
 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 119

SCHEDULING IDENTICAL JOBS WITH UNEQUAL

READY TIMES ON UNIFORM PARALLEL MACHINES

TO MINIMIZE THE MAXIMUM EARLINESS

 د.حٌبى علي جيجبى .1

 لسن الشيبضيبت كلية العلْم الجبهعة الوسحٌصشية
(hanan_altaai@yahoo.com

م عبذ علي محمدحسب .2

 لسن الشيبضيبت كلية الحشبية جبهعة كشبلاء
hussammath@yahoo.com

 المستخلص
هييي nفييي ُييزا البريي دسأييث هسييالة جذّليية الويييبلي الوحْاصييية الوْحذارامييز بٌدييش ا عحبييبس هسييالة جذّليية

الِيذ ُيْ جيجيبد الجذّلية الولليى لحلي هي الوييبلي الوحْاصيية الوْحيذا. mعلى الإعوبل غيش الوحيبفئة ّالوحطببمة

maxijjالإعوبل لحصغيش هسالة E|p,d,r|Q 1. .ّّصفٌب عذد هيي الطشاليك الولليى ّلذهٌب الصيغة الشيبضية

 (.B&B) حفيش ّالحمييذلرل ُزٍ الوسالة فمذ الحشحٌب ليذ أدًى أحخذاهَ في طشيمية ال ّالحمشيبية لرل ُزٍ الوسالة.

فيي حبلية)الوويش الوٌفيشد(ّالحيي ججِيض برليْل لشيبية هيي الريل ا هليل. ّلذ اأحخذاهٌب طشق جمشيبيية بسييطة رات

على الحشجيب فمذ جن الحْصيل جليى حليْل n ≤ 60 ,m ≤ 3الوسبلل البسيطة الحي ييْى عذد الإعوبل ّعذد الويبلي

)الووش أهب الوسبلل رات عذد هيبلي اكبش فمذ اأحخذهٌب طشيمة (.1,000,000هللى ّبعذد هي الذّسات الحيشاسية)

 الوٌفشد(الحمشيبية ّالحي جِضت برلْل لشيبة هي الرل ا هلل.

Abstract
This paper consider of scheduling n identical jobs with unequal ready times on m

parallel uniform machines to minimize the maximum earliness maxijj E|p,d,r|Q 1 .

To solve this lower bound is derived and it is incorporated in a branch-and-bound

algorithm, and introduces six simple single-pass heuristic procedures that approximate

the optimal solution. On sample problems, the branch-and-bound procedure in most

instances was able to find an optimal solution within 1,000,000 iterations with n ≤ 60

and m ≤ 3. For larger values of m, the heuristics provided approximate solutions close

to the optimal values.

1 INTRODUCTION

 We consider the problem of scheduling n identical jobs with unequal ready times on m uniform

parallel machines. In this paper, the term identical jobs means that all jobs have the same processing

time on a given machine and the term uniform machines means that the processing time of a job on

a particular machine is the ratio of the processing time of the job on a machine with a standard

speed to the speed of the particular machine [1]. With identical jobs and uniform parallel machines,

the processing time is only a function of the machine working on the job.

This configuration is applicable to capital intensive industries such as semiconductor

manufacturing where it is common to find newer, more modern machines running side by side with

older, less efficient machines which are kept in operation because of high replacement cost. In this

case, the different machines could be processing identical products. This problem is also relevant in

the garment industry where it is common to have seamstresses working at different speeds in

parallel. Our objective will be to minimize the maximum earliness Each job has a distinct ready

time ir and due date jd for j = 1, ..., n. The processing time of a job on machine i is ip for

i = 1, ..., m. The problem is to determine the job completion times jC , j = 1, …, n, that minimizes

the maximum earliness, maxE , where  0,CdmaxE jjj  and  jn,...,jmax EmaxE 1 . We use the

classification scheme as presented by Graham et al. [2] to formally state the problem as

mailto:hanan_altaai@yahoo.com
mailto:hussammath@yahoo.com

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 120

maxijj E|p,d,r|Q 1 . The first field specifies the job and machine configuration as the n-job

uniform parallel machine case. The second field states the job characteristics as the identical jobs

case with unequal ready times and distinct due dates. The designation ip = 1 implies that all jobs

take the same time to process on a given machine. The third field specifies the objective function as

minimizing the maximum earliness.

The majority of the literature on parallel machine scheduling considers the case of non-identical

jobs and identical machines. Recently, much research has been directed scheduling problems with

unrelated parallel machines please refer to [11, 12, 3, 5, 9]. More recent research with non-identical

jobs with equal ready times has focused on the non-identical machines case. For unrelated parallel

machines, Martin et al. [4] we present a combinatorial approximation algorithm that matches this

approximation quality and Omar [6] which presents a solution algorithm for the problem of

minimizing the makespan on unrelated parallel machines with machine eligibility restrictions under

fuzziness. For uniform parallel machines, Pinyan and Changyuan [7] develops a heuristic based on

a transportation algorithm to also minimize the maximum tardiness. Simons [9] presents a recursive

polynomial-time algorithm that guarantees optimality even when the ready times and due dates are

not integer multiples of the processing time.

