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 المستخلص
هييي  nفييي ُييزا البريي  دسأييث  هسييالة جذّليية الويييبلي الوحْاصييية الوْحذارامييز بٌدييش ا عحبييبس هسييالة جذّليية 

الِيذ  ُيْ جيجيبد الجذّلية الولليى لحلي   هي الوييبلي الوحْاصيية الوْحيذا. mعلى الإعوبل غيش الوحيبفئة ّالوحطببمة 

maxijjالإعوبل لحصغيش هسالة  E|p,d,r|Q 1. .ّّصفٌب عذد هيي الطشاليك الولليى  ّلذهٌب الصيغة الشيبضية

 (.B&B) حفيش  ّالحمييذلرل ُزٍ الوسالة فمذ الحشحٌب ليذ أدًى  أحخذاهَ في طشيمية ال ّالحمشيبية لرل ُزٍ الوسالة.

فيي حبلية  )الوويش الوٌفيشد( ّالحيي ججِيض برليْل لشيبية هيي الريل ا هليل. ّلذ اأحخذاهٌب طشق جمشيبيية بسييطة رات

على الحشجيب فمذ جن الحْصيل جليى حليْل  n ≤ 60 ,m ≤ 3الوسبلل البسيطة الحي ييْى عذد الإعوبل ّعذد الويبلي 

)الووش  أهب الوسبلل رات عذد هيبلي اكبش فمذ اأحخذهٌب طشيمة (.1,000,000هللى ّبعذد هي الذّسات  الحيشاسية )

 الوٌفشد( الحمشيبية ّالحي جِضت برلْل لشيبة هي الرل ا هلل.

Abstract 
This paper consider of scheduling n identical jobs with unequal ready times on m 

parallel uniform machines to minimize the maximum earliness maxijj E|p,d,r|Q 1 . 

To solve this lower bound is derived and it is incorporated in a branch-and-bound 

algorithm, and introduces six simple single-pass heuristic procedures that approximate 

the optimal solution. On sample problems, the branch-and-bound procedure in most 

instances was able to find an optimal solution within 1,000,000 iterations with n ≤ 60 

and m ≤ 3. For larger values of m, the heuristics provided approximate solutions close 

to the optimal values. 

1    INTRODUCTION 

 We consider the problem of scheduling n identical jobs with unequal ready times on m uniform 

parallel machines. In this paper, the term identical jobs means that all jobs have the same processing 

time on a given machine and the term uniform machines means that the processing time of a job on 

a particular machine is the ratio of the processing time of the job on a machine with a standard 

speed to the speed of the particular machine [1]. With identical jobs and uniform parallel machines, 

the processing time is only a function of the machine working on the job. 

This configuration is applicable to capital intensive industries such as semiconductor 

manufacturing where it is common to find newer, more modern machines running side by side with 

older, less efficient machines which are kept in operation because of high replacement cost. In this 

case, the different machines could be processing identical products. This problem is also relevant in 

the garment industry where it is common to have seamstresses working at different speeds in 

parallel. Our objective will be to minimize the maximum earliness Each job has a distinct ready 

time ir  and due date jd  for j = 1, ..., n. The processing time of a job on machine i is ip  for              

i = 1, ..., m. The problem is to determine the job completion times jC , j = 1, …, n, that minimizes 

the maximum earliness, maxE , where  0,CdmaxE jjj   and  jn,...,jmax EmaxE 1 . We use the 

classification scheme as presented by Graham et al. [2] to formally state the problem as 
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maxijj E|p,d,r|Q 1 . The first field specifies the job and machine configuration as the n-job 

uniform parallel machine case. The second field states the job characteristics as the identical jobs 

case with unequal ready times and distinct due dates. The designation ip = 1 implies that all jobs 

take the same time to process on a given machine. The third field specifies the objective function as 

minimizing the maximum earliness. 

The majority of the literature on parallel machine scheduling considers the case of non-identical 

jobs and identical machines. Recently, much research has been directed scheduling problems with 

unrelated parallel machines please refer to [11, 12, 3, 5, 9]. More recent research with non-identical 

jobs with equal ready times has focused on the non-identical machines case. For unrelated parallel 

machines, Martin et al. [4] we present a combinatorial approximation algorithm that matches this 

approximation quality and Omar [6] which presents a solution algorithm for the problem of 

minimizing the makespan on unrelated parallel machines with machine eligibility restrictions under 

fuzziness. For uniform parallel machines, Pinyan and Changyuan [7] develops a heuristic based on 

a transportation algorithm to also minimize the maximum tardiness. Simons [9] presents a recursive 

polynomial-time algorithm that guarantees optimality even when the ready times and due dates are 

not integer multiples of the processing time.  

