r))——(y(O) ¥a(0)—y(0))+ I a(ty,y,-y)dt.
Now, by substituting (16a) in (17a), the last one is equal to
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J'OT( f(x,t,y,,u),y, )t

From the assumptions on af(t,.,.),and on f , and since y, ﬁ) y, we get that

J‘OT( (x,t,yn,u),yn)dt—>J‘0T(f(x,t,y,u),y)dt. (18a)

By using the same way that we used in the beginning of the proof of this theorem to get that
Yo =¥, (0 —55—> ¥ = ¥(0), (18b)
Also, by the same way we can get that
Yo (1)~ V(). (18c)
From (18b, & c), and that yn%)y , We get that equation (17b) converges to the L.H.S. of
(16b), and we get that

%||y(T)||§ —%||y(0)||§ +flalty vyt = [T (Fy,y) (18d)
Also, from (18b, & c), we get that

(¥(0),y,(0)-y(0)) >0 &  (y(T),y,(T)-y(T))—>0 (18e)
and |y, (0)-y(@[; >0 & [y, (T)-y(T); —>0 (18f)
again since yn%y then

J‘OTa(t, y,Y,—y)dt—>0. (18g)

Now, when n — oo in both sides of (17), we get the following results: -
(1) The first two terms in the L.H.S. of (17) are tending to zero (from (18f)).

from T from 1
(2) Eq. (1.17a) (;a)jo (f(X.t,y,,u), y, dt (T&iJo (f(xt,y,u), y)dt.

from .1
(3) Eq. (1.17b) —LH.S. of (18d) = [ (Fty,u),y)at

(4) The 1* two terms in (17c) are tending to zero (from (18e), and the last one term also tends to
zero (from (18g)).

From these results, the both sides (17) become
T where T T
.[0 a(t,y,—y.y,— Y)dtW’L (f(x,t,y,u),y)dt —_[0 (f(t,y,u),y)dt—0=0

From assumption on aft,.,.) , we have that
a,#0

o, [ Iy, - vlidt< [ a(ty, - y.y, —y)dt—2= 50 =

T 2 S
[ Iya-yfdt>0 =y, —2 >y

To prove the uniqueness of the solution, let y, &y, be two solutions of state equation (4),
subtracting the 2" obtained equation from the 1% obtained equation we get

<(Yi—Yo)ov>+at y, — ¥, V) =(f(y,u)— f(y,,u),v) , WeV.

Let we substitute v=y, —,, in the above equation, so we have
<(y1_y2)t'y1_y2 >+a(t’y1_y2’y1_y2):(f(yl’u)_f(Yz’u)’yl_yz)-
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The 1% term in the L.H.S. of the above equation will written in another way (using Lemma1.2 in ref,
[9]), and using assumption on a(t,.,.) , for the 2" term, we get that

1d
Ea”yl_ y2||(2) +a, ||yl_ y2||12 S(f()ﬁ’u)_ f(yl’u)v yl_yz) (19)

The L.H.S. of the above eq. is positive, taking the integral from 0to t, for its both sides, then using
the Lipschitiz condition, we get that

td t t
IO E”yl -, ||(2) dt SZIO IQ L|y, - v,|" dxdt = ZJO Ly, - y2||§dt

= (n-v) @ <0+ [ 2Ly~ ot
By Bellman-Gronwall’s inequality, we get

[(y: =) 0], =0. v tet (19)

Now, integrating both sides of (19) from t=0, to t=T, using the initial conditions and the
property of norm (positive) for the 1% term in L.H.S. of the obtained equation, and the Lipschitz
property for the function in the R.H.S and then using (19a), we get

T 2 a,>0 2
[ Iv=volidt < 0=y, =yl 0y, =0= V= Vs .

3. Existence of an Optimal Control:- In order to prove the existence of a classical optimal
control, we suppose now in addition to the above assumptions the function g, is of Caratheodory

type on Qx(RxR) (e.g. continuous), and satisfies the following subquadratic condition w.r.t.
y&u, i.e. foreach 1=0,1,2, we have

|9, (%t U, Y)| <17, (X,t) +C, y* +Cyu?, where, y&ueR, with 7, € L'(Q).

