Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

SCHEDULING IDENTICAL JOBS WITH UNEQUAL
READY TIMES ON UNIFORM PARALLEL MACHINES
TO MINIMIZE THE MAXIMUM EARLINESS
1 O e Gl

4y paiiveal) ralall o lall S Ciluzaly) and
(hanan_altaai@yahoo.com

308 el Al AS Cilaualy) o
hussammath@yahoo.com

paldicnl)

O N Adpan Allise Jlie W) i 3a Bas gall 4 31 gial) (LSl A gan Alie iy Caa) 13a
Gl Bl 3 ganll ol s Cangdl Bas sall A) siall (LS e m ole Al § RIS e JlaeY)
il 33kl (e dae Udaa g Ay jll drpuall Liediy Q| 1, p; =1 By Aliss ssaail Jlac)
(B&B) il 5 & il 45 yha A aaladiny ol a8 Uyl 088) s Jad Alliaall 38 Jad 4y 3l
s 8 5V dall e dy B Jslas Jead (Al (diad) jaall) cld Aagas Ay 555 (3 sk Lialadi) 38
Jsla) il 5 088 (i 1) e 1 < 60 ,M < 3 (Sl sae 5 Jlae Y1 aae 5555 () Aagesd) Jilasal
aall) 4y 5l Laadind 388 S0 (1S sae @3 Jilesall Wl (1,000,000) 4l oSS <l sall (e dany 5 i
i) e 8 s e s o 1 (250

Abstract
This paper consider of scheduling n identical jobs with unequal ready times on m

parallel uniform machines to minimize the maximum earliness Q|[r;,d;,p, =1| E_, .

To solve this lower bound is derived and it is incorporated in a branch-and-bound
algorithm, and introduces six simple single-pass heuristic procedures that approximate
the optimal solution. On sample problems, the branch-and-bound procedure in most
instances was able to find an optimal solution within 1,000,000 iterations with n < 60
and m < 3. For larger values of m, the heuristics provided approximate solutions close
to the optimal values.

1 INTRODUCTION

We consider the problem of scheduling n identical jobs with unequal ready times on m uniform
parallel machines. In this paper, the term identical jobs means that all jobs have the same processing
time on a given machine and the term uniform machines means that the processing time of a job on
a particular machine is the ratio of the processing time of the job on a machine with a standard
speed to the speed of the particular machine [1]. With identical jobs and uniform parallel machines,
the processing time is only a function of the machine working on the job.

This configuration is applicable to capital intensive industries such as semiconductor
manufacturing where it is common to find newer, more modern machines running side by side with
older, less efficient machines which are kept in operation because of high replacement cost. In this
case, the different machines could be processing identical products. This problem is also relevant in
the garment industry where it is common to have seamstresses working at different speeds in
parallel. Our objective will be to minimize the maximum earliness Each job has a distinct ready

time r; and due date d; for j = 1, ..., n. The processing time of a job on machine i is p; for
i =1,.., m. The problem is to determine the job completion times C,, j =1, ..., n, that minimizes

the maximum earliness, E,, , where E, =max{dj ~C,; ,O} and E , =max; {Ej}. We use the
classification scheme as presented by Graham et al. [2] to formally state the problem as

119

mailto:hanan_altaai@yahoo.com
mailto:hussammath@yahoo.com

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

Qlr;.d;,p; =1 E,, . The first field specifies the job and machine configuration as the n-job

uniform parallel machine case. The second field states the job characteristics as the identical jobs
case with unequal ready times and distinct due dates. The designation p,= 1 implies that all jobs

take the same time to process on a given machine. The third field specifies the objective function as
minimizing the maximum earliness.

The majority of the literature on parallel machine scheduling considers the case of non-identical
jobs and identical machines. Recently, much research has been directed scheduling problems with
unrelated parallel machines please refer to [11, 12, 3, 5, 9]. More recent research with non-identical
jobs with equal ready times has focused on the non-identical machines case. For unrelated parallel
machines, Martin et al. [4] we present a combinatorial approximation algorithm that matches this
approximation quality and Omar [6] which presents a solution algorithm for the problem of
minimizing the makespan on unrelated parallel machines with machine eligibility restrictions under
fuzziness. For uniform parallel machines, Pinyan and Changyuan [7] develops a heuristic based on
a transportation algorithm to also minimize the maximum tardiness. Simons [9] presents a recursive
polynomial-time algorithm that guarantees optimality even when the ready times and due dates are
not integer multiples of the processing time.

We present six approximate heuristic solution procedures for the problem. A theoretical as well
as an experimental comparison of the heuristics is performed. We also present an efficient branch-
and-bound procedure that makes use of the heuristics to optimally solve the problem. In Section (3)
we compare the performance of the heuristics to the optimal solution procedure on sample
problems. The evaluation criteria for the optimal solution procedure (branch-and-bound) are (1) the
percentage of times an optimal solution is found given a prespecified time limit in the search and
(2) if an optimal solution is found the length of time required to derive the solution. The evaluation
criteria for the heuristic procedures are (1) the departure from optimality measured by the minimum
maximum earliness given by the heuristic sequence minus the optimal maximum earliness and (2)
the percentage of times that the heuristic found an optimal solution.