We present six approximate heuristic solution procedures for the problem. A theoretical as well 

as an experimental comparison of the heuristics is performed. We also present an efficient branch-

and-bound procedure that makes use of the heuristics to optimally solve the problem. In Section (3) 

we compare the performance of the heuristics to the optimal solution procedure on sample 

problems. The evaluation criteria for the optimal solution procedure (branch-and-bound) are (1) the 

percentage of times an optimal solution is found given a prespecified time limit in the search and 

(2) if an optimal solution is found the length of time required to derive the solution. The evaluation 

criteria for the heuristic procedures are (1) the departure from optimality measured by the minimum 

maximum earliness given by the heuristic sequence minus the optimal maximum earliness and (2) 

the percentage of times that the heuristic found an optimal solution. 

2    PROBLEM FORMULATION 

We present an integer programming model formulation for problem maxijj E|p,d,r|Q 1 . Let 

1ijkx  if job j is the kth job in the sequence on machine i and zero otherwise. Define ikC  as the 

completion time of the kth job in the sequence on machine i, k = 1, ..., n and i = 1, . . ., m. 

               Minimize 
maxE    

Subject to: 

 

 

 

 

 

   

 

   

 910

811110

710

6100

51

411

311

2111

111

0

1 1

1

1

1

1 1

n,...jC

nk;nj;mi,x

n,...,jc

njcd,maxE

n,...,jCxc

n,...,k;m,...,icxrp

n,...,k;m,...,iccp

n,...,k;m,...,ix

n,...,jx

j

ijk

j

jjmax

jijk

m

i

n

k

ik

k,iijk

n

j

ji

k,ik,ii

n

j

ijk

m

i

n

k

ijk



























 







 

 



  Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010 
 

 

 121 

Equation (1) ensures that each job is assigned to only one position in the sequence for some 

particular machine. Equation (2) guarantees that not more than one job is assigned to any position in 

the sequence for any machine. Equation (3) restricts the kth job in the sequence of machine i from 

starting until the (k–1)th job in the sequence finishes processing and Equation (4) prevents a job 

from processing before its ready time. Equation (5) limits the completion time for each job and 

Equation (6) defines the maximum earliness, 
maxE . 

3    HEURISTIC PROCEDURES 

     We consider six heuristic procedures to find approximate solutions to problem 

maxijj E|p,d,r|Q 1 . Some of these heuristics provide an optimal solution to special cases of the 

problem. In all heuristic procedures considered, a job is scheduled on a machine when either a job 

becomes ready for processing while a machine is free or the machine becomes available after 

completing another job while the job to be scheduled is waiting. Note that a job can be released at 

the same time a machine becomes available. In this case, there will be no job waiting time or idle 

machine time. The heuristics differ in their selection of job and machine. The six procedures 

presented here fall into three categories, depending on the choice of the machine for a given job to 

schedule next. The first category selects the fastest available machine (FAM) and the next category 

selects the machine that gives the earliest completion time (ECT). These two categories proceed in a 

forward manner. The third category proceeds backward from an arbitrary distant point in time and 

selects the machine that gives the latest slack time (LSPT). Within each machine category, two 

rules for choosing the job are considered. The first depends on the original given job parameters and 

the second depends on an updated version of these parameters. In the forward procedures the 

parameter in question is the ready times and in the backward procedure it is the due date. In a 

forward procedure the selected job is added at the end of the sequence on the machine selected. In a 

backward procedure, it is added at the beginning. We next present the heuristics. 

3.1    Fastest available machine procedures  

       The first heuristic procedure selects the job to be scheduled next based on the ready times and 

schedules the selected job on the fastest available machine. This heuristic is referred to as procedure 

fastest available machine ready time (FAMR). That is, the job to be scheduled next is the job that 

has been waiting the longest among the unscheduled jobs and ties are broken by selecting the job 

with the minimum due date or minimum slack time. The job is scheduled on the fastest available 

(idle) machine. If no machine is currently idle, wait for the first available machine. We now 

formally present heuristic FAMR. Let N be the set of all jobs and iG  the set of jobs that have been 

assigned to machine i, i = 1, ..., m, ordered based on the sequence of processing. The heuristic is a 

forward procedure that adds one job at a time to the end of set iG . 

3.1.1    Procedure fastest available machine ready time (FAMR) 

1. Order jobs in set N in non-decreasing order of ready times rj. Break ties by selecting the job 

with the minimum due date dj or minimum slack time )( ij pd  . 

2. Let job j be the first job in set n. Let ijs  be the earliest start time of job j on machine i, i.e.       

ijs = max( ir , ia ) for i, i = 1, ..., m where ia  is the completion time of the last job scheduled on 

machine i. Let g be the machine that minimizes ijs , i = 1, ..., m. Break ties by selecting the 

machine with the smallest processing time (fastest). Add job j to the end of the sequence in set 

gG  and let ggjj psC   and gg Ca  . Remove job j from set N. 

3. If N is an empty set, stop; otherwise, go to step (2). 



  Journal of Kerbala University , Vol. 8 No.1 Scientific . 2010 
 

 

 122 

3.1.2    Procedure fastest available machine slack time (FAMS) 

For due date performance measures, an obvious improvement to heuristic FAMR is to rank the 

jobs based on their earliest start times instead of simply on their ready times. In this manner, if two 

or more jobs are ready for processing when a machine becomes idle, the job with the minimum due 

date is selected instead of the job that has been waiting the longest (i.e. the job with the minimum 

ready time). The new heuristic referred to as FAMS may be formally stated as follows. 

