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Abstract 

This paper presents a new approach of designing the Power Systems Stabilizer (PSS) that is 

based on fuzzy neural system. Adaptive Network based Fuzzy Inference System (ANFIS) is 

utilized in constructing the Fuzzy Neural Power Systems Stabilizer (FNPSS). The employment 

of ANFIS enables the system avoiding defects caused when using fuzzy logic and neural 

networks individually in designing an efficient PSS. Single Machine Infinite Bus (SMIB) power 

system has been taken as a case study to evaluate the suggested strategy performance. 

Simulation results have been conducted to confirm the approach validity. 

 الخلاصت

و الخي  حعخويذ علين أًظويت الأعصياض الو.يبب ت   (PSS)يسخعشض هزا البحث طشيقت جذيذة لخصوين هثبخاث أًظوت القذسة 

للحصيى  علين هثبيج أًظويت القيذسة  (ANFIS)فقذ حن أسخخذام اليذوائش الوخكيةيت و الخي  حعخويذ علين أًظويت الأسيخٌخاب الو.يب   

ييي الٌظييام حاٌيي  العيييىض الٌاجوييت عييي أسييخخذام الوٌلييك الو.ييب   و ال ييبكاث  (ANFIS)العصييبيت الو.ييبب ت  أى أسييخخذام  يوك 

العصبيت بصىسة هٌةشدة ف  حصوين هثبج كةىء لأًظوت القذسة  و قذ حن أخز ًظام القذسة رو الواكٌت الوٌةشدة و الخط اليلا هخٌياه  

 لن ًخائج هحاكاة لخأكيذ فاعليت اللشيقت      كحالت دساسيت لخقيين أداء السخشاحيايت الوقخشحت  كوا و قذ حن الحصى  ع

 

Keywords: Power system stabilizer, fuzzy logic, neural networks, ANFIS. 

 

I. Nomenclature 

c Center of the membership functions. 

E The mean square error between the desired and actual speeds. 

Xd d- axis synchronous reactance (PU). 

Xd
'
 d-axis transient reactance (PU). 

Xd
''
 d-axis sub transient reactance (PU). 

Xq q- axis synchronous reactance (PU).  

Xq
'
 q-axis sub transient reactance (PU). 
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Xl Leakage reactance (PU). 

Tdo
'
 d-axis transient open circuit time (sec). 

Tdo
''
 d-axis sub transient open circuit time (sec). 

Tq
''
 q-axis short circuit time constant (sec). 

Rs Stator resistance (PU). 

PREF The mechanical power reference (PU). 

P The active power at the generator terminal (PU). 

PSV The feedback the feedback through governor (PU). 

TM The turbine output torque (PU). 

 Vinf The infinite voltage (PU). 

VTREF The terminal voltage reference (PU). 

VT The terminal voltage (PU). 

VA The voltage regulator output (PU). 

VF The field voltage (PU). 

VE The excitation system stabilizing signal (PU). 

VPSS The PSS output signal (PU). 

Q The reactive power at the generator terminal (PU). 

∆ω The speed deviation (PU). 

e The speed deviation (PU). 

e  The change in speed deviation (PU). 

μ(x) The membership function. 

σ The width of membership functions. 

α The firing level of fuzzy rules. 

β The normalized firing level. 

 

II. Introduction 

Power System Stabilizers (PSS's) is an important issue from the power system stability point of 

view since it damps out generators oscillations. They are used to generate supplementary control 

signals for the excitation in order to damp the low frequency oscillations [1]. Conventional Power 

System Stabilizers (CPSS) are now widely used in the existing power systems and they enhanced 

the power systems stability. Depending on a linearized model of the power system around a 

nominal operating point, CPSS parameters can be determined where they can provide good 

performance [2, 3].  
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    The advent of fuzzy logic by Zadeh [4] opened a new horizon in the control literature. It was 

firstly considered as a means of representing and manipulating data that was not precise, but rather 

fuzzy. It was specially designed to mathematically represent uncertainty and vagueness, and to 

provide formalized tools for dealing with imprecision intrinsic with many problems. After the 

introduction of fuzzy set theory by Zadeh, many application fields employed fuzzy logic such as 

automatic control. Fuzzy control is mainly based on fuzzy inference mechanisms. Mamdani’s fuzzy 

inference method is the most commonly seen fuzzy methodology [5]. Mamdani’s control system 

was built using fuzzy set theory. It was proposed in 1975 by Mamdani as an effort to control a 

steam engine and boiler combination by synthesizing a set of linguistic control rules obtained from 

experienced human operators. Mamdani’s effort was based on Zadeh’s (1973) paper on fuzzy 

algorithms for complex systems and decision processes. 