2 PROBLEM FORMULATION

We present an integer programming model formulation for problem Q|r;,d;,p;, =1|E,, . Let
X =1 if job j is the kth job in the sequence on machine i and zero otherwise. Define C, as the

completion time of the kth job in the sequence on machinei, k=1, ..,nandi=1,..., m.
Minimize E_,

Subject to:
D> Xy =1 j=1..n @)
i=1 k=1
ixijk <1 i=1..m:k=1,..,n (2)
=
P; +Ciya < Ci i=1..m;k=1,..n (3)
pi+zn:rjxijk£civk i=1,..m:k=1..n (4)

=

ZZcikxijk = Cj j=1,..,n (5)
i=1 k=1
Eqee —Max{0,d, —c, }>0 1<j<n (6)
CjO = 0 j :l n (7)
X = 10,1} 1<i<m;1<j<n;1<k<n (8)
C,>0 j=1,.n ©9)

120

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

Equation (1) ensures that each job is assigned to only one position in the sequence for some
particular machine. Equation (2) guarantees that not more than one job is assigned to any position in
the sequence for any machine. Equation (3) restricts the kth job in the sequence of machine i from
starting until the (k-1)th job in the sequence finishes processing and Equation (4) prevents a job
from processing before its ready time. Equation (5) limits the completion time for each job and

Equation (6) defines the maximum earliness, E . .

3 HEURISTIC PROCEDURES

We consider six heuristic procedures to find approximate solutions to problem
Qlr;,d;,p; =1| E,,, . Some of these heuristics provide an optimal solution to special cases of the

problem. In all heuristic procedures considered, a job is scheduled on a machine when either a job
becomes ready for processing while a machine is free or the machine becomes available after
completing another job while the job to be scheduled is waiting. Note that a job can be released at
the same time a machine becomes available. In this case, there will be no job waiting time or idle
machine time. The heuristics differ in their selection of job and machine. The six procedures
presented here fall into three categories, depending on the choice of the machine for a given job to
schedule next. The first category selects the fastest available machine (FAM) and the next category
selects the machine that gives the earliest completion time (ECT). These two categories proceed in a
forward manner. The third category proceeds backward from an arbitrary distant point in time and
selects the machine that gives the latest slack time (LSPT). Within each machine category, two
rules for choosing the job are considered. The first depends on the original given job parameters and
the second depends on an updated version of these parameters. In the forward procedures the
parameter in question is the ready times and in the backward procedure it is the due date. In a
forward procedure the selected job is added at the end of the sequence on the machine selected. In a
backward procedure, it is added at the beginning. We next present the heuristics.

3.1 Fastest available machine procedures

The first heuristic procedure selects the job to be scheduled next based on the ready times and
schedules the selected job on the fastest available machine. This heuristic is referred to as procedure
fastest available machine ready time (FAMR). That is, the job to be scheduled next is the job that
has been waiting the longest among the unscheduled jobs and ties are broken by selecting the job
with the minimum due date or minimum slack time. The job is scheduled on the fastest available
(idle) machine. If no machine is currently idle, wait for the first available machine. We now
formally present heuristic FAMR. Let N be the set of all jobs and G; the set of jobs that have been

assigned to machine i, i = 1, ..., m, ordered based on the sequence of processing. The heuristic is a
forward procedure that adds one job at a time to the end of set G, .

3.1.1 Procedure fastest available machine ready time (FAMR)

1. Order jobs in set N in non-decreasing order of ready times r;. Break ties by selecting the job
with the minimum due date d; or minimum slack time (d; — p;) .

2. Let job j be the first job in set n. Let s; be the earliest start time of job j on machine i, i.e.
s;=max(r;, &) fori, i=1,.., mwhere a is the completion time of the last job scheduled on
machine i. Let g be the machine that minimizess;, i = 1, ..., m. Break ties by selecting the

machine with the smallest processing time (fastest). Add job j to the end of the sequence in set
G, and let C; =s; + p, and a, =C, . Remove job j from set N.

3. If N is an empty set, stop; otherwise, go to step (2).

121

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

3.1.2 Procedure fastest available machine slack time (FAMYS)

For due date performance measures, an obvious improvement to heuristic FAMR is to rank the
jobs based on their earliest start times instead of simply on their ready times. In this manner, if two
or more jobs are ready for processing when a machine becomes idle, the job with the minimum due
date is selected instead of the job that has been waiting the longest (i.e. the job with the minimum
ready time). The new heuristic referred to as FAMS may be formally stated as follows.

1. Set Si =T, fori=1,..,mandj=1,..,n.

2. Let h and g be the job and machine, respectively, that minimize S i=1 ., mand jeN.
Break ties in j by selecting the job with the minimum due date or slack time and break ties in i
by selecting the machine with the smallest processing time. Add job h to the end of the sequence
in set G, and let C, =s,, + p,. Remove job h from set N. Update s, =max(r;,C,) for all

leN.
3. If N is an empty set, stop; otherwise, go to step (2).