Lemma3.1: - If the function f is Lipschitz w.r.t. y ,and u, then the operator
uky,, from L(Q) into L*(I,L*(©2)), or L*(1,V), or L*(Q) is continuous.

Proof: - Let u and u+Au are two given bounded controls on L?(Q), so by Theorem2.1 y =y, and
y+Ay =y, +Ay, are the corresponding solutions and are satisfied the weak form (4-5), satisfying
these solutions in (4-5) and then subtracting one of the other we get that

<Ay, V>+a(t,Ay,v)=(f(x.t,y+Ay,u+Au)— f(xt,y,u),v) (20)

Ay(0) =0. (21)
By substituting v = 2Ay in (20) using the same way that we used to get (19), we get also an equation
like to (19) with Ay in position of y, , and taking the integral from 0toT , one gets that

IOT %”Ay”fJ dt SJ'OT( f(x,t,y+Ay,u+Au)— f(x,t,y,u), 2Ay )t

by the assumptions on a(t,.,.), and f is Lipschtitz w.rt. y & u, and substituting T =t e[O,T], in
the upper bound of the above integrals, we get

d
Jo gl ot [ Foct y oy ean -0ty oot

= [lAy®)[; < L, Auf; + j; L, Ay()[; dt , where L,, L,denote various constant

By Bellman —Grownwall’s inequality, one gets that
= |ay®)], <Mfaul, . vte[oT]
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ie. Ay,

oy SMAUl, =AYz g, < MAul,
Again by using the same above technique we can get that |Ay, ||L2(|‘V) <M ||Au||Q
Now, let y, and vy, are the correspond states to the controls u, and u,, so Au=u,-u,, and

Ay =y, -y, . From the above steps we got that |Ay,

oy SM AUl ie. the operator u y, is

Lipschitz continuous from L*(Q) into L”(I,L*(Q)). By the same way we can prove that this
operator is also Lipschitz continuous from L*(Q) into L*(1,V), and into L*(Q).

Lemma 3.2:- Dropping the index I, the functional G(u)is continuous on L*(Q).

Proof:- Since gis defined on Qx0I xU, measurable w.r.t. (x,t)for fixed yand u, and is
continuous w.r.t. yand u for fixed (x,t)and satisfies the above conditions, then from proposition

1.2 in [6] follows that G(u) is continous on L*(Q). .
Theorem 3.1: In addition to the above assumptions, we assume that the set of controls W is of the
form W =W, , with U convex, and compact, W, # &, where f has the form

f(x.t,y,u)=f,(x,t,y)+ f,(x,t,y)u
where [f,(x.t, y) <m (X )+¢|y], [t ) <m(x ) +Cyy]
with 7, 7, € L*(Q), and ¢, >0, ¢, >0,
g, is independent of u, g, and g, are convex w.r.t. u, for fixed (x,t,y). Then there exists an
optimal control.

Proof:- Since U is convex, then W is convex, and since U is compact, i.e. U is closed and
bounded then by Egorov’s theorem W is closed but U — R, L*(Q) < L?(Q) then W is bounded and
then W is weakly compact.

Since W, =, then there exits a point weW,, such that G,(w)=0, & G,(w) <0, and then there

exists a minimum sequence {u, }, such that u, eW,, vk, and
I[im G,(u,) = inv1v‘ G,(w).

Since u, eW,, Vk, then u, eW , Vk, but W is weakly compact, there exist a subsequences of
{u.}, say again {u,} which convergence weakly to some point u in W, i.e. uk%)u,
andu, |, <c, k.