    Takagi and Sugeno [6] found the most powerful inference mechanism (1985), called Sugeno or 

Sugeno-Takagi inference mechanism. Sugeno inference mechanism differs from Mamdani’s 

inference in that linear or constant systems instead of fuzzy sets are formed in the consequences of 

the fuzzy rules. 

    On the other hand, neural networks have been utilized in controlling many complex plants [7], 

and it solved many problems in control. However, both of the fuzzy logic and neural networks have 

defects; fuzzy logic has the capability of controlling complex plants without the need for the exact 

mathematical model of the plant, however the parameters of the fuzzy logic are fixed and the plant 

output may not be optimal. Neural networks has the ability to adapt its parameters in order to have 

an optimal output, however the exact mathematical model is needed in this case.  

    Fuzzy neural systems have been recently utilized in order to have an integrated system that 

overcome defects of both systems, say fuzzy logic and neural networks, and successfully used in 

control [8, 9]. This effort resulted in a system capable of controlling the complex plants without 

needing its exact mathematical model; say fuzzy system, in which parameters are adjusted in order 

to have an optimal output, say neural system. 

    In the literature of PSS design, both of fuzzy logic and neural networks have been utilized for the 

sake of designing an efficient PSS [10, 11]. However, both of the schemes are suffering from the 

defects that are caused due individual systems utilization. This paper suggests a newly developed 

PSS design that is based on Fuzzy Neural Systems (FNS) to overcome defects caused by individual 

fuzzy logic and neural networks. The paper is organized as follows; section II describes the system 

model of the Single Machine Infinite Bus (SMIB) power system. The suggested PSS is presented in 

section III. Section IV gives simulation results to validate the approach, and section V summarizes 

the concluded remarks. 
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III. Power System Model 

The Single Machine Infinite Bus power system (SMIB) used to evaluate the FNPSS is shown in 

Fig.1. The SMIB consists of a synchronous generator, a turbine, a governor, an excitation system, 

and a transmission line connected to an infinite bus.    

 

 

Fig. 1. System model configuration 

 

    The synchronous generator can be described by a seventh order d-q axis set of equations with the 

machine current, speed, and rotor angle as the state variables [12]. The turbine is used to drive the 

generator and the governor is used to control the speed and the real power. Fig. 2 illustrates the 

block diagram of a turbine and a conventional governor.  

 

 

Fig. 2. Block diagram of the turbine and the governor 

The excitation system for the generator is modeled according to IEEE Standard 421.5 [11], so that 

the excitation system block diagram is shown in Fig. 3. 
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Fig. 3. Block diagram of the excitation system 
 

A Conventional PSS (CPSS) consists of two phase-lead compensation blocks, a signal block, and a 

gain block. The input signal is the speed deviation ∆ω. The block diagram of the CPSS is shown in 

Fig. 4. 

 

Fig. 4. Block diagram of the conventional power system stabilizer 

IV. Fuzzy Neural Power System Stabilizer (FNPSS) Design 

Fuzzy Neural systems are considered as one of the most power techniques in artificial intelligence. 

High mapping (resulted from fuzzy system) and adaptability (resulted from neural system) enables 

fuzzy neural systems to be more efficient for complex plants control and modeling (See [13] for 

more information on fuzzy neural systems). This efficiency of fuzzy neural system was the central 

driving force behind the selection of this technique for construction a PSS using fuzzy neural 

system which is called Fuzzy Neural PSS (FNPSS).   

The inputs of the FNPSS are the speed deviation (e) and change in speed deviation ( e ). The 

output of the FNPSS is u.  