We present six approximate heuristic solution procedures for the problem. A theoretical as well

as an experimental comparison of the heuristics is performed. We also present an efficient branch-

and-bound procedure that makes use of the heuristics to optimally solve the problem. In Section (3)

we compare the performance of the heuristics to the optimal solution procedure on sample

problems. The evaluation criteria for the optimal solution procedure (branch-and-bound) are (1) the

percentage of times an optimal solution is found given a prespecified time limit in the search and

(2) if an optimal solution is found the length of time required to derive the solution. The evaluation

criteria for the heuristic procedures are (1) the departure from optimality measured by the minimum

maximum earliness given by the heuristic sequence minus the optimal maximum earliness and (2)

the percentage of times that the heuristic found an optimal solution.

2 PROBLEM FORMULATION

We present an integer programming model formulation for problem maxijj E|p,d,r|Q 1 . Let

1ijkx if job j is the kth job in the sequence on machine i and zero otherwise. Define ikC as the

completion time of the kth job in the sequence on machine i, k = 1, ..., n and i = 1, . . ., m.

 Minimize
maxE

Subject to:

 

 

 

 

 

   

 

   

 910

811110

710

6100

51

411

311

2111

111

0

1 1

1

1

1

1 1

n,...jC

nk;nj;mi,x

n,...,jc

njcd,maxE

n,...,jCxc

n,...,k;m,...,icxrp

n,...,k;m,...,iccp

n,...,k;m,...,ix

n,...,jx

j

ijk

j

jjmax

jijk

m

i

n

k

ik

k,iijk

n

j

ji

k,ik,ii

n

j

ijk

m

i

n

k

ijk



























 







 

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 121

Equation (1) ensures that each job is assigned to only one position in the sequence for some

particular machine. Equation (2) guarantees that not more than one job is assigned to any position in

the sequence for any machine. Equation (3) restricts the kth job in the sequence of machine i from

starting until the (k–1)th job in the sequence finishes processing and Equation (4) prevents a job

from processing before its ready time. Equation (5) limits the completion time for each job and

Equation (6) defines the maximum earliness,
maxE .

3 HEURISTIC PROCEDURES

 We consider six heuristic procedures to find approximate solutions to problem

maxijj E|p,d,r|Q 1 . Some of these heuristics provide an optimal solution to special cases of the

problem. In all heuristic procedures considered, a job is scheduled on a machine when either a job

becomes ready for processing while a machine is free or the machine becomes available after

completing another job while the job to be scheduled is waiting. Note that a job can be released at

the same time a machine becomes available. In this case, there will be no job waiting time or idle

machine time. The heuristics differ in their selection of job and machine. The six procedures

presented here fall into three categories, depending on the choice of the machine for a given job to

schedule next. The first category selects the fastest available machine (FAM) and the next category

selects the machine that gives the earliest completion time (ECT). These two categories proceed in a

forward manner. The third category proceeds backward from an arbitrary distant point in time and

selects the machine that gives the latest slack time (LSPT). Within each machine category, two

rules for choosing the job are considered. The first depends on the original given job parameters and

the second depends on an updated version of these parameters. In the forward procedures the

parameter in question is the ready times and in the backward procedure it is the due date. In a

forward procedure the selected job is added at the end of the sequence on the machine selected. In a

backward procedure, it is added at the beginning. We next present the heuristics.

3.1 Fastest available machine procedures

 The first heuristic procedure selects the job to be scheduled next based on the ready times and

schedules the selected job on the fastest available machine. This heuristic is referred to as procedure

fastest available machine ready time (FAMR). That is, the job to be scheduled next is the job that

has been waiting the longest among the unscheduled jobs and ties are broken by selecting the job

with the minimum due date or minimum slack time. The job is scheduled on the fastest available

(idle) machine. If no machine is currently idle, wait for the first available machine. We now

formally present heuristic FAMR. Let N be the set of all jobs and iG the set of jobs that have been

assigned to machine i, i = 1, ..., m, ordered based on the sequence of processing. The heuristic is a

forward procedure that adds one job at a time to the end of set iG .

3.1.1 Procedure fastest available machine ready time (FAMR)

1. Order jobs in set N in non-decreasing order of ready times rj. Break ties by selecting the job

with the minimum due date dj or minimum slack time)(ij pd  .

2. Let job j be the first job in set n. Let ijs be the earliest start time of job j on machine i, i.e.

ijs = max(ir , ia) for i, i = 1, ..., m where ia is the completion time of the last job scheduled on

machine i. Let g be the machine that minimizes ijs , i = 1, ..., m. Break ties by selecting the

machine with the smallest processing time (fastest). Add job j to the end of the sequence in set

gG and let ggjj psC  and gg Ca  . Remove job j from set N.

3. If N is an empty set, stop; otherwise, go to step (2).

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 122

3.1.2 Procedure fastest available machine slack time (FAMS)

For due date performance measures, an obvious improvement to heuristic FAMR is to rank the

jobs based on their earliest start times instead of simply on their ready times. In this manner, if two

or more jobs are ready for processing when a machine becomes idle, the job with the minimum due

date is selected instead of the job that has been waiting the longest (i.e. the job with the minimum

ready time). The new heuristic referred to as FAMS may be formally stated as follows.