From Theorem 2.1, we got that for each controlu,, the state equation has a unique solutiony, =y, ,

and we got that the norms|y,

@ ||yk||L2(Q) and ||yk||L2(I,V) are bounded, then by Alaoglu

theorem [3]there exists a subsequence of{yk} , say again {yk} which convergence to some point y

w.r.t. the above norms, i.e.
W'=w W =W s
Y —— VY, Yy————y,ad y,———y

(12 () 2@ 2(1v)

is bounded; to do this we rewrite the weak form

Now, we want to show that the norm Hyk( Zav)

state equation in the form
<Y V>=(F (X Y, U) v)-adt, y,,v), WeV
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Integrating both sides of this equation from 0 to T, taking the absolute vales, using the Caschy —
Schwarz inequality and then the assumptions on f to the R.H.S. for the obtained equation we get
that

T T 1/2 T 1/2
Iy <yov> ot saa( vt ([ ]

+(lly + eIyl + il Ml
< * ”yk |||_2(| V) ||V|||_2(| V) + b3 (C)||V||L2(Q)
where b, (c) denotes for various constants,
) <b,(c), then

Since ||V||L2(Q) SC”V”,_z(LV)and ”yk"Lz(IV

;
UO <Yy V> dt‘

= <by(c) , VY, eV’,
”V L2(1V)
T
UO < yk‘,v>dt‘

= sup <b,(c), = Y l, . <b(c).

o Megyy I, <
Now, since

L'(1,V) c L'(Q) = (L'(Q)) < L’(1,V),
then

”y”LZ(Q) < C||y||L2(I,V) & ”y”LZ(l,v*) < C”y”(LZ(Q))* = C”y”LZ(Q) '

Which give that the injections of L°(1,V) into L*(Q), and of (L*(Q))" into L*(1,V") are
continuous, and since the injection of L*(1,V) into L*(Q) is compact,. So we get all the hypotheses
of the first compactness theorem [9], we get that there exists a subsequence of {yk}, say again
{Yi} suchthat y, (x,t)———>
Now we want to prove that the limit point y is y,, since for each k, vy, is a solution of the sate
equation (corresponding solution to the control u, ), then
<Yk V> +a(t, y,,v) :( f.(xty)+ f(xt, yk)uk’v)'
Let ¢ eC'[1], with o(T)=0, now by rewriting the 1* term in the L.H.S. of the above equation by

another way, multiplying its both sides by ¢(t), and then taking the integral from 0 to T, for the
both sides of the obtained above relation, we have

[ ;’(yk, V)e)dt+ [ a(t,y, Vipdt = ) (£,(%,)+ H(y)u,ve®)dt (22)

LZ(Q) o Y

To passage the limit in (22), for the L.H.S. we can use passage it using the same steps that we used
in the proof of Theorem 2.1, while for the R.H.S., first from the assumptions on f,, and

Y, (X, ) ———> LZ(Q) ————Y, we have

J, E(vve®dxdt — [ £, (y)ve(tyxdt .
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On the other hand, Let  we choose veC[Q], set w=Vvop(t),
w eC[Q]lcL”(IV)cL?(IV)cL?’@Q), then

J.oT( fz(yk)uk,W)dt —IOT( fg(Y)U,W)dt = JOT (( f,(y,)- fz(y))U,W)dt
+I0T( f, (v, —U),W)dt

since u,u, €U <O , then also from the assumptions on f, , and yk(x,t)ﬁ)y , We get that

T —
IQ(fz(yk)_ fz(y))UWdth -0, &J.o (fz(yk)(uk —U),W)d'[ —0, YweC[Q]
by substituting w=ve , we get

[, () e®dt+ [ (£,(y)u,ve@)dt - [ (1,(y) Vet
+ (LU, vp®)dt, v e CQ]

since C[Q] is dense in V , then this holds also for every v eV . Then we can passage the limit also
in the R.h.S. of (22), and we get
<y,v>+a(t,y,v) =(fi(xt y)+ f,(xt y)u,v), vveV, aeon I .

(Yo, V) = (¥ (), V) -
which gives y, - y =Y, is a solution of the state equation.

From Lemma 3.2, we get that G, (u) is continuous on L*(Q), for each 1 =0,1,2.