Where: 

     1 kkke                                                                                                    (1)                                                                

And 

     1 kekeke                                                                                                   (2) 

The overall output, VPSS, is directly proportional to the fuzzy neural system output u: 

uKV PSSPSS
.                                                                                                             (3) 

KPSS is a constant                                                     
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a. The Controller Linguistic Terms 

Five linguistic terms (membership functions) are assigned for each one of the inputs and output. 

These terms are Negative Big (NB), Negative Small (NS), Zero (ZE), Positive Small (PS), and 

Positive Big (PB). Due to the fact that Sugeno inference mechanism is better integrated with neural 

networks [8] than that of Mamdani, then Sugeno inference would be utilized to construct the fuzzy 

neural network.  

    The linguistic terms of the inputs e(k) and Δe(k) are fuzzy sets, whereas that of the output u(k) are 

single spikes. The inputs membership functions are Gauss-shaped functions. Fig. 5 shows the 

chosen initial membership functions of each input. 

 

                    Fig. 5.The membership functions of input linguistic terms. 

The memberships functions of the output are single spikes are shown in figure 6. 

 

 

 

                   

Fig. 6. The membership functions of output linguistic terms. 

For both figures (5 and 6), the x-axis is the input variable and the y-axis is the grade of membership 

to a certain linguistic term. 

-1 -0.5   0  0.5   1 

 NB         NS ZE       PS 
    PB 
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b. The FNPSS Rules 

 

The FNPSS rules are of the form: 

“if e(k) is A and Δe(k) is B then u(k) is C” 

Where A and B are fuzzy sets, C is a single spike. The rules of the fuzzy neural controller are 

summarized in the matrix of table 1 (See [13] for more details on how the rules matrix is 

generated). 

Table 1 Linguistic output control rules matrix. 

 

The square of intersection of a row and a column gives the output membership function 

corresponding to that rule, i.e. 

“if e(k) is NB and Δe(k) is PS then u(k) is NS” 

 

c. The FNPSS Structure 

 

The ANFIS is the most suitable fuzzy neural network for controller realization and fuzzy inference 

parameter adaptation. So, ANFIS is utilized to establish the job of the controller above. Fig. 7 

shows the structure of the utilized ANFIS with constant consequent part of rules. ANFIS consists of 

six layers: 

Layer 1 

Due to the fact that there are two inputs for the ANFIS, say e(k) and Δe(k), two neurons are within 

layer 1, so: 

   keko 
1

1
                                                                                                                 (4) 

   keko 
1

2
                                                                                                              (5) 
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Layer 2 

Five membership functions are for each input; so five neurons are required for each input. 

Consequently, ten neurons are within layer 2.  

 

Fig.7. The ANFIS structure. 

    Since the used membership functions for each linguistic term are Gauss, the activation function 

for each neuron within layer 2 is: 

 
 























2

2

.2
exp

cx
x                                                                                               (6) 

Where x is the input to that neuron, c is the center; σ is the width of the Gauss membership function. 

Layer 3 

Twenty-five neurons are required in layer 3; due to the fact that layer 3 neurons realizes the fuzzy 

AND operation of each rule. The utilized t-norm is the min operation: 

  ),min(, babaAND                                                                                                   (7) 

The result of each neuron within layer 3 would be the firing level for that rule, i.e. 

 ba qpw
,min                                                                                                         (8) 

w=1,2…25 

p=1,2… 5 

q=1,2…5 

Layer 4 
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There are twenty-five rules in the fuzzy inference mechanism. So twenty-five neurons are required 

for layer 4, one for each rule that represents the normalized firing level for that rule, i.e. 





25

1k
k

m

m



                                                                                                                 (9) 

m=1,2,…,25 

 

Layer 5 

This is a single neuron layer that performs the defuzzification process. The center of area (COA) 

defuzzification approach is utilized, i.e. 