3.2 Earliest completion time procedures

The above two heuristics are myopic in the sense that an unscheduled job is scheduled on the
fastest machine currently idle. It might be better for the job to wait for a faster machine that is
currently busy but will be available in the near term. We now present two forward sequencing
procedures that look ahead in time. The heuristic procedures make use of the earliest completion
time (ECT) rule to select the machine for processing and are referred to as procedures earliest
completion time ready time (ECTR) and earliest completion time slack time (ECTS), respectively.
If more than one machine can complete a job at the same time, the machine with the longest
processing time is selected so that the faster processing machines can be saved for later jobs. As
before, in procedure ECTR the job is selected based on the ready times and in procedure ECTS the
job is selected based on the earliest start times, and ties in both procedures are broken by selecting
the job with the smallest due date. The heuristics can be formally presented as follows.

3.2.1 Procedure earliest completion time ready time (ECTR)

1. Order jobs in set N in non-decreasing order of ready times r;. Break ties by selecting the job
with the minimum due date d; or slack times s;;.

2. Letjob j be the first job in set N. Let t; be the completion time of job j if scheduled on machine
i, i.e. t; =max(r;,&)+ p, fori, i =1, .. mwhere a is completion time of the last job in the
sequence in set G,. Let g be the machine that minimizes ti, i=1,..,mj=1, .. n Break ties
by selecting the machine with the longest processing time (the slowest machine). Add job j to
the end of the sequence in set G, and let C; =t and a, =C;. Remove job j from set N.

3. If N is an empty set, stop; otherwise, go to step (2).

3.2.2 Procedure earliest completion time slack time (ECTS)

1. Sets;=r;fori=1,..,mandj=1,..n.

2. Letjob j; be the job with the minimum s; on machineifor je N andi=1,.., m. Among ties
ins;,

scheduled on machine i, i.e. t; :max(rjI ,ai)+ p, fori =1, ..., m where a; is the completion

select the job with the minimum due date. Let t;, j, be the completion time of job j, if

time of the last job in the sequence in set G,. Let g be the machine that minimizes t, j;,
i =1, .., m. Break ties by selecting the slowest machine. Let h be job j,. Add job h to the end

122

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

of the sequence in set G, and let C, =t, and a, =C, . Remove job h from set N. Update

g
sy =max(r;,C,) forall IeN.

3. If N is an empty set, stop; otherwise, go to step (2).
3.3 Latest slack time procedures

We now present two backward sequencing heuristics that are analogous to heuristic procedures
ECTR and ECTS but in reverse time. The heuristics make use of the latest slack time (LSPT) rule to
select the machine for processing and we are referred to as Latest start time due date (LSTD) and
Latest start time finish times (LSTF), respectively. That is, an unscheduled job is assigned to a

machine that can start processing it the latest. Let S;, j =1, ..., n, be the latest slack time of job j. In

procedure LSTD the job is selected based on the due dates and in procedure LSTF the job is
selected based on the possible finish times and in both procedures ties are broken by selecting the
job with the largest ready time. In the backward sequencing heuristics the unscheduled jobs are
added to the front of set G,.

3.3.1 Procedure Latest start time due date (LSTD)

1. Order jobs in set N in non-increasing order of due dates. Break ties by selecting the job with the
maximum ready time.
2. Letjob j be the first job in set n. Let e; be the slack time of job j if scheduled on machine i, i.e.

e; =min(d,,q) p, for i, i= 1, ..., m where g, is the slack time of the first job placed in the

sequence in set G;. Let g be the machine that maximizes e;,i=1,..,m,j=1,..,n. Add job j to

the beginning of the sequence inset G, and let S; =e; and ¢, =S;. Remove job j from set N.
3. If N is an empty set, stop; otherwise, go to step (2).

3.3.2 Procedure Latest start time finish times (LSTF)

1. Set the latest finish times fij = dj fori=1,..,mandj=1,..n.
Let job j; be the job with the maximum f;, on machine i for je Nandi=1, .., m. Among ties
in f;, select the job with the maximum ready time. Let e, j; be the start time of job j; if
scheduling identical jobs with unequal ready times on uniform parallel machines scheduled on
machine i, i.e. e, =min(d, ,q;)—p; for i, i = 1, ..., m where g; is the start time of the first job
placed in the sequence in set G,. Let g be the machine that maximizes e, j,, 1 =1, ..., m, and let
h be job j,. Add job h to the beginning of the sequence inset G, and let S, =e,, and q, =S, .
Remove job h from set N. Update f, =min(d,,S,) forall e N .

2. If N is an empty set, stop; otherwise, go to step (2).

1
max

Proposition 1: Let E;_ be the maximum earliness given by heuristic LSPTD and E?,, be the

maximum earliness given by heuristic LSPTF. Then, E: <E2

max max

Proof: The two heuristics generate a schedule with identical busy periods for each machine i,
i =1, .., m. What may differ in the solution between the two heuristics is the job allocation to the
busy periods. Given a known busy period with latest slack time and two or more jobs with ready
times less than the slack time of the busy period, choosing the job with the minimum due date gives
a no worse maximum earliness than any other selection rule. Note this is the selection criterion for
heuristic LSPTD.