1. Set jij rs  for i = 1, ..., m and j = 1, ..., n.

2. Let h and g be the job and machine, respectively, that minimize ijs , i = 1, ..., m and Nj .

Break ties in j by selecting the job with the minimum due date or slack time and break ties in i

by selecting the machine with the smallest processing time. Add job h to the end of the sequence

in set gG and let gghh psC  . Remove job h from set N. Update  higl C,rmaxs  for all

Nl .

3. If N is an empty set, stop; otherwise, go to step (2).

3.2 Earliest completion time procedures

The above two heuristics are myopic in the sense that an unscheduled job is scheduled on the

fastest machine currently idle. It might be better for the job to wait for a faster machine that is

currently busy but will be available in the near term. We now present two forward sequencing

procedures that look ahead in time. The heuristic procedures make use of the earliest completion

time (ECT) rule to select the machine for processing and are referred to as procedures earliest

completion time ready time (ECTR) and earliest completion time slack time (ECTS), respectively.

If more than one machine can complete a job at the same time, the machine with the longest

processing time is selected so that the faster processing machines can be saved for later jobs. As

before, in procedure ECTR the job is selected based on the ready times and in procedure ECTS the

job is selected based on the earliest start times, and ties in both procedures are broken by selecting

the job with the smallest due date. The heuristics can be formally presented as follows.

3.2.1 Procedure earliest completion time ready time (ECTR)

1. Order jobs in set N in non-decreasing order of ready times rj. Break ties by selecting the job

with the minimum due date dj or slack times sij.

2. Let job j be the first job in set N. Let ijt be the completion time of job j if scheduled on machine

i, i.e.   iiiij pa,rmaxt  for i, i = 1, ..., m where ia is completion time of the last job in the

sequence in set iG . Let g be the machine that minimizes ijt , i = 1, ..., m, j = 1, ..., n. Break ties

by selecting the machine with the longest processing time (the slowest machine). Add job j to

the end of the sequence in set gG and let gjj tC  and jg Ca  . Remove job j from set N.

3. If N is an empty set, stop; otherwise, go to step (2).

3.2.2 Procedure earliest completion time slack time (ECTS)

1. Set jij rs  for i = 1, ..., m and j = 1, ..., n.

2. Let job ij be the job with the minimum ijs on machine i for Nj and i = 1, ..., m. Among ties

in ijs , select the job with the minimum due date. Let ii jt , be the completion time of job ij if

scheduled on machine i, i.e.   iijij pa,rmaxt
ll

 for i = 1, ..., m where ia is the completion

time of the last job in the sequence in set iG . Let g be the machine that minimizes ii jt , ,

i = 1, ..., m. Break ties by selecting the slowest machine. Let h be job gj . Add job h to the end

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 123

of the sequence in set
gG and let ghh tC  and hg Ca  . Remove job h from set N. Update

 hlgl C,rmaxs  for all Nl .

3. If N is an empty set, stop; otherwise, go to step (2).

3.3 Latest slack time procedures

We now present two backward sequencing heuristics that are analogous to heuristic procedures

ECTR and ECTS but in reverse time. The heuristics make use of the latest slack time (LSPT) rule to

select the machine for processing and we are referred to as Latest start time due date (LSTD) and

Latest start time finish times (LSTF), respectively. That is, an unscheduled job is assigned to a

machine that can start processing it the latest. Let
jS , j = 1, ..., n, be the latest slack time of job j. In

procedure LSTD the job is selected based on the due dates and in procedure LSTF the job is

selected based on the possible finish times and in both procedures ties are broken by selecting the

job with the largest ready time. In the backward sequencing heuristics the unscheduled jobs are

added to the front of set iG .

3.3.1 Procedure Latest start time due date (LSTD)

1. Order jobs in set N in non-increasing order of due dates. Break ties by selecting the job with the

maximum ready time.

2. Let job j be the first job in set n. Let ije be the slack time of job j if scheduled on machine i, i.e.

  iijij pq,dmine  for i, i= 1, ..., m where iq is the slack time of the first job placed in the

sequence in set iG . Let g be the machine that maximizes ije , i = 1, ..., m, j = 1, ...,n. Add job j to

the beginning of the sequence in set gG and let gjj eS  and jg Sq  . Remove job j from set N.

3. If N is an empty set, stop; otherwise, go to step (2).

3.3.2 Procedure Latest start time finish times (LSTF)

1. Set the latest finish times jij df  for i = 1, ..., m and j = 1, ..., n.

Let job ij be the job with the maximum ijf on machine i for Nj and i = 1, ..., m. Among ties

in ijf , select the job with the maximum ready time. Let ii je , be the start time of job ij if

scheduling identical jobs with unequal ready times on uniform parallel machines scheduled on

machine i, i.e.   iijij pq,dmine
ii

 for i, i = 1, ..., m where iq is the start time of the first job

placed in the sequence in set iG . Let g be the machine that maximizes ii je , , i = 1, ..., m, and let

h be job gj . Add job h to the beginning of the sequence in set gG and let ghh eS  and hg Sq  .