1. Set jij rs   for i = 1, ..., m and j = 1, ..., n. 

2. Let h and g be the job and machine, respectively, that minimize ijs , i = 1, ..., m and Nj . 

Break ties in j by selecting the job with the minimum due date or slack time and break ties in i 

by selecting the machine with the smallest processing time. Add job h to the end of the sequence 

in set gG  and let gghh psC  . Remove job h from set N. Update  higl C,rmaxs   for all 

Nl . 

3. If N is an empty set, stop; otherwise, go to step (2). 

3.2    Earliest completion time procedures 

The above two heuristics are myopic in the sense that an unscheduled job is scheduled on the 

fastest machine currently idle. It might be better for the job to wait for a faster machine that is 

currently busy but will be available in the near term. We now present two forward sequencing 

procedures that look ahead in time. The heuristic procedures make use of the earliest completion 

time (ECT) rule to select the machine for processing and are referred to as procedures earliest 

completion time ready time (ECTR) and earliest completion time slack time (ECTS), respectively. 

If more than one machine can complete a job at the same time, the machine with the longest 

processing time is selected so that the faster processing machines can be saved for later jobs. As 

before, in procedure ECTR the job is selected based on the ready times and in procedure ECTS the 

job is selected based on the earliest start times, and ties in both procedures are broken by selecting 

the job with the smallest due date. The heuristics can be formally presented as follows. 

3.2.1    Procedure earliest completion time ready time (ECTR) 

1. Order jobs in set N in non-decreasing order of ready times rj. Break ties by selecting the job 

with the minimum due date dj or slack times sij. 

2. Let job j be the first job in set N. Let ijt  be the completion time of job j if scheduled on machine 

i, i.e.   iiiij pa,rmaxt   for i, i = 1, ..., m where ia  is completion time of the last job in the 

sequence in set iG . Let g be the machine that minimizes ijt , i = 1, ..., m, j = 1, ..., n. Break ties 

by selecting the machine with the longest processing time (the slowest machine). Add job j to 

the end of the sequence in set gG  and let gjj tC   and jg Ca  . Remove job j from set N. 

3. If N is an empty set, stop; otherwise, go to step (2). 

3.2.2    Procedure earliest completion time slack time (ECTS) 

1. Set jij rs   for i = 1, ..., m and j = 1, ..., n. 

2. Let job ij  be the job with the minimum ijs  on machine i for Nj  and i = 1, ..., m. Among ties 

in ijs , select the job with the minimum due date. Let ii jt ,  be the completion time of job ij  if 

scheduled on machine i, i.e.   iijij pa,rmaxt
ll

  for i = 1, ..., m where ia  is the completion 

time of the last job in the sequence in set iG . Let g be the machine that minimizes ii jt , ,             

i = 1, ..., m. Break ties by selecting the slowest machine. Let h be job gj . Add job h to the end 
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of the sequence in set 
gG  and let ghh tC   and hg Ca  . Remove job h from set N. Update 

 hlgl C,rmaxs   for all Nl . 

3. If N is an empty set, stop; otherwise, go to step (2). 

3.3    Latest slack time procedures 

We now present two backward sequencing heuristics that are analogous to heuristic procedures 

ECTR and ECTS but in reverse time. The heuristics make use of the latest slack time (LSPT) rule to 

select the machine for processing and we are referred to as Latest start time due date (LSTD) and 

Latest start time finish times (LSTF), respectively. That is, an unscheduled job is assigned to a 

machine that can start processing it the latest. Let 
jS , j = 1, ..., n, be the latest slack time of job j. In 

procedure LSTD the job is selected based on the due dates and in procedure LSTF the job is 

selected based on the possible finish times and in both procedures ties are broken by selecting the 

job with the largest ready time. In the backward sequencing heuristics the unscheduled jobs are 

added to the front of set iG . 

3.3.1    Procedure Latest start time due date (LSTD) 

1. Order jobs in set N in non-increasing order of due dates. Break ties by selecting the job with the 

maximum ready time. 

2. Let job j be the first job in set n. Let ije  be the slack time of job j if scheduled on machine i, i.e. 

  iijij pq,dmine  for i, i= 1, ..., m where iq  is the slack time of the first job placed in the 

sequence in set iG . Let g be the machine that maximizes ije , i = 1, ..., m, j = 1, ...,n. Add job j to 

the beginning of the sequence in set gG  and let gjj eS   and jg Sq  . Remove job j from set N. 