123

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

4 BRANCH-AND-BOUND PROCEDURE

For problem QJr;,d;,p; =1| E,,,, the heuristics presented in Section (3) do not guarantee an

optimal solution even when the order of jobs according to ready times is identical to that of their
due dates. Refer to Simons's procedure as algorithm Opt_m1. This algorithm forms the basis for our
branch-and-bound procedure. For this problem, a total schedule is defined by an allocation of jobs

to machines, o', and a sequence of the jobs allocated to each machine, o'. The number of possible
allocations of jobs to machines for this problem is O(m"), and for each machine i, i=1, ..., m, the
number of possible sequences of jobs assigned to it is n,! Where n, is the number of jobs on

m
machine i with Zni =n. The number of possible sequences on all machines for a particular
i=1

allocation, o', is 1_[ni with an upper bound n!. This makes the upper bound on the number of
i=1

possible sequences, o', O((m"). A branch-and-bound procedure that searches in this complete

space will thus have a worst case node complexity of O(mn"). However, given a particular job to

machine allocation, an optimal solution can be found by using algorithm Opt_m1 to sequence each
machine. Therefore, the branch-and-bound procedure focuses only on the allocation of jobs to
machines. This observation is summarized in the following proposition.

4.1 Overview of procedure
The solution method follows a branch-and-bound procedure, with each node in the branching
tree representing a partial assignment of jobs to machines s =(s,,..., s,), where s, ,(i :1,...,m) is the

partial allocation on machine i. Let the job sequence on all machines given the partial allocation, s,
be y=(y,,..y,) where y,(i=1,..,m) is the sequence on machine i. The root of the tree represents

s =b. A node at level | in the branching tree represents the allocation of jobs 1, ..., I. Let h be the set
of jobs not in s. Branching from a node represents the allocation of a job je H to some machine

s,,(i=1,..,m). The choice of job j from h is based on a non-decreasing order of r;. Hence, we index
jobs in h in a non-decreasing order of r;. Given the partial allocation of jobs to machines s.

We now present a procedure that determines a lower bound, E . The first part of the

procedure determines a lower bound for the jobs in the allocated set s and the second part for the
unscheduled jobs in set h.

4.2 Procedure LB

1. Sequence the jobs allocated to machine i, o;, using the single machine algorithm Opt_m1 by
Simons [9] to get &,, fori=1, ..., m.
For the sequence 6;, compute the earliness E, =max{d, —C,,0} for jeo;.

3. Setr,, =min, r,setr=r, for jeH.

4. Solve the sequencing problem of jobs in h as the equal ready time problem of
Qlr;.d;,p; =1| E,, using procedure ECTS. Let the resulting job to machine allocation and

sequence be o' and &', respectively.
5. For each sequence ¢ ,i=1,...m, compute the completion times C; using the ready times

and compute the earliness E; = max{dj -C, ,O} for jeH.

6. Setthe lower bound E, ., =max;, {Ej }

124

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

The validity of the proposed branch-and-bound procedure is derived from the use of algorithm
Opt_m1 in both branching and bounding. The rationale of the branching procedure is to limit the
search to all possible job-to-machine allocations rather than schedules, since the optimum sequence
for a given allocation can be obtained in polynomial time by applying Opt_m1 to sequence jobs on
each machine.

The validity of the proposed lower bound on E_,, given a particular partial allocation is based
on the way the sets of jobs, those already allocated and those unallocated, are scheduled. The
allocated set is scheduled using Opt_m1, which provides the minimum E . for that set. The
unallocated set is scheduled using ECT, assuming the ready times of all jobs in the set to be equal to
the minimum in the set. This yields a lower bound on E,,, for all unallocated jobs, regardless of the
sequencing of allocated jobs. It is also because of the application of algorithm Opt_m1l that the
order of selecting jobs to add to a partial allocation does not affect the final solution, since jobs are
later resequenced using that algorithm. However, selecting the job with minimum ready time helps
to improve the efficiency of the algorithm, since it allows the partitioning of the problem, as
explained in the following discussion. Let a, (i =1, ..., m), be the completion time of the last job

sequenced on machine i given by o,. The quantity o, represents the availability time of machine i
to process an additional unscheduled job. If & <r . foralli,i=1, ..., m, then the two sets # and

min

@' are disjoint and a complete job to machine allocation, o'can be given by o' =cuo’and a
complete job sequence, #', can be given by ' =0 U6’

4.3 Complete branch-and-bound procedure

Let 3 be the list of open nodes. An open node is closed and removed from 3 if all its branches
have been generated or its lower bound exceeds an existing feasible solution. Note that the
maximum number of nodes that the branch-and-bound procedure will evaluate is O(m").

The complete branch-and-bound procedure is as follows.