Remove job h from set N. Update  hlgl S,dminf  for all Nl .

2. If N is an empty set, stop; otherwise, go to step (2).

Proposition 1: Let 1

maxE be the maximum earliness given by heuristic LSPTD and 2

maxE be the

maximum earliness given by heuristic LSPTF. Then, 1

maxE ≤ 2

maxE

Proof: The two heuristics generate a schedule with identical busy periods for each machine i,

i = 1, ..., m. What may differ in the solution between the two heuristics is the job allocation to the

busy periods. Given a known busy period with latest slack time and two or more jobs with ready

times less than the slack time of the busy period, choosing the job with the minimum due date gives

a no worse maximum earliness than any other selection rule. Note this is the selection criterion for

heuristic LSPTD.

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 124

4 BRANCH-AND-BOUND PROCEDURE

 For problem maxijj E|p,d,r|Q 1 , the heuristics presented in Section (3) do not guarantee an

optimal solution even when the order of jobs according to ready times is identical to that of their

due dates. Refer to Simons's procedure as algorithm Opt_m1. This algorithm forms the basis for our

branch-and-bound procedure. For this problem, a total schedule is defined by an allocation of jobs

to machines,
t , and a sequence of the jobs allocated to each machine,

t . The number of possible

allocations of jobs to machines for this problem is)(nmO , and for each machine i, i = 1, ..., m, the

number of possible sequences of jobs assigned to it is in ! Where in is the number of jobs on

machine i with nn
m

i

i 
1

. The number of possible sequences on all machines for a particular

allocation,
t , is 



m

i

in
1

 with an upper bound n!. This makes the upper bound on the number of

possible sequences,
t ,)((nmO . A branch-and-bound procedure that searches in this complete

space will thus have a worst case node complexity of)(nmnO . However, given a particular job to

machine allocation, an optimal solution can be found by using algorithm Opt_m1 to sequence each

machine. Therefore, the branch-and-bound procedure focuses only on the allocation of jobs to

machines. This observation is summarized in the following proposition.

4.1 Overview of procedure

The solution method follows a branch-and-bound procedure, with each node in the branching

tree representing a partial assignment of jobs to machines s =),...,(1 mss , where  m...,,i,si 1 is the

partial allocation on machine i. Let the job sequence on all machines given the partial allocation, s,

be  my,...,yy 1 where  m,...,iyi 1 is the sequence on machine i. The root of the tree represents

s = b. A node at level l in the branching tree represents the allocation of jobs 1, ..., l. Let h be the set

of jobs not in s. Branching from a node represents the allocation of a job Hj to some machine

 m,...,i,si 1 . The choice of job j from h is based on a non-decreasing order of jr . Hence, we index

jobs in h in a non-decreasing order of jr . Given the partial allocation of jobs to machines s.

We now present a procedure that determines a lower bound,
maxE . The first part of the

procedure determines a lower bound for the jobs in the allocated set s and the second part for the

unscheduled jobs in set h.

4.2 Procedure LB

1. Sequence the jobs allocated to machine i, i , using the single machine algorithm Opt_m1 by

Simons [9] to get i , for i = 1, ..., m.

2. For the sequence i , compute the earliness  0,CdmaxE iii  for ij  .

3. Set jHj rr minmin , set min

' rrj  for Hj .

4. Solve the sequencing problem of jobs in h as the equal ready time problem of

maxijj E|p,d,r|Q 1 using procedure ECTS. Let the resulting job to machine allocation and

sequence be   and  , respectively.

5. For each sequence i  m...,,i, 1 , compute the completion times jC using the ready times jr

and compute the earliness  0,CdmaxE jjj  for Hj .

6. Set the lower bound  jn,...,jmax EmaxE 1 .

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 125

The validity of the proposed branch-and-bound procedure is derived from the use of algorithm

Opt_m1 in both branching and bounding. The rationale of the branching procedure is to limit the

search to all possible job-to-machine allocations rather than schedules, since the optimum sequence

for a given allocation can be obtained in polynomial time by applying Opt_m1 to sequence jobs on

each machine.

The validity of the proposed lower bound on maxE given a particular partial allocation is based

on the way the sets of jobs, those already allocated and those unallocated, are scheduled. The

allocated set is scheduled using Opt_m1, which provides the minimum maxE for that set. The

unallocated set is scheduled using ECT, assuming the ready times of all jobs in the set to be equal to

the minimum in the set. This yields a lower bound on maxE for all unallocated jobs, regardless of the

sequencing of allocated jobs. It is also because of the application of algorithm Opt_m1 that the

order of selecting jobs to add to a partial allocation does not affect the final solution, since jobs are

later resequenced using that algorithm. However, selecting the job with minimum ready time helps

to improve the efficiency of the algorithm, since it allows the partitioning of the problem, as

explained in the following discussion. Let ia (i = 1, ..., m), be the completion time of the last job

sequenced on machine i given by i . The quantity i represents the availability time of machine i

to process an additional unscheduled job. If mini ra  for all i, i = 1, ..., m, then the two sets  and

 are disjoint and a complete job to machine allocation,
t can be given by  t

and a

complete job sequence,
t , can be given by  t

.