3. If N is an empty set, stop; otherwise, go to step (2). 

3.3.2    Procedure Latest start time finish times (LSTF) 

1. Set the latest finish times jij df   for i = 1, ..., m and j = 1, ..., n. 

Let job ij  be the job with the maximum ijf on machine i for Nj and i = 1, ..., m. Among ties 

in ijf , select the job with the maximum ready time. Let ii je ,  be the start time of job ij  if 

scheduling identical jobs with unequal ready times on uniform parallel machines scheduled on 

machine i, i.e.   iijij pq,dmine
ii

  for i, i = 1, ..., m where iq  is the start time of the first job 

placed in the sequence in set iG . Let g be the machine that maximizes ii je , , i = 1, ..., m, and let 

h be job gj . Add job h to the beginning of the sequence in set gG  and let ghh eS   and hg Sq  . 

Remove job h from set N. Update  hlgl S,dminf   for all Nl . 

2. If N is an empty set, stop; otherwise, go to step (2). 

Proposition 1: Let 1

maxE  be the maximum earliness given by heuristic LSPTD and 2

maxE  be the 

maximum earliness given by heuristic LSPTF. Then, 1

maxE  ≤ 2

maxE  

Proof: The two heuristics generate a schedule with identical busy periods for each machine i,          

i = 1, ..., m. What may differ in the solution between the two heuristics is the job allocation to the 

busy periods. Given a known busy period with latest slack time and two or more jobs with ready 

times less than the slack time of the busy period, choosing the job with the minimum due date gives 

a no worse maximum earliness than any other selection rule. Note this is the selection criterion for 

heuristic LSPTD.   
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4    BRANCH-AND-BOUND PROCEDURE 

     For problem maxijj E|p,d,r|Q 1 , the heuristics presented in Section (3) do not guarantee an 

optimal solution even when the order of jobs according to ready times is identical to that of their 

due dates. Refer to Simons's procedure as algorithm Opt_m1. This algorithm forms the basis for our 

branch-and-bound procedure. For this problem, a total schedule is defined by an allocation of jobs 

to machines, 
t , and a sequence of the jobs allocated to each machine, 

t . The number of possible 

allocations of jobs to machines for this problem is )( nmO , and for each machine i,   i = 1, ..., m, the 

number of possible sequences of jobs assigned to it is in ! Where in  is the number of jobs on 

machine i with nn
m

i

i 
1

. The number of possible sequences on all machines for a particular 

allocation, 
t , is 



m

i

in
1

 with an upper bound n!. This makes the upper bound on the number of 

possible sequences, 
t , )(( nmO . A branch-and-bound procedure that searches in this complete 

space will thus have a worst case node complexity of )( nmnO . However, given a particular job to 

machine allocation, an optimal solution can be found by using algorithm Opt_m1 to sequence each 

machine. Therefore, the branch-and-bound procedure focuses only on the allocation of jobs to 

machines. This observation is summarized in the following proposition. 

4.1    Overview of procedure 

The solution method follows a branch-and-bound procedure, with each node in the branching 

tree representing a partial assignment of jobs to machines s = ),...,( 1 mss , where  m...,,i,si 1  is the 

partial allocation on machine i. Let the job sequence on all machines given the partial allocation, s, 

be  my,...,yy 1  where  m,...,iyi 1  is the sequence on machine i. The root of the tree represents 

s = b. A node at level l in the branching tree represents the allocation of jobs 1, ..., l. Let h be the set 

of jobs not in s. Branching from a node represents the allocation of a job Hj  to some machine 

 m,...,i,si 1 . The choice of job j from h is based on a non-decreasing order of jr . Hence, we index 

jobs in h in a non-decreasing order of jr . Given the partial allocation of jobs to machines s. 

We now present a procedure that determines a lower bound, 
maxE . The first part of the 

procedure determines a lower bound for the jobs in the allocated set s and the second part for the 

unscheduled jobs in set h. 

4.2    Procedure LB 

1. Sequence the jobs allocated to machine i, i , using the single machine algorithm Opt_m1 by 

Simons [9] to get i , for i = 1, ..., m. 

2. For the sequence i , compute the earliness  0,CdmaxE iii   for ij  . 

3. Set jHj rr minmin , set min

' rrj   for Hj . 

4. Solve the sequencing problem of jobs in h as the equal ready time problem of 

maxijj E|p,d,r|Q 1 using procedure ECTS. Let the resulting job to machine allocation and 

sequence be    and  , respectively. 

5. For each sequence i  m...,,i, 1 , compute the completion times jC  using the ready times jr  

and compute the earliness  0,CdmaxE jjj   for Hj . 

6. Set the lower bound  jn,...,jmax EmaxE 1 . 
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The validity of the proposed branch-and-bound procedure is derived from the use of algorithm 

Opt_m1 in both branching and bounding. The rationale of the branching procedure is to limit the 

search to all possible job-to-machine allocations rather than schedules, since the optimum sequence 

for a given allocation can be obtained in polynomial time by applying Opt_m1 to sequence jobs on 

each machine.  