Now, since g, is independent of u, and y, —>—y, then
2

G ()= II(i%r?OGl(uk) =0

From the assumptions on g,, (for each 1 =0,2), we get that
G,(u)<1limG,(u,)=0=G,(u)<0,

on the other hanc;T/\o/oe have that G,(u) < li?n;Go (u)= l!iLDOGo(Uk) = v'vgv];A G, (w)

i.e. u isan optimal control of the considered problem. "

4. The necessary conditions for optimality:- In order to state the necessary conditions for
classical optimal control problem, we suppose in addition that the functions f , f,, g,. 9,

I =0,1,2, are of the Caratheodory type (or continuous), on Q x (R xR) and satisfy
‘fy(x,t,y,u)‘SC3 & |f,(x.t,y,u)|<c,, ¢, 20,¢,>0
|9, 06t Y 0)] < 775 (%, ) + 5|y s
19, (Xt y,u)| < ;e (X ) +C |y +Cls u| , ¢ 20, ¢/ 20
where (x,t)€Q, y,ueR, 7. €?(Q), and 7, € L*(Q).

’
ul, g5 =0,¢5>0

Lemma 4.1: For simplicity we drop the index | in g, & G,, the Hamiltonian which is denoted by:-
H(x,t,y,z,u)=zf (x,t,y,u) + g(x,t, y,u)
and the adjoint state z =z, (where y =y, ) equation satisfies:-
—<z,v>+a(tv,z) =(zf, (Xt y,u),v) + (g, (Xt y,u),v), VeV (23)
(z(x,T),v)=0,in Q (24)
Then the Fréchet derivative of G is given by

67



Journal of Kerbala University , VVol. 8 No0.3 Scientific . 2010

G '(u)Au :JQ H,(X,t,y,z,u)Audxdt ,

and the operators u z,, and u+ G'(u) are continuous.

Proof: - From the above assumptions the adjoint-state equations (23-24), has a unique solution
z=1,, foragiven control ueW this can be proved by using the same way which used to prove the
existence and uniqueness of the state equation (Theorem 2.1).

Now, let u is a given control, and y =y, , is the corresponding solution of the state equation, and

let y+Ay =y, +Ay,, be the correspond solution for the control u+Au.
Now, from Lemma 3.1, we get that Ay is depend on Au, hence Ay — 0, when Au — 0, from the
assumptions on g, the Fréchet derivative of g exists , we get that

G(u+Au)~G(u) = | (g, (y,u)Ay +g,(y,u)Aujdxdt + & (Au)[aul,,  (25)

where & (Au)———0 & ||Au||QWo.

On the other hand, substituting the solutions y and y-+Ay in (4-5), taking the integral for the

obtained equations from t=0 to t=T, with v =z, and then subtracting the 1% obtained equation
from the 2" obtained equation and the same for the initial conditions , we get

T T T
IO <Ay,,z >dt+'|‘0 a(t,Ay,z)dt:J‘0 (f(,ty+Ay,u+Au)-f(xt,y,u),z)dt (26)
with Ay(0)=0

Now, from the assumptions on f, the Fréchet derivative of f in the R.H.S. of (26) exists, and
(26) becomes

T T T
jo <AY,, 7> o|t+jO a(t, Ay, z)dt = jo ((F,Ay+ f,Au), z)dt+gZ(Au)||Au||Q (27)

Au—0 Au—0

where  &,(AU) 5550 & [Aull, —5=55—0

And by taking the integral from 0 to T, for both sides of the adjoint equation (23), with v=Ay,
then integrating by parts the 1% term in the L.H.S. of the obtained equation we get

T T T
Io <Ay,,z >dt+J‘0 a(t,Ay,z)dt =IO (zfy +gu,Ay)dt, (28)
since z(T)=Ay(0)=0.