4.3 Complete branch-and-bound procedure

Let  be the list of open nodes. An open node is closed and removed from  if all its branches

have been generated or its lower bound exceeds an existing feasible solution. Note that the

maximum number of nodes that the branch-and-bound procedure will evaluate is O(
nm).

The complete branch-and-bound procedure is as follows.

1. Set the upper bound u

maxE to the minimum maximum earliness given by the procedures FAMR,

FAMS, ECTS and LSPTF and let
u be the resulting job sequence. Initialize the list of open

nodes  as the root node   . Let the set of unscheduled jobs h be the set of all jobs N.

2. Remove an open node from  and let the partial job to machine allocation given by that node

be  and the sequence of jobs given by  be  . Let h be the set of jobs not in  . Let the

relaxed ready times be jr and the actual ready times be jr for j = 1, ..., n. Set jHjmin rminr  ,

jj rr  , for sj , and minj rr  for Hj . Let the machine availability time ia , i = 1, ..., m,

be the completion time of the last job in the sequence .i

3. Use procedure LB to obtain the lower bound maxE (). If u

maxmax E)(E  , go to step (8).

Otherwise go to step (4).

4. If mini ra  for all i, set the complete job to machine allocation,
t to  t

and set the

complete job sequence,
t , to  t

, and go to step (5). Otherwise, go to step (6).

5. Check if the complete allocation
t is optimal given the partial allocation  . If jjbj rpC )(

for each Hj and i = 1, ..., m, where b(j) is the machine allocated to job j in s
t , then the

complete job to machine allocation
t is an optimal allocation given the partial allocation  .

Update)(EE max

u

max  and
tu   and go to step (8). Otherwise, go to step (6).

6. Generate a feasible schedule for the complete allocation
t . For the sequence

t

j , forward

schedule on machine i, i = 1, ..., m, to compute the new completion times jC using the actual

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 126

ready times jr and compute the earliness  0,CdmaxE jjj  for t

jj  . If

jn,...,j

u

max EmaxE 1 update jn,...,j

u

max EmaxE 1 and tu   .

7. Let j be the job with the minimum ready time in set h and break ties by selecting the job with

the minimum due date. For each machine i, i = 1, ..., m, generate a new branch node that

represents the allocation of job j to machine i. The generation of the branch node is as follows.

Set iyiy  , . Set  jii  and perform the following test. If ij ar  , add j to the end

of the partial sequence i ; otherwise, recomputed a new sequence i with the jobs in allocation

i using algorithm Opt_m1. Refer to this allocation and sequence as
i and

i . Add the

allocation i and resulting sequence i as an open node in  . Note that the set offspring nodes

to  is the nodes
i , i = 1, ..., m.

8. If there are open nodes in the list  , go to step (2); otherwise, the optimal sequence is given by
u and the optimal maximum earliness is given by u

maxE .

5 NUMERICAL EXPERIMENTS

We experimentally compared the effectiveness of solutions generated by the heuristic

procedures with the optimal solutions generated by the branch-and-bound procedure. The purpose

of the experimentation was two-fold. First, it was desired to find how large the problem sizes in

terms of m and n the branch-and-bound procedure can efficiently solve. Second, for cases where the

branch-and-bound procedure cannot find an optimal solution it was desired to identify the best

performing heuristic for different scenarios of the ready times and due dates. Since the number of

nodes to evaluate in the branch-and-bound procedure is O(mn), we tested the effectiveness of the

solution procedures on different combinations of the number of machines and the number of jobs.

The values tested for the number of jobs were 10, 20, 40 and 60 and for the number of machines

were 2, 3 and 5. Integer data of the processing time on each machine and the ready time and due

date of each job were generated from uniform distributions between 1 and maxmax R,P and maxD ,

respectively. Note that adding a constant to all values of ready times or due dates does not change

the optimal sequence, though it will affect the earliness of jobs. Hence, it is the relative values of

the ready times and due dates, rather than the absolute values, that affect the optimum sequence.

Accordingly, we designed experiments to cover different ranges of ready times and due dates,

expressed as [1, maxR] and [1, maxD], respectively. Also, the range of processing times is defined as

[1, maxP]. Tested ranges for both maxR and maxD were 10, 50 and 100 and for maxP were 10 and 50.

A depth-first branching strategy was used for the branch-and-bound procedure with the

offspring nodes generated in order of the machine's processing time. This branching strategy was

used because of its minimal storage requirements and it consistently outperformed other branching

strategies (e.g. breadth-first and smallest lower bound). We stopped the branch-and-bound

procedure after 1,000,000 nodes were evaluated so that many experiments could be performed. For

each scenario, 30 experiments were run. The Branch and bound algorithm was test by coding it in

Microsoft Fortran power station and runs on a Pentium IV at 3.33 GHz, 512 MB computer. To gain

insight and understand the relationship between the various problem parameters, we first held the

number of jobs fixed to a small number, n = 10, and varied the other parameters of the model. Then,

we tested the sensitivity of the results for larger values of the number of

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 127

Table (1). Number of runs and optimal solution is reached out of 30 runs, with n = 10, for branch-

and-bound and heuristic procedures Heuristics

Heuristics

No. of times opt.