The validity of the proposed lower bound on maxE  given a particular partial allocation is based 

on the way the sets of jobs, those already allocated and those unallocated, are scheduled. The 

allocated set is scheduled using Opt_m1, which provides the minimum maxE  for that set. The 

unallocated set is scheduled using ECT, assuming the ready times of all jobs in the set to be equal to 

the minimum in the set. This yields a lower bound on maxE  for all unallocated jobs, regardless of the 

sequencing of allocated jobs. It is also because of the application of algorithm Opt_m1 that the 

order of selecting jobs to add to a partial allocation does not affect the final solution, since jobs are 

later resequenced using that algorithm. However, selecting the job with minimum ready time helps 

to improve the efficiency of the algorithm, since it allows the partitioning of the problem, as 

explained in the following discussion. Let ia  (i = 1, ..., m), be the completion time of the last job 

sequenced on machine i given by i . The quantity i  represents the availability time of machine i 

to process an additional unscheduled job. If mini ra   for all i, i = 1, ..., m, then the two sets   and 

  are disjoint and a complete job to machine allocation, 
t can be given by  t

and a 

complete job sequence, 
t , can be given by  t

. 

4.3    Complete branch-and-bound procedure 

Let   be the list of open nodes. An open node is closed and removed from   if all its branches 

have been generated or its lower bound exceeds an existing feasible solution. Note that the 

maximum number of nodes that the branch-and-bound procedure will evaluate is O(
nm ). 

The complete branch-and-bound procedure is as follows. 

1. Set the upper bound u

maxE  to the minimum maximum earliness given by the procedures FAMR, 

FAMS, ECTS and LSPTF and let 
u  be the resulting job sequence. Initialize the list of open 

nodes   as the root node   . Let the set of unscheduled jobs h be the set of all jobs N. 

2. Remove an open node from   and let the partial job to machine allocation given by that node 

be   and the sequence of jobs given by   be  . Let h be the set of jobs not in  . Let the 

relaxed ready times be jr  and the actual ready times be jr  for j = 1, ..., n. Set    jHjmin rminr  , 

jj rr  , for sj , and minj rr   for Hj . Let the machine availability time ia , i = 1, ..., m, 

be the completion time of the last job in the sequence .i  

3. Use procedure LB to obtain the lower bound maxE ( ). If u

maxmax E)(E   , go to step (8). 

Otherwise go to step (4). 

4. If mini ra   for all i, set the complete job to machine allocation, 
t  to  t

and set the 

complete job sequence, 
t , to  t

, and go to step (5). Otherwise, go to step (6). 

5. Check if the complete allocation 
t  is optimal given the partial allocation  . If jjbj rpC  )(     

for each Hj and i = 1, ..., m, where b(j) is the machine allocated to job j in s
t , then the 

complete job to machine allocation 
t  is an optimal allocation given the partial allocation  . 

Update )(EE max

u

max   and 
tu   and go to step (8). Otherwise, go to step (6). 

6. Generate a feasible schedule for the complete allocation 
t . For the sequence 

t

j , forward 

schedule on machine i, i = 1, ..., m, to compute the new completion times jC  using the actual 
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ready times jr  and compute the  earliness  0,CdmaxE jjj   for t

jj  . If 

jn,...,j

u

max EmaxE 1  update jn,...,j

u

max EmaxE 1 and tu   . 

7. Let j be the job with the minimum ready time in set h and break ties by selecting the job with 

the minimum due date. For each machine i, i = 1, ..., m, generate a new branch node that 

represents the allocation of job j to machine i. The generation of the branch node is as follows. 

Set iyiy  , . Set  jii   and perform the following test. If ij ar  , add j to the end 

of the partial sequence i ; otherwise, recomputed a new sequence i  with the jobs in allocation 

i  using algorithm Opt_m1. Refer to this allocation and sequence as 
i  and 

i . Add the 

allocation i  and resulting sequence i  as an open node in  . Note that the set offspring nodes 

to   is the nodes 
i ,  i = 1, ..., m. 

8. If there are open nodes in the list  , go to step (2); otherwise, the optimal sequence is given by 
u  and the optimal maximum earliness is given by u

maxE . 

5    NUMERICAL EXPERIMENTS 

We experimentally compared the effectiveness of solutions generated by the heuristic 

procedures with the optimal solutions generated by the branch-and-bound procedure. The purpose 

of the experimentation was two-fold. First, it was desired to find how large the problem sizes in 

terms of m and n the branch-and-bound procedure can efficiently solve. Second, for cases where the 

branch-and-bound procedure cannot find an optimal solution it was desired to identify the best 

performing heuristic for different scenarios of the ready times and due dates. Since the number of 

nodes to evaluate in the branch-and-bound procedure is O(mn), we tested the effectiveness of the 

solution procedures on different combinations of the number of machines and the number of jobs. 

The values tested for the number of jobs were 10, 20, 40 and 60 and for the number of machines 

were 2, 3 and 5. Integer data of the processing time on each machine and the ready time and due 

date of each job were generated from uniform distributions between 1 and maxmax R,P  and maxD , 

respectively. Note that adding a constant to all values of ready times or due dates does not change 

the optimal sequence, though it will affect the earliness of jobs. Hence, it is the relative values of 

the ready times and due dates, rather than the absolute values, that affect the optimum sequence. 