1. Set the upper bound E;_ to the minimum maximum earliness given by the procedures FAMR,

max

FAMS, ECTS and LSPTF and let 6" be the resulting job sequence. Initialize the list of open
nodes 3 as the root node o =¢. Let the set of unscheduled jobs h be the set of all jobs N.

2. Remove an open node from 3 and let the partial job to machine allocation given by that node
be o and the sequence of jobs given by o be . Let h be the set of jobs not in o . Let the

relaxed ready times be r{ and the actual ready times be r; forj=1,..,n.Set r, =min_,r;,

ri =r;,for jes,and rj =r,, for jeH. Letthe machine availability time a;, i =1, ..., m,

be the completion time of the last job in the sequence 6..
(o). If E,(c0)=E, go to step (8).

max !

3. Use procedure LB to obtain the lower bound E
Otherwise go to step (4).
4. If a <r. forall i, set the complete job to machine allocation, o' to o' =c o’ and set the

min

max

complete job sequence, 6',to 8' =0 U @', and go to step (5). Otherwise, go to step (6).
5. Check if the complete allocation o' is optimal given the partial allocation o . If Ci = Pojy 2T,

for each jeHand i =1, .., m, where b(j) is the machine allocated to job j in sc*, then the

complete job to machine allocation &' is an optimal allocation given the partial allocation o .
Update E- =E, . (o) and 6° =6"and go to step (8). Otherwise, go to step (6).

6. Generate a feasible schedule for the complete allocation o'. For the sequence &:, forward
schedule on machine i, i = 1, ..., m, to compute the new completion times C; using the actual

125

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

ready times r; and compute the earliness E; = max{dj -C, ,O} for jea}. If

E; update E,,, =max,, E; and 6" =¢6".
7. Let] be the job with the minimum ready time in set h and break ties by selecting the job with
the minimum due date. For each machine i, i = 1, ..., m, generate a new branch node that

represents the allocation of job j to machine i. The generation of the branch node is as follows.
Set o, =0,y #1. Set o, =0, U{j} and perform the following test. If r, >a,, add j to the end

E" >max.

max — j=l,..n

of the partial sequence 6, ; otherwise, recomputed a new sequence 6, with the jobs in allocation
o, using algorithm Opt_m1. Refer to this allocation and sequence as o' and #'. Add the
allocation o' and resulting sequence 6, as an open node in 3. Note that the set offspring nodes

to o isthe nodes o', i=1, .., m.
8. If there are open nodes in the list J, go to step (2); otherwise, the optimal sequence is given by
6" and the optimal maximum earliness is given by E!

5 NUMERICAL EXPERIMENTS

We experimentally compared the effectiveness of solutions generated by the heuristic
procedures with the optimal solutions generated by the branch-and-bound procedure. The purpose
of the experimentation was two-fold. First, it was desired to find how large the problem sizes in
terms of m and n the branch-and-bound procedure can efficiently solve. Second, for cases where the
branch-and-bound procedure cannot find an optimal solution it was desired to identify the best
performing heuristic for different scenarios of the ready times and due dates. Since the number of
nodes to evaluate in the branch-and-bound procedure is O(mn), we tested the effectiveness of the
solution procedures on different combinations of the number of machines and the number of jobs.
The values tested for the number of jobs were 10, 20, 40 and 60 and for the number of machines
were 2, 3 and 5. Integer data of the processing time on each machine and the ready time and due

date of each job were generated from uniform distributions between 1 and P, ,R.., and D

ax !’ ‘max max ?
respectively. Note that adding a constant to all values of ready times or due dates does not change
the optimal sequence, though it will affect the earliness of jobs. Hence, it is the relative values of
the ready times and due dates, rather than the absolute values, that affect the optimum sequence.
Accordingly, we designed experiments to cover different ranges of ready times and due dates,
expressed as [1,R...] and [1,D,.,,], respectively. Also, the range of processing times is defined as

[1, P...] Tested ranges for both R, and D, were 10, 50 and 100 and for P, were 10 and 50.

A depth-first branching strategy was used for the branch-and-bound procedure with the
offspring nodes generated in order of the machine's processing time. This branching strategy was
used because of its minimal storage requirements and it consistently outperformed other branching
strategies (e.g. breadth-first and smallest lower bound). We stopped the branch-and-bound
procedure after 1,000,000 nodes were evaluated so that many experiments could be performed. For
each scenario, 30 experiments were run. The Branch and bound algorithm was test by coding it in
Microsoft Fortran power station and runs on a Pentium IV at 3.33 GHz, 512 MB computer. To gain
insight and understand the relationship between the various problem parameters, we first held the
number of jobs fixed to a small number, n = 10, and varied the other parameters of the model. Then,
we tested the sensitivity of the results for larger values of the number of

max

126

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

Table (1). Number of runs and optimal solution is reached out of 30 runs, with n = 10, for branch-
and-bound and heuristic procedures Heuristics

Branch and bound Heu_rlstlcs
m Prax | Riax D No. opt. averg. nodes ax. nods No. of times opt.
TR ' ' FAMR FAMS ECTS LSPTF