Now, by subtracting (28) from (27), then substituting this result in (25), we get

G(U+Au)—G(u) = jQ(zfu +g, JAudxdt + &(Au) |Au] (29)

where &(Au) = & (Au) + &, (Au)———0, and ||Au||QW>O.
Finally from the definition of the Fréchet derivative of G , we obtain (29) becomes
G'(u)Au = IQ (zf, +9,)Audxdt = G'(u)Au = J'Q H,(x,t,y,z,u)Audxdt . =

Lemma 4.1:- the operator u > z, is continuous w.r.t. Lipschitz on L*(Q).
Proof: The proof follows by the same way which is used in Lemma 3.1.
LLemmad4.2:- The operator u — G'(u) is continuous on L*(Q).

Proof: The proof follows by the same way which used in proof of Lemma 3.2.
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Theorem 4.1: Necessary Conditions for Optimality (Multipliers Theorem): -
If the control ueW, is an optimal classical control with W convex, then u is (classical wakly)

2
minimum , i.e. there exist multipliers 4 € R, 1=0,1,2, with 4, >0, 4, >0, > |4|=1, such that
i=0

IQHu(x,t,y,z,u)Audxdtzo, vYweW ,Au=w-u (30)

2
where g=>"1g, inthe definition of H and z, and also

1=0

A,G,(u) =0, (Transversality condition) (31)
The above relations are equivalent to the (weak) pointwise minimum principle
H,(x,t,y,z,u)u(t) = miUn H,(x,t,y,z,u)v,a.e.on Q (32)

Proof: - From Lemma 3.2 and for each 1=0,1,2, the functional G,(u), is continuous of each
ueW, hence G,(u) is p— local continuous at each ueW , for each 1 =0,1,2, for every p.
From Lemma 4.1 we get that the functional G,(u) has a continuous Fréchet derivative at each

ueW, hence G,(u) is p— differentiable at each uW for each p, and since W < L*(Q), L*(Q)
is open, then

DG, (u,w—u)=G/(u)(w—-u), 1=0,1,2.
Since the control u W, is optimal, therefore by using the Khuan-Tanger-Lagrange theorem there

2
exists multipliers4 eR, 1=0,1,2, with 2,20, 4,20, ) |4|=1, such that (30) & (31) are
i=0

satisfied, from Theorem 3.1, with setting Au=w—u inequality (30) becomes
_[Q[ﬂﬂ(zo f, + 0o, )+}tl(zlfu +0, )+ﬂL2 (z2 f,+0,, ) }Audxdt >0,

2 2
= IQ(zfu+gu)Audxdt20, vweW , where g=> A4g,and 2= Az
1=0 1=0

= .fQ H,(X,t,y,z,u)Audxdt >0, VweW .

Now, we prove that (30) is equivalent to the Minimum principle in pointwise weak form (32).
First, let W, ={we L*(Q,R)| w(x,t)eU =0, ae.on Q}, and {u,} be a dense sequence in W, ,
and let S < Q, be a measurable set such that
Wit) ={Wk(x,t) , ﬁf (x,t) € S.
u(x,t) ,if (x,t) ¢S
Hence (31), becomes
L H,(x,t,y,u)(w, —u)=0.

By using the Egorove's theorem, we get
H,(x,t,y,z,u)(w, —u)>0,ae.on Q,

i.e.itholdsinaset P, =Q-Q,, with x(Q,)=0,
= H,(xty,z,u)(w,—u)>0 ,in P=(\R,
k

and this is hold for each k, since P is independent of k, and we have u(Q—P)= /,z(UQk) =0,
k

since {u,} is dense in W, , then
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H,(x,t,y,z,u)(w—-u) >0, YweW ,in P,ie ae.on Q,or
H,(x,t,y,z,u)(w-u)>0,ae.on Q,

= H,(x,t,y,z,u)u= min H,(x,t,y,z,u)w, a.e.on Q.

And conversely, suppose that

H,(x,t,y,z,u)u= min H,(x,t,y,z,u)w, a.e.on Q

= H,(xtyz,u(w-u)>0, YweW ,a.e.on Q
= J'QHu(x,t, Yy, z,u)Audxdt >0, vweW .
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