Accordingly, we designed experiments to cover different ranges of ready times and due dates, 

expressed as [1, maxR ] and [1, maxD ], respectively. Also, the range of processing times is defined as 

[1, maxP ]. Tested ranges for both maxR and maxD  were 10, 50 and 100 and for maxP  were 10 and 50. 

A depth-first branching strategy was used for the branch-and-bound procedure with the 

offspring nodes generated in order of the machine's processing time. This branching strategy was 

used because of its minimal storage requirements and it consistently outperformed other branching 

strategies (e.g. breadth-first and smallest lower bound). We stopped the branch-and-bound 

procedure after 1,000,000 nodes were evaluated so that many experiments could be performed. For 

each scenario, 30 experiments were run. The Branch and bound algorithm was test by coding it in 

Microsoft Fortran power station and runs on a Pentium IV at 3.33 GHz, 512 MB computer. To gain 

insight and understand the relationship between the various problem parameters, we first held the 

number of jobs fixed to a small number, n = 10, and varied the other parameters of the model. Then, 

we tested the sensitivity of the results for larger values of the number of  
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Table (1). Number of runs and optimal solution is reached out of 30 runs, with n = 10, for branch-

and-bound and heuristic procedures Heuristics 

 
Heuristics 

No. of times opt. 

FAMR     FAMS    ECTS    LSPTF 

Branch and bound 

No. opt.   averg. nodes  ax. nods maxD maxR maxp m 

27 28 16 5 75 5.5 30 10 10 10 2 

28 21 20 10 261 23.3 30 50 10 10 2 

29 23 23 13 201 14.6 30 100 10 10 2 

21 30 26 26 93 8.9 30 10 50 10 2 

25 26 24 24 661 42.2 30 50 50 10 2 

26 26 24 24 177 14.8 30 100 50 10 2 

22 30 27 27 1031 62.0 30 10 100 10 2 

25 29 28 28 983 91.9 30 50 100 10 2 

26 29 27 27 907 38.8 30 100 100 10 2 

28 26 13 1 1 1.6 30 10 10 50 2 

20 23 10 0 664 32.1 30 50 10 50 2 

19 15 10 0 403 62.2 30 100 10 50 2 

22 17 7 2 95 4.7 30 10 50 50 2 

20 19 9 0 185 19.5 30 50 50 50 2 

21 11 8 2 225 26.6 30 100 50 50 2 

14 21 16 13 33 4.9 30 10 100 50 2 

15 19 14 9 235 13.1 30 50 100 50 2 

16 18 8 6 315 26.6 30 100 100 50 2 

62 22 13 6 8509 435.9 30 10 10 10 3 

28 19 15 11 11527 738.2 30 50 10 10 3 

30 19 19 16 20887 1101.0 30 100 10 10 3 

22 29 27 27 55696 2703.2 30 10 50 10 3 

27 28 27 27 49957 2907.9 30 50 50 10 3 

29 28 28 28 15529 634.8 30 100 50 10 3 

25 30 30 30 55810 3553.3 30 10 100 10 3 

28 30 30 30 50749 2335.1 30 50 100 10 3 

29 30 30 30 44542 20679 30 100 100 10 3 

23 22 8 1 4490 346.4 30 10 10 50 3 

19 17 7 1 2632 306.8 30 50 10 50 3 

13 8 4 2 8137 1234.5 30 100 10 50 3 

19 20 12 5 334 20.2 30 10 50 50 3 

13 15 9 5 7495 626.5 30 50 50 50 3 

13 11 11 8 26590 1473.9 30 100 50 50 3 

11 25 13 12 11149 723.2 30 10 100 50 3 

11 23 16 15 18388 1527.2 30 50 100 50 3 

8 22 15 15 5338.3 3233.2 30 100 100 50 3 

25 26 21 19 73836 3706.6 28 10 10 10 5 

26 27 24 25 19531 1532.1 27 50 10 10 5 

26 27 27 26 19531 1417.9 27 100 10 10 5 

23 26 24 24 96591 4373.9 26 10 50 10 5 

24 27 27 26 21658 1679.9 27 50 50 10 5 

29 28 29 29 19631 1233.5 29 100 50 10 5 

22 23 23 23 97654 4928.0 24 10 100 10 5 

23 26 26 26 19531 1635.6 26 50 100 10 5 

27 27 27 27 19531 1628.2 27 100 100 10 5 

16 23 0 0 29141 1236.0 30 10 10 50 5 

12 9 2 1 14436 2350.8 28 50 10 50 5 

19 7 3 2 22176 3442.4 27 100 10 50 5 

19 19 8 8 15651 1009.1 29 10 50 50 5 

13 14 6 6 12896 1445.7 26 50 50 50 5 

16 14 10 8 17601 1065.8 25 100 50 50 5 

13 23 16 16 68671 4327.8 28 10 100 50 5 

16 21 19 19 41401 3273.9 28 50 100 50 5 

16 18 21 21 24511 1698.3 25 100 100 50 5 
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 Table (1) shows the results of the branch-and-bound procedure. For each scenario, Table (1) lists 

the number of times an optimal solution was found out of the 30 runs and the average and the 

maximum number of nodes evaluated in the branch-and-bound procedure to find an optimal 

solution. Table (1) also lists the number of times each heuristic gave the optimal solution out of the 