FAMR FAMS ECTS LSPTF

Branch and bound

No. opt. averg. nodes ax. nods maxD maxR maxp m

27 28 16 5 75 5.5 30 10 10 10 2

28 21 20 10 261 23.3 30 50 10 10 2

29 23 23 13 201 14.6 30 100 10 10 2

21 30 26 26 93 8.9 30 10 50 10 2

25 26 24 24 661 42.2 30 50 50 10 2

26 26 24 24 177 14.8 30 100 50 10 2

22 30 27 27 1031 62.0 30 10 100 10 2

25 29 28 28 983 91.9 30 50 100 10 2

26 29 27 27 907 38.8 30 100 100 10 2

28 26 13 1 1 1.6 30 10 10 50 2

20 23 10 0 664 32.1 30 50 10 50 2

19 15 10 0 403 62.2 30 100 10 50 2

22 17 7 2 95 4.7 30 10 50 50 2

20 19 9 0 185 19.5 30 50 50 50 2

21 11 8 2 225 26.6 30 100 50 50 2

14 21 16 13 33 4.9 30 10 100 50 2

15 19 14 9 235 13.1 30 50 100 50 2

16 18 8 6 315 26.6 30 100 100 50 2

62 22 13 6 8509 435.9 30 10 10 10 3

28 19 15 11 11527 738.2 30 50 10 10 3

30 19 19 16 20887 1101.0 30 100 10 10 3

22 29 27 27 55696 2703.2 30 10 50 10 3

27 28 27 27 49957 2907.9 30 50 50 10 3

29 28 28 28 15529 634.8 30 100 50 10 3

25 30 30 30 55810 3553.3 30 10 100 10 3

28 30 30 30 50749 2335.1 30 50 100 10 3

29 30 30 30 44542 20679 30 100 100 10 3

23 22 8 1 4490 346.4 30 10 10 50 3

19 17 7 1 2632 306.8 30 50 10 50 3

13 8 4 2 8137 1234.5 30 100 10 50 3

19 20 12 5 334 20.2 30 10 50 50 3

13 15 9 5 7495 626.5 30 50 50 50 3

13 11 11 8 26590 1473.9 30 100 50 50 3

11 25 13 12 11149 723.2 30 10 100 50 3

11 23 16 15 18388 1527.2 30 50 100 50 3

8 22 15 15 5338.3 3233.2 30 100 100 50 3

25 26 21 19 73836 3706.6 28 10 10 10 5

26 27 24 25 19531 1532.1 27 50 10 10 5

26 27 27 26 19531 1417.9 27 100 10 10 5

23 26 24 24 96591 4373.9 26 10 50 10 5

24 27 27 26 21658 1679.9 27 50 50 10 5

29 28 29 29 19631 1233.5 29 100 50 10 5

22 23 23 23 97654 4928.0 24 10 100 10 5

23 26 26 26 19531 1635.6 26 50 100 10 5

27 27 27 27 19531 1628.2 27 100 100 10 5

16 23 0 0 29141 1236.0 30 10 10 50 5

12 9 2 1 14436 2350.8 28 50 10 50 5

19 7 3 2 22176 3442.4 27 100 10 50 5

19 19 8 8 15651 1009.1 29 10 50 50 5

13 14 6 6 12896 1445.7 26 50 50 50 5

16 14 10 8 17601 1065.8 25 100 50 50 5

13 23 16 16 68671 4327.8 28 10 100 50 5

16 21 19 19 41401 3273.9 28 50 100 50 5

16 18 21 21 24511 1698.3 25 100 100 50 5

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 128

 Table (1) shows the results of the branch-and-bound procedure. For each scenario, Table (1) lists

the number of times an optimal solution was found out of the 30 runs and the average and the

maximum number of nodes evaluated in the branch-and-bound procedure to find an optimal

solution. Table (1) also lists the number of times each heuristic gave the optimal solution out of the

30 runs. Table(2) reports for each heuristic the average departure from optimality measured by the

maximum earliness given by the heuristic sequence minus the optimal maximum earliness. The

general findings of these experiments are summarized as follows:

(1) Comparing the heuristics: As Tables (1) and (2) show, the most myopic of the heuristic rules,

FAMR, is consistently outperformed by some other heuristic in all the experiments. The two

best performing heuristics were ECTS and LSPTF. Heuristic ECTS performed best on average

when maxR is greater than maxD while Latest start time finish times (LSTF) performed best on

average when maxD is greater than maxR . These results suggest a forwarding sequencing

heuristic based on ready times be used

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 129

Table (2). Average deviation from the optimal solution for the various heuristics with n =10