 


25

1
.

m mm Zy                                                                                                        (10) 

Or, 








25

1

25

1
.

r r

m mm Z
y




                                                                                                      (11) 

 

Layer 6 

 

This is also a single neuron layer, which is dedicated to output the result obtained from layer 5. So, 

  yku                                                                                                                       (12) 

 

d. Fuzzy Inference Parameters Adjustment: 

Gradient descent method is utilized to adjust the parameters of the fuzzy inference for giving an 

optimal output that is as near as possible to the reference input. So,  

   
      

 t

ttt
tt

c
zcE

cc
i

mji

k

ii 




,,
1

1


                                                           (13) 

   
      

 t

ttt
tt

j

mji

k

jj

zcE









,,
1

2
                                                      (14) 

   
      

 t

tttE
tt

z
zc

zz
m

mji

mm 




,,
1

3


                                                            (15) 

Where: t is the iteration index. 
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            η1,2,3 are the learning factors.  

            E(ci(t),σj(t),zk(t)) is the mean square error between the desired speed output                                                               

             value (ωd) and the actual value (ω), i.e. 

              tzttczc mji
kk

d
tttE

mji ,,
2

2

1
,,                                  (16) 

            k is time index.  

            i is the index of the input membership functions centers (i=1,2…10) 

            j is the index of the input membership functions widths (j=1,2…10) 
 

            m is the index of the rules outputs corresponding to the    

            m
th

 rule. 

So, equations (12), (13), and (14) are on-line adjusting the centers, widths, and rules outputs 

respectively. 

 

V. Simulation Results 

Simulation results have been conducted using MATLAB/SIMULINK on a SMIB model of 

parameters given in the appendix. Fig. 8 shows the change in speed when a three phase to ground 

fault is taken place on the bus at 0.1 sec, and then the fault is cleared at 0.2 sec. The performance of 

both the CPSS and FNPSS are illustrated in Fig. 8. It is obvious that the performance of the FNPSS 

is better than that of the CPSS. In spite of the harmful fault that may cause instability in the system, 

however, the efficient performance of the FNPSS makes the speed deviation to be as close as 

possible to zero. This high performance is obtained due to the online adjustment of the fuzzy 

controller's parameters that makes the cost function, and consequently the speed deviation, as close 

as possible to zero. 

    Fig. 9 illustrates the performance of FNPSS under step change in the reference voltage from 1 

(P.U.) to 1.1 (P.U.) at time 4 sec. The adaptive nature of the FNPSS makes it possible for the 

system to have an excellent performance against the reference voltage step change. Moreover, the 

area of operation of FNPSS is larger than that of CPSS due to the following causes: 

1. The adaptive nature of the suggested FNPSS enables the adjustment of its parameters such 

that an optimal performance is achieved. 

2. CPSS are designed on the assumption of a linearized model of the system that makes its 

performance to be acceptable with operating points that lay only within the region of 

linearization. FNPSS is designed with system nonlinearity to be taken into account. This 

feature makes the FNPSS to have excellent performance for different operating conditions. 
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For the reasons above, excellent performance of FNPSS was obtained against sudden power system 

changes and fluctuations. 

 

 

Fig.  8. The speed deviation (PU) for a fault at the bus 

 

Fig.  9. The speed deviation for a step change in the reference voltage 
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VI. Conclusion 

It has been proven that the performance of the suggested FNPSS for a SMIB system is excellent 

against harmful system variation like ground faults. This is, mainly, due to the adaptive nature and 

capability to control complex plants when using fuzzy neural systems. Such adaptive nonlinear PSS 

yield better and faster damping, especially against large disturbances such as a ground fault. The 

FNPSS is also having an excellent performance in the case of step reference voltage increment. 

Gradient descent method has been utilized as the optimization technique in order to tune the fuzzy 

logic parameters for having an optimal output.   
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Appendix 

Machine parameters 

The machine is a salient pole synchronous generator which is having the parameters: 

Xd=1.305 P.U. (d- axis synchronous reactance) 

Xd
'
=0.296 P.U. (d-axis transient reactance) 

Xd
''
= 0.252 P.U. (d-axis sub transient reactance) 

Xq=0.474 P.U. (q- axis synchronous reactance)   

Xq
''
=0.243 P.U. (q-axis sub transient reactance) 

Xl= 0.18 P.U. (leakage reactance) 

Tdo
'
=4.49 Sec (d-axis transient open circuit time) 

Tdo
''
=0.0681 Sec (d-axis sub transient open circuit time) 

Tq
''
=0.0513 Sec (q-axis short circuit time constant) 

Rs=0.003 P.U. (stator resistance) 