30 runs. Table( 2) reports for each heuristic the average departure from optimality measured by the 

maximum earliness given by the heuristic sequence minus the optimal maximum earliness. The 

general findings of these experiments are summarized as follows: 

(1) Comparing the heuristics: As Tables (1) and (2) show, the most myopic of the heuristic rules, 

FAMR, is consistently outperformed by some other heuristic in all the experiments. The two 

best performing heuristics were ECTS and LSPTF. Heuristic ECTS performed best on average 

when maxR  is greater than maxD  while Latest start time finish times (LSTF) performed best on 

average when maxD  is greater than maxR . These results suggest a forwarding sequencing 

heuristic based on ready times be used 
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Table (2). Average deviation from the optimal solution for the various heuristics with n =10 

Average deviation from the optimality 

FAMR     FAMS        ECTS             LSTF mR mR mR m 

0.100 0.067 0.933 2.967 10 10 10 2 

0.100 0.700 1.000 5.367 50 10 10 2 

0.033 0.700 0.733 4.100 100 10 10 2 

0.367 0.000 0.500 0.500 10 50 10 2 

0.567 0.200 0.367 0.367 50 50 10 2 

0.367 0.200 0.433 0.433 100 50 10 2 

0.367 0.000 0.300 0.300 10 100 10 2 

0.600 0.033 0.133 0.133 50 100 10 2 

0.400 0.033 0.233 0.233 100 100 10 2 

0.368 0.167 3.600 5.533 10 10 50 2 

0.200 1.100 6.833 20.500 50 10 50 2 

1.000 3.933 8.067 37.100 100 10 50 2 

1.867 1.733 5.957 7.500 10 50 50 2 

1.067 1.800 6.300 17.400 50 50 50 2 

1.233 2.433 5.300 27.667 100 50 50 2 

1.606 1.033 4.933 5-967 10 100 50 2 

2.833 1.333 5.633 11.933 50 100 50 2 

2.000 2.300 5.667 15.500 100 100 50 2 

2.300 0.367 1.400 3.033 10 10 10 3 

0.333 0.633 1.200 2.867 50 10 10 3 

0.100 0.633 0.933 2.300 100 10 10 3 

0.000 0.033 0.267 0.267 10 50 10 3 

0.433 0.100 0.233 0.233 50 50 10 3 

0.233 0.167 0.233 0.233 100 50 10 3 

0.367 0.000 0.000 0.000 10 100 10 3 

0.233 0.000 0.000 0.000 50 100 10 3 

0.033 0.000 0.000 0.000 100 100 10 3 

0.400 0.533 6.033 8.100 10 10 50 3 

1.667 2.700 8.600 20.733 50 10 50 3 

2.700 6.944 10.933 30.633 100 10 50 3 

1.000 0.747 5.800 7.000 10 50 50 3 

2.567 3.200 8.400 15.600 50 50 50 3 

3.236 4.200 7.533 19.400 100 50 50 3 

3.633 0.433 6.467 6.933 10 100 50 3 

3.400 1.600 6.833 9.167 50 100 50 3 

4.100 2.700 7.167 10.033 100 100 50 3 

0.133 0.067 0.675 0.867 10 10 10 5 

0.076 0.000 0.167 0.300 50 10 10 5 

0.033 0.033 0.033 0.133 100 10 10 5 

0.233 0.000 0.133 0.133 10 50 10 5 

0.133 0.000 0.000 0.000 50 50 10 5 

0.033 0.000 0.000 0.000 100 50 10 5 

0.033 0.033 0.033 0.033 10 100 10 5 

0.033 0.000 0.000 0.000 50 100 10 5 

0.033 0.000 0.000 0.000 100 100 10 5 

1.500 0.033 0.033 0.033 10 10 50 5 

3.267 0.000 0.000 0.000 50 10 50 5 

1.033 0.000 0.000 0.000 100 10 50 5 

3.000 1.667 10.533 11.033 10 50 50 5 

2.700 1.733 10.767 12.567 50 50 50 5 

1.067 2.033 9.167 11.633 100 50 50 5 

4.000 0.233 3.400 3.400 10 100 50 5 

2.600 0.667 2.700 2.700 50 100 50 5 

1.333 1.133 2.433 2.433 100 100 50 5 

when the variability in ready times is the greatest and a backward sequencing heuristic based on due 

dates be used when the variability in due dates is the greatest. 
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(2) Sensitivity to maxR  and maxD : The average time to compute an optimal solution in most of the 

scenarios is greater for the case when maxR > maxD  than for the case when maxR < maxD . For 

example, the average number of nodes evaluated is 1101.0 when m = 3, maxP  = 10, maxR = 10 

and maxD = 100 while it increases to 3553.3 when maxR  and maxD  are reversed. These findings 

are not surprising since the proposed branch-and-bound procedure is a forward sequencing 

procedure and as maxR  increases the lower bounds in the procedure become less tight. These 

results suggest that a backward sequencing branch-and-bound procedure be used when 

maxR > maxD .  