2 10 10 10 30 5.5 75 5 16 28 27
2 10 10 50 30 23.3 261 10 20 21 28
2 10 10 100 30 14.6 201 13 23 23 29
2 10 50 10 30 8.9 93 26 26 30 21
2 10 50 50 30 42.2 661 24 24 26 25
2 10 50 100 30 14.8 177 24 24 26 26
2 10 100 10 30 62.0 1031 27 27 30 22
2 10 100 50 30 91.9 983 28 28 29 25
2 10 100 100 30 38.8 907 27 27 29 26
2 50 10 10 30 1.6 1 1 13 26 28
2 50 10 50 30 32.1 664 0 10 23 20
2 50 10 100 30 62.2 403 0 10 15 19
2 50 50 10 30 4.7 95 2 7 17 22
2 50 50 50 30 19.5 185 0 9 19 20
2 50 50 100 30 26.6 225 2 8 11 21
2 50 100 10 30 4.9 33 13 16 21 14
2 50 100 50 30 13.1 235 9 14 19 15
2 50 100 100 30 26.6 315 6 8 18 16
3 10 10 10 30 435.9 8509 6 13 22 26
3 10 10 50 30 738.2 11527 11 15 19 28
3 10 10 100 30 1101.0 20887 16 19 19 30
3 10 50 10 30 2703.2 55696 27 27 29 22
3 10 50 50 30 2907.9 49957 27 27 28 27
3 10 50 100 30 634.8 15529 28 28 28 29
3 10 100 10 30 3553.3 55810 30 30 30 25
3 10 100 50 30 2335.1 50749 30 30 30 28
3 10 100 100 30 20679 44542 30 30 30 29
3 50 10 10 30 346.4 4490 1 8 22 23
3 50 10 50 30 306.8 2632 1 7 17 19
3 50 10 100 30 1234.5 8137 2 4 8 13
3 50 50 10 30 20.2 334 5 12 20 19
3 50 50 50 30 626.5 7495 5 9 15 13
3 50 50 100 30 1473.9 26590 8 11 11 13
3 50 100 10 30 723.2 11149 12 13 25 11
3 50 100 50 30 1527.2 18388 15 16 23 11
3 50 100 100 30 3233.2 5338.3 15 15 22 8
5 10 10 10 28 3706.6 73836 19 21 26 25
5 10 10 50 27 1532.1 19531 25 24 27 26
5 10 10 100 27 1417.9 19531 26 27 27 26
5 10 50 10 26 4373.9 96591 24 24 26 23
5 10 50 50 27 1679.9 21658 26 27 27 24
5 10 50 100 29 12335 19631 29 29 28 29
5 10 100 10 24 4928.0 97654 23 23 23 22
5 10 100 50 26 1635.6 19531 26 26 26 23
5 10 100 100 27 1628.2 19531 27 27 27 27
5 50 10 10 30 1236.0 29141 0 0 23 16
5 50 10 50 28 2350.8 14436 1 2 9 12
5 50 10 100 27 3442 .4 22176 2 3 7 19
5 50 50 10 29 1009.1 15651 8 8 19 19
5 50 50 50 26 1445.7 12896 6 6 14 13
5 50 50 100 25 1065.8 17601 8 10 14 16
5 50 100 10 28 4327.8 68671 16 16 23 13
5 50 100 50 28 3273.9 41401 19 19 21 16
5 50 100 100 25 1698.3 24511 21 21 18 16

127

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

Table (1) shows the results of the branch-and-bound procedure. For each scenario, Table (1) lists
the number of times an optimal solution was found out of the 30 runs and the average and the
maximum number of nodes evaluated in the branch-and-bound procedure to find an optimal
solution. Table (1) also lists the number of times each heuristic gave the optimal solution out of the
30 runs. Table(2) reports for each heuristic the average departure from optimality measured by the
maximum earliness given by the heuristic sequence minus the optimal maximum earliness. The
general findings of these experiments are summarized as follows:

(1) Comparing the heuristics: As Tables (1) and (2) show, the most myopic of the heuristic rules,
FAMR, is consistently outperformed by some other heuristic in all the experiments. The two
best performing heuristics were ECTS and LSPTF. Heuristic ECTS performed best on average
when R, is greater than D,,, while Latest start time finish times (LSTF) performed best on

average when D, is greater than R, . These results suggest a forwarding sequencing
heuristic based on ready times be used