Average deviation from the optimality

FAMR FAMS ECTS LSTF mR mR mR m

0.100 0.067 0.933 2.967 10 10 10 2

0.100 0.700 1.000 5.367 50 10 10 2

0.033 0.700 0.733 4.100 100 10 10 2

0.367 0.000 0.500 0.500 10 50 10 2

0.567 0.200 0.367 0.367 50 50 10 2

0.367 0.200 0.433 0.433 100 50 10 2

0.367 0.000 0.300 0.300 10 100 10 2

0.600 0.033 0.133 0.133 50 100 10 2

0.400 0.033 0.233 0.233 100 100 10 2

0.368 0.167 3.600 5.533 10 10 50 2

0.200 1.100 6.833 20.500 50 10 50 2

1.000 3.933 8.067 37.100 100 10 50 2

1.867 1.733 5.957 7.500 10 50 50 2

1.067 1.800 6.300 17.400 50 50 50 2

1.233 2.433 5.300 27.667 100 50 50 2

1.606 1.033 4.933 5-967 10 100 50 2

2.833 1.333 5.633 11.933 50 100 50 2

2.000 2.300 5.667 15.500 100 100 50 2

2.300 0.367 1.400 3.033 10 10 10 3

0.333 0.633 1.200 2.867 50 10 10 3

0.100 0.633 0.933 2.300 100 10 10 3

0.000 0.033 0.267 0.267 10 50 10 3

0.433 0.100 0.233 0.233 50 50 10 3

0.233 0.167 0.233 0.233 100 50 10 3

0.367 0.000 0.000 0.000 10 100 10 3

0.233 0.000 0.000 0.000 50 100 10 3

0.033 0.000 0.000 0.000 100 100 10 3

0.400 0.533 6.033 8.100 10 10 50 3

1.667 2.700 8.600 20.733 50 10 50 3

2.700 6.944 10.933 30.633 100 10 50 3

1.000 0.747 5.800 7.000 10 50 50 3

2.567 3.200 8.400 15.600 50 50 50 3

3.236 4.200 7.533 19.400 100 50 50 3

3.633 0.433 6.467 6.933 10 100 50 3

3.400 1.600 6.833 9.167 50 100 50 3

4.100 2.700 7.167 10.033 100 100 50 3

0.133 0.067 0.675 0.867 10 10 10 5

0.076 0.000 0.167 0.300 50 10 10 5

0.033 0.033 0.033 0.133 100 10 10 5

0.233 0.000 0.133 0.133 10 50 10 5

0.133 0.000 0.000 0.000 50 50 10 5

0.033 0.000 0.000 0.000 100 50 10 5

0.033 0.033 0.033 0.033 10 100 10 5

0.033 0.000 0.000 0.000 50 100 10 5

0.033 0.000 0.000 0.000 100 100 10 5

1.500 0.033 0.033 0.033 10 10 50 5

3.267 0.000 0.000 0.000 50 10 50 5

1.033 0.000 0.000 0.000 100 10 50 5

3.000 1.667 10.533 11.033 10 50 50 5

2.700 1.733 10.767 12.567 50 50 50 5

1.067 2.033 9.167 11.633 100 50 50 5

4.000 0.233 3.400 3.400 10 100 50 5

2.600 0.667 2.700 2.700 50 100 50 5

1.333 1.133 2.433 2.433 100 100 50 5

when the variability in ready times is the greatest and a backward sequencing heuristic based on due

dates be used when the variability in due dates is the greatest.

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 130

(2) Sensitivity to maxR and maxD : The average time to compute an optimal solution in most of the

scenarios is greater for the case when maxR > maxD than for the case when maxR < maxD . For

example, the average number of nodes evaluated is 1101.0 when m = 3, maxP = 10, maxR = 10

and maxD = 100 while it increases to 3553.3 when maxR and maxD are reversed. These findings

are not surprising since the proposed branch-and-bound procedure is a forward sequencing

procedure and as maxR increases the lower bounds in the procedure become less tight. These

results suggest that a backward sequencing branch-and-bound procedure be used when

maxR > maxD .

(3) Sensitivity to m: Since the number of feasible sequences increases exponentially with m, the

time it takes to find an optimal solution also increases as m increases. As Table (1) shows, the

branch-and-bound procedure consistently found the optimal solution when there were 3 or less

uniform parallel machines. For m = 5, the branch-and-bound procedure was stopped before

finding an optimal solution in some of the scenarios. For example, with maxP = 50, maxR = 50 and

maxD = 50, the procedure was able to find the optimal solution in 26 out of the 30 runs. For this

scenario, a heuristic may be required to approximate the optimal solution. Fortunately, as m

increases the heuristics on average provided a better approximation in terms of the absolute

deviation from optimality. The heuristics performed better when m increases while n is constant

because with more machines it is less likely that any interchange in the job sequence on a

particular machine given by the best single heuristic will improve the earliness criteria since

there are fewer jobs scheduled on each machine.

(4) Sensitivity to maxP : It takes a little longer on average to find an optimal solution when maxP = 10

than when maxP = 50 because with a smaller processing time and the same maxR the more likely

there is idle time on a machine between two adjacent jobs in the sequence, thereby reducing the

quality of the lower bound in the branch-and-bound procedure. However, as Table(1) shows the

heuristics provide a near-optimal approximation with a small maxP .

(5) Sensitivity to n: We now focus on testing the sensitivity of the results for larger values of n.