(3) Sensitivity to m: Since the number of feasible sequences increases exponentially with m, the 

time it takes to find an optimal solution also increases as m increases. As Table (1) shows, the 

branch-and-bound procedure consistently found the optimal solution when there were 3 or less 

uniform parallel machines. For m = 5, the branch-and-bound procedure was stopped before 

finding an optimal solution in some of the scenarios. For example, with maxP = 50, maxR = 50 and 

maxD = 50, the procedure was able to find the optimal solution in 26 out of the 30 runs. For this 

scenario, a heuristic may be required to approximate the optimal solution. Fortunately, as m 

increases the heuristics on average provided a better approximation in terms of the absolute 

deviation from optimality. The heuristics performed better when m increases while n is constant 

because with more machines it is less likely that any interchange in the job sequence on a 

particular machine given by the best single heuristic will improve the earliness criteria since 

there are fewer jobs scheduled on each machine. 

(4) Sensitivity to maxP : It takes a little longer on average to find an optimal solution when maxP = 10 

than when maxP = 50 because with a smaller processing time and the same maxR  the more likely 

there is idle time on a machine between two adjacent jobs in the sequence, thereby reducing the 

quality of the lower bound in the branch-and-bound procedure. However, as Table(1) shows the 

heuristics provide a near-optimal approximation with a small maxP . 

(5) Sensitivity to n: We now focus on testing the sensitivity of the results for larger values of n. 

Because of the symmetry of the problem, we considered only the cases when maxR  maxD  since 

similar conclusions may be drawn when maxR  maxD . These experiments evaluated the 

performance of the branch-and-bound procedure as n increases as well as the performance of 

heuristic 
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Table (3). Performance of branch-and-bound procedure and heuristic LSTF for maxP =50 

 
LSPT 

No. opt. devia. opt. 

Branch and bound 

No. opt.   aver. nodes. max. nodes mD mR n m 

0.500 23 3835 129 30 50 50 20 2 

1.133 19 2097 135 30 100 50 20 2 

0.000 30 1 0.01 30 50 50 40 2 

0.233 27 1 0.01 30 100 50 40 2 

0.033 29 1 0.01 30 50 50 80 2 

0.133 27 1 0.01 30 100 50 80 2 

0.533 24 23272 1.152 30 50 50 20 3 

1.333 16 81346 4.065 30 100 50 20 3 

0.300 25 1 0.01 30 50 50 40 3 

1.033 18 488 03.4 30 100 50 40 3 

0.200 26 1 0.01 30 50 50 80 3 

0.600 21 1 0.01 30 100 50 80 3 

1.567 12 33016 1.12 4 20 50 50 20 5 

2.367 7 1801 119 17 100 50 20 5 

0.833 20 1 0.01 28 50 50 40 5 

1.100 15 336 01.2 22 100 50 40 5 

0.200 25 1 0.01 30 50 50 80 5 

0.833 15 1 0.01 29 100 50 80 5 

 

Table (4). Summary of experimental findings 
 

Range on parameters                     Suggested procedure 
 

m ≤ 3 and  maxR < maxD      forward sequencing branch-and-bound algorithm 

m ≤ 3 and maxD < maxR         backward sequencing branch-and-bound algorithm 

m > 3 and maxD < maxR        heuristic ECTS 

m > 3 and maxR < maxD        heuristic LSTF 

6    CONCLUSIONS 

This paper develops a branch-and-bound enumerative procedure that optimally solves the 

problem of scheduling n identical jobs with unequal ready times on m parallel uniform machines to 

minimize the maximum earliness. The branch-and-bound procedure searches over the assignment of 

jobs to machines. Given the assignment, each machine's job sequence is determined using Simon's 

[10] single-machine sequencing algorithm. The number of nodes evaluated in the branch-and-bound 

procedure increases as the number of parallel machines increases. However, as the number of jobs 

increases for a fixed number of machines the problem becomes easier to solve optimally because 

the presented lower and upper bounds give tighter bounds due to reduced machine idle time. For a 

large number of parallel machines, heuristics may be necessary to find approximate optimal 

solutions. 

Table (4) summarizes our findings from the experimental analysis. The purpose of analyzing the 

heuristics is to identify which ones provide the closest approximation to the optimal solution under 

different ranges of the ready times, processing times, and due dates. The worst performing heuristic 

is FAMR. The better performing heuristics are the ones with a look ahead capabilityon the 

completion time of the machines. The forward sequencing procedure ECTS performed the best 

when the variability in the ready times is greater than the variability in the due dates while the 

backward sequencing procedure LSTF performed the best when the variability on the due dates is 

larger. 
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