X X

128

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

Table (2). Average deviation from the optimal solution for the various heuristics with n =10

m R R R Average deviation from the optimality
m m m FAMR FAMS ECTS LSTF
2 10 10 10 2.967 0.933 0.067 0.100
2 10 10 50 5.367 1.000 0.700 0.100
2 10 10 100 4.100 0.733 0.700 0.033
2 10 50 10 0.500 0.500 0.000 0.367
2 10 50 50 0.367 0.367 0.200 0.567
2 10 50 100 0.433 0.433 0.200 0.367
2 10 100 10 0.300 0.300 0.000 0.367
2 10 100 50 0.133 0.133 0.033 0.600
2 10 100 100 0.233 0.233 0.033 0.400
2 50 10 10 5.533 3.600 0.167 0.368
2 50 10 50 20.500 | 6.833 1.100 0.200
2 50 10 100 37.100 | 8.067 3.933 1.000
2 50 50 10 7.500 5.957 1.733 1.867
2 50 50 50 17.400 | 6.300 1.800 1.067
2 50 50 100 27.667 | 5.300 2.433 1.233
2 50 100 10 5-967 4.933 1.033 1.606
2 50 100 50 11.933 | 5.633 1.333 2.833
2 50 100 100 15.500 | 5.667 2.300 2.000
3 10 10 10 3.033 1.400 0.367 2.300
3 10 10 50 2.867 1.200 0.633 0.333
3 10 10 100 2.300 0.933 0.633 0.100
3 10 50 10 0.267 0.267 0.033 0.000
3 10 50 50 0.233 0.233 0.100 0.433
3 10 50 100 0.233 0.233 0.167 0.233
3 10 100 10 0.000 0.000 0.000 0.367
3 10 100 50 0.000 0.000 0.000 0.233
3 10 100 100 0.000 0.000 0.000 0.033
3 50 10 10 8.100 6.033 0.533 0.400
3 50 10 50 20.733 | 8.600 2.700 1.667
3 50 10 100 30.633 | 10.933 6.944 2.700
3 50 50 10 7.000 5.800 0.747 1.000
3 50 50 50 15.600 | 8.400 3.200 2.567
3 50 50 100 19.400 | 7.533 4.200 3.236
3 50 100 10 6.933 6.467 0.433 3.633
3 50 100 50 9.167 6.833 1.600 3.400
3 50 100 100 10.033 | 7.167 2.700 4.100
5 10 10 10 0.867 0.675 0.067 0.133
5 10 10 50 0.300 0.167 0.000 0.076
5 10 10 100 0.133 0.033 0.033 0.033
5 10 50 10 0.133 0.133 0.000 0.233
5 10 50 50 0.000 0.000 0.000 0.133
5 10 50 100 0.000 0.000 0.000 0.033
5 10 100 10 0.033 0.033 0.033 0.033
5 10 100 50 0.000 0.000 0.000 0.033
5 10 100 100 0.000 0.000 0.000 0.033
5 50 10 10 0.033 0.033 0.033 1.500
5 50 10 50 0.000 0.000 0.000 3.267
5 50 10 100 0.000 0.000 0.000 1.033
5 50 50 10 11.033 | 10.533 1.667 3.000
5 50 50 50 12,567 | 10.767 1.733 2.700
5 50 50 100 11.633 | 9.167 2.033 1.067
5 50 100 10 3.400 3.400 0.233 4.000
5 50 100 50 2.700 2.700 0.667 2.600
5 50 100 100 2.433 2.433 1.133 1.333

when the variability in ready times is the greatest and a backward sequencing heuristic based on due
dates be used when the variability in due dates is the greatest.

129

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

(2) Sensitivity toR_,, and D, : The average time to compute an optimal solution in most of the
scenarios is greater for the case when R, >D,. than for the case when R <D, . For
example, the average number of nodes evaluated is 1101.0 when m = 3, P,,, = 10, R, = 10
and D, = 100 while it increases to 3553.3 when R ., and D, are reversed. These findings

are not surprising since the proposed branch-and-bound procedure is a forward sequencing
procedure and as R, increases the lower bounds in the procedure become less tight. These
results suggest that a backward sequencing branch-and-bound procedure be used when
Rmax > Dmax "

(3) Sensitivity to m: Since the number of feasible sequences increases exponentially with m, the
time it takes to find an optimal solution also increases as m increases. As Table (1) shows, the
branch-and-bound procedure consistently found the optimal solution when there were 3 or less
uniform parallel machines. For m = 5, the branch-and-bound procedure was stopped before
finding an optimal solution in some of the scenarios. For example, with P, =50, R . = 50 and

D.,..x = 50, the procedure was able to find the optimal solution in 26 out of the 30 runs. For this

scenario, a heuristic may be required to approximate the optimal solution. Fortunately, as m
increases the heuristics on average provided a better approximation in terms of the absolute
deviation from optimality. The heuristics performed better when m increases while n is constant
because with more machines it is less likely that any interchange in the job sequence on a
particular machine given by the best single heuristic will improve the earliness criteria since
there are fewer jobs scheduled on each machine.

(4) Sensitivity to P, : It takes a little longer on average to find an optimal solution when P, = 10
than when P,., = 50 because with a smaller processing time and the same R ., the more likely

there is idle time on a machine between two adjacent jobs in the sequence, thereby reducing the
quality of the lower bound in the branch-and-bound procedure. However, as Table(1) shows the
heuristics provide a near-optimal approximation with a small P,_, .