Because of the symmetry of the problem, we considered only the cases when maxR  maxD since

similar conclusions may be drawn when maxR  maxD . These experiments evaluated the

performance of the branch-and-bound procedure as n increases as well as the performance of

heuristic

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 131

Table (3). Performance of branch-and-bound procedure and heuristic LSTF for maxP =50

LSPT

No. opt. devia. opt.

Branch and bound

No. opt. aver. nodes. max. nodes mD mR n m

0.500 23 3835 129 30 50 50 20 2

1.133 19 2097 135 30 100 50 20 2

0.000 30 1 0.01 30 50 50 40 2

0.233 27 1 0.01 30 100 50 40 2

0.033 29 1 0.01 30 50 50 80 2

0.133 27 1 0.01 30 100 50 80 2

0.533 24 23272 1.152 30 50 50 20 3

1.333 16 81346 4.065 30 100 50 20 3

0.300 25 1 0.01 30 50 50 40 3

1.033 18 488 03.4 30 100 50 40 3

0.200 26 1 0.01 30 50 50 80 3

0.600 21 1 0.01 30 100 50 80 3

1.567 12 33016 1.12 4 20 50 50 20 5

2.367 7 1801 119 17 100 50 20 5

0.833 20 1 0.01 28 50 50 40 5

1.100 15 336 01.2 22 100 50 40 5

0.200 25 1 0.01 30 50 50 80 5

0.833 15 1 0.01 29 100 50 80 5

Table (4). Summary of experimental findings

Range on parameters Suggested procedure

m ≤ 3 and maxR < maxD forward sequencing branch-and-bound algorithm

m ≤ 3 and maxD < maxR backward sequencing branch-and-bound algorithm

m > 3 and maxD < maxR heuristic ECTS

m > 3 and maxR < maxD heuristic LSTF

6 CONCLUSIONS

This paper develops a branch-and-bound enumerative procedure that optimally solves the

problem of scheduling n identical jobs with unequal ready times on m parallel uniform machines to

minimize the maximum earliness. The branch-and-bound procedure searches over the assignment of

jobs to machines. Given the assignment, each machine's job sequence is determined using Simon's

[10] single-machine sequencing algorithm. The number of nodes evaluated in the branch-and-bound

procedure increases as the number of parallel machines increases. However, as the number of jobs

increases for a fixed number of machines the problem becomes easier to solve optimally because

the presented lower and upper bounds give tighter bounds due to reduced machine idle time. For a

large number of parallel machines, heuristics may be necessary to find approximate optimal

solutions.

Table (4) summarizes our findings from the experimental analysis. The purpose of analyzing the

heuristics is to identify which ones provide the closest approximation to the optimal solution under

different ranges of the ready times, processing times, and due dates. The worst performing heuristic

is FAMR. The better performing heuristics are the ones with a look ahead capabilityon the

completion time of the machines. The forward sequencing procedure ECTS performed the best

when the variability in the ready times is greater than the variability in the due dates while the

backward sequencing procedure LSTF performed the best when the variability on the due dates is

larger.

 Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010

 132

REFERENCES

[1] T. C. E. Cheng and C. C. S. Sin. A state-of-the-art review of parallel-machine scheduling

research. European Journal of Operational Research. 47: 271-292, 1990.

[2] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and

approximation in determining sequencing and scheduling: A survey. Annals of Discrete

Mathematics. 5:287-326, 1979.

[3] K. Jansen and L. Porkolab. Improved approximation schemes for Scheduling unrelated parallel

machines. Mathematics of Operation research. 26:324-338, 2001.

[4] G. Martin ,M. Bark and W. Andreas. A faster combinatorial approximation algorithm for

scheduling unrelated parallel machines. Theoretical Computer Science. 380: 87-99, 2007.

[5] E. Mokotoff and P. Chretienne. A cutting plane algorithm for the unrelated parallel machine

scheduling problem. European Journal of operational Research. 141:515-325, 2002.

[6] M. Omar. On the solution of the problem of scheduling unrelated parallel machines with

machines eligibility restrictions under Fuzziness. Trendsin Applied Sciences Research 2(5):404

-411, 2007.

[7] Lu. Pinyan and Yu. Changyuan. An improved randomized truthful mechanism for scheduling

unrelated machines. Symposium of Theoretical Aspects of Computer Science. 21:527-538,

2008.

[8] E.V. Shchepin ,N Vakhania. An optimal rounding gives a better approximation for scheduling

unrelated machines. Operation Research Letters. 33:127-133, 2005.

[9] B. Simons. A fast algorithm for single processor scheduling. Proceedings of the Nineteenth

Annual Symposium on Foundations of Computer Science. 246-252, 1978.

 [10] F. Sourd. Scheduling tasks on unrelated machines; large neighborhood improvement

procedures. Journal of Heuristics. 7:519-521, 2005.

 [11] V. Suresh and D. Chaudhuri. Minimizing maximum tardiness for unrelated parallel machines.

International Journal of Production Economics, 34:223-229, 1994.

[12] V. Suresh and D. Chaudhuri. Bicriteria scheduling problem for unrelated parallel machines.

Computers and Industrial Engineering. 30:77-82, 1996.