(5) Sensitivity to n: We now focus on testing the sensitivity of the results for larger values of n.
Because of the symmetry of the problem, we considered only the cases when R, < D, since

similar conclusions may be drawn when R . >D,, . These experiments evaluated the

max —
performance of the branch-and-bound procedure as n increases as well as the performance of
heuristic

130

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

Table (3). Performance of branch-and-bound procedure and heuristic LSTF for P,,, =50

m n R D Branch and bound LSPT_
m m No. opt. aver. nodes. max. nodes No. opt. devia. opt.

2 20 50 50 30 129 3835 23 0.500
2 20 50 100 30 135 2097 19 1.133
2 40 50 50 30 0.01 1 30 0.000
2 40 50 100 30 0.01 1 27 0.233
2 80 50 50 30 0.01 1 29 0.033
2 80 50 100 30 0.01 1 27 0.133
3 20 50 50 30 1.152 23272 24 0.533
3 20 50 100 30 4.065 81346 16 1.333
3 40 50 50 30 0.01 1 25 0.300
3 40 50 100 30 03.4 488 18 1.033
3 80 50 50 30 0.01 1 26 0.200
3 80 50 100 30 0.01 1 21 0.600
5 20 50 50 20 1124 33016 12 1.567
5 20 50 100 17 119 1801 7 2.367
5 40 50 50 28 0.01 1 20 0.833
5 40 50 100 22 01.2 336 15 1.100
5 80 50 50 30 0.01 1 25 0.200
5 80 50 100 29 0.01 1 15 0.833

Table (4). Summary of experimental findings

Range on parameters Suggested procedure

m<3and R,<D,, forward sequencing branch-and-bound algorithm
m<3and D, <R, backward sequencing branch-and-bound algorithm
m>3and D, <R,., heuristic ECTS

m>3and R, <D,., heuristic LSTF

6 CONCLUSIONS

This paper develops a branch-and-bound enumerative procedure that optimally solves the
problem of scheduling n identical jobs with unequal ready times on m parallel uniform machines to
minimize the maximum earliness. The branch-and-bound procedure searches over the assignment of
jobs to machines. Given the assignment, each machine's job sequence is determined using Simon's
[10] single-machine sequencing algorithm. The number of nodes evaluated in the branch-and-bound
procedure increases as the number of parallel machines increases. However, as the number of jobs
increases for a fixed number of machines the problem becomes easier to solve optimally because
the presented lower and upper bounds give tighter bounds due to reduced machine idle time. For a
large number of parallel machines, heuristics may be necessary to find approximate optimal
solutions.

Table (4) summarizes our findings from the experimental analysis. The purpose of analyzing the
heuristics is to identify which ones provide the closest approximation to the optimal solution under
different ranges of the ready times, processing times, and due dates. The worst performing heuristic
is FAMR. The better performing heuristics are the ones with a look ahead capabilityon the
completion time of the machines. The forward sequencing procedure ECTS performed the best
when the variability in the ready times is greater than the variability in the due dates while the
backward sequencing procedure LSTF performed the best when the variability on the due dates is
larger.

131

Journal of Kerbala University , VVol. 8 No.1 Scientific . 2010

REFERENCES

[1] T. C. E. Cheng and C. C. S. Sin. A state-of-the-art review of parallel-machine scheduling
research. European Journal of Operational Research. 47: 271-292, 1990.

[2] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in determining sequencing and scheduling: A survey. Annals of Discrete
Mathematics. 5:287-326, 1979.

[3] K. Jansen and L. Porkolab. Improved approximation schemes for Scheduling unrelated parallel
machines. Mathematics of Operation research. 26:324-338, 2001.

[4] G. Martin ,M. Bark and W. Andreas. A faster combinatorial approximation algorithm for
scheduling unrelated parallel machines. Theoretical Computer Science. 380: 87-99, 2007.

[5] E. Mokotoff and P. Chretienne. A cutting plane algorithm for the unrelated parallel machine
scheduling problem. European Journal of operational Research. 141:515-325, 2002.

[6] M. Omar. On the solution of the problem of scheduling unrelated parallel machines with
machines eligibility restrictions under Fuzziness. Trendsin Applied Sciences Research 2(5):404
-411, 2007.

[7] Lu. Pinyan and Yu. Changyuan. An improved randomized truthful mechanism for scheduling
unrelated machines. Symposium of Theoretical Aspects of Computer Science. 21:527-538,
2008.

[8] E.V. Shchepin ,N Vakhania. An optimal rounding gives a better approximation for scheduling
unrelated machines. Operation Research Letters. 33:127-133, 2005.

[9] B. Simons. A fast algorithm for single processor scheduling. Proceedings of the Nineteenth
Annual Symposium on Foundations of Computer Science. 246-252, 1978.

[10] F. Sourd. Scheduling tasks on unrelated machines; large neighborhood improvement
procedures. Journal of Heuristics. 7:519-521, 2005.

[11] V. Suresh and D. Chaudhuri. Minimizing maximum tardiness for unrelated parallel machines.
International Journal of Production Economics, 34:223-229, 1994.

[12] V. Suresh and D. Chaudhuri. Bicriteria scheduling problem for unrelated parallel machines.
Computers and Industrial Engineering. 30:77-82, 1996.

132

