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 Orphenadrine is an anticholinergic drug used in clinics as a muscle relaxant. It acts on 

several receptors, including muscarinic, histaminic, and NMDA. This study aimed to 

evaluate the effect of pretreatment with orphenadrine on the anesthesia indices of two 

essential parenteral anesthetic drugs in mice. Three experiments were performed with 15 

mice per experiment. All experiments used orphenadrine at 10 mg and 20 mg/kg/IP b.wt as 

a pretreatment drug. Propofol (100 mg/kg/IP), thiopental (50 mg/kg/IP), and their 

combinations were used in the first, second, and third experiments, respectively. The indices 

of anesthesia, represented by the latency to onset of anesthesia, duration of anesthesia, and 

recovery from anesthesia, were recorded. Orphenadrine at doses of 10 mg and 20 mg/kg/IP 

as a pretreatment drug showed a dose-dependent decrease in the latency to the onset of 

anesthesia and an increase in the duration of anesthesia compared to the control groups of 

all three experiments (propofol 100 mg/kg, thiopental 50 mg/kg, and combinations of 

propofol and thiopental) respectively. We conclude that orphenadrine affects anesthesia 

indices, which are recorded for the first time, laying the foundation for further studies and 

the possibility of using it as an anesthesia co-treatment. 
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Introduction 

 

With the advancement of technology, intravenous 

anesthesia is progressively being introduced into clinical 

practice, and it is distinguished by faster effects and fewer 

adverse effects when compared to inhalation anesthetics (1). 

The specific mechanism of anesthetic achievement is not 

entirely known; the anesthetic deed can be caused via 

increasing inhibitory neurotransmitters, decreasing 

excitatory neurotransmitters, or both (2). Currently, available 

intravenous anesthetics do not meet the criteria for ideal 

anesthetic agents because they do not produce all five wanted 

properties: unconsciousness, amnesia, analgesia, autonomic 

reflex inhibition, and skeletal muscle relaxation (3). In order 

to reduce side effects, balanced anesthesia typically uses a 

combination of medicines, including inhaled anesthetics, 

sedatives, hypnotics, opioids, and neuromuscular blocking 

agents (4). Propofol is a frequently used intravenous 

anesthetic in the clinical setting. Propofol is a short-acting 

anesthetic that allows quick and painless recovery (5). 

Propofol is used for procedures that require quick recovery 

to preoperative mental capacity (6). Owing to its widespread 

use, it is now preferred over thiopental for the induction of 

general anesthesia and sedation (7). Thiopental induces 

anesthesia; it is given intravenously. Thiopental has a very 

rapid beginning of action and a high level of lipid solubility 

(8). The reason for its brief duration of action is that it is also 

rapidly transferred from the brain to other tissues (muscle 

and fat). It is utilized for quick surgical procedures and 

anesthetic induction (9(. Orphenadrine is an anticholinergic 

drug used in Parkinson's disease treatment to decrease some 

of the most bothersome symptoms, particularly involuntary 

resting tremors (10). It is used in clinics as a muscle relaxant 

(11). Orphenadrine acts on several receptors, including 
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muscarinic, histamine, and NMDA (12). It is also used as an 

analgesic, even though its particular mode of action is 

unknown (13(. 

This study aimed to evaluate the effects of two doses of 

orphenadrine on propofol and thiopental anesthesia indices. 

We anticipated that these combinations would lead to secure 

anesthetic protocols with prompt induction of anesthesia. 

 

Materials and methods 

 

Ethical approval 

The animals handling ethics protocol of the College of 

Veterinary Medicine, University of Mosul, was followed. 

The Scientific Board of Physiology, Biochemistry, and 

Pharmacology department approved this study (Ref: 

UM.VET. 2023. 007, date: 25/3/2023). 

 

Animals 
Adult male albino mice (10-12 weeks old, 20-30 g) were 

used in the study. Five mice were housed per cage in a room 

kept at 25±1°C with a relative humidity of 55±5% and an 

alternate 12-hour light and dark sequence, with free access 

to food and water. The animals were used only once in all 

experiments. The animals were separated and housed in 

different cages after the IP injection. The experimenters 

observed the reactions of the mice during the experiments 

that had been followed from 8 a.m. to 2 p.m. 

 

Impact of orphenadrine on the anesthesia induced by 

propofol in mice 

Fifteen mice were randomized into three equal groups. 

Group 1 mice were pretreated with normal saline, after 15 

min with propofol 100 mg/kg IP (14). Group 2 mice were 

pretreated with orphenadrine 10 mg/kg /IP (15), after 15 min 

with propofol 100 mg/kg /IP. The mice of the third group 

were previously administered by orphenadrine at 20mg/kg 

intraperitoneal, followed by fifteen minutes administered by 

propofol at 100mg/kg intraperitoneal. 

 

Impact of orphenadrine on the anesthesia generated by 

thiopental in mice  

Fifteen mice were allocation for three groups. First group 

were administered by normal saline intraperitoneal, followed 

by fifteen minutes administered by thiopental at 50mg/kg, 

intraperitoneal (16). The second group were administered by 

orphenadrine at 10mg/kg, intraperitoneal, followed by 

fifteen minutes administered by thiopental at 50mg/kg, 

intraperitoneal. The third group were administered by 

orphenadrine at 20mg/kg, intraperitoneal, followed by 

fifteen minutes administered by thiopental at 50mg/kg, 

intraperitoneal.  

 

 

 

Impact of orphenadrine on anesthesia generated by 

propofol and thiopental in mice  

Fifteen mice were allocation for three groups. Group 1 

mice were pretreated with normal saline, after 15 min with 

propofol 100 mg/kg/IP and thiopental 50 mg/kg/IP. Group 2 

mice were pretreated with orphenadrine 10 mg/kg /IP, after 

15 min with propofol 100 mg/kg/IP and thiopental 50 

mg/kg/IP. Group 3 mice were pretreated with orphenadrine 

20 mg/kg /IP, after 15 min with propofol 100 mg/kg /IP and 

thiopental 50 mg/kg/IP. 

 

Drugs 

Orphenadrine citrate injection 30 mg/ml Teva® (USA), 

propofol 100 mg/10 ml DIPRIVAN® (U.K), thiopental 

sodium injection 1 g powder THOWELL®(INDIA). The 

volume of administration was 10 ml/kg/IP of body weight 

(3). All drugs were injected after preparing the doses in 

different syringes, and then the latency to onset of anesthesia 

was noted, which is the interval between the injection and 

the loss of the righting reflex of mice. The duration of 

anesthesia was noted, which is the interval between the loss 

of the righting reflex and the time it took for the mice to 

correct their posture, and the recovery from anesthesia, 

which is the interval between the time the mouse had 

returned to normal position and the time to resumed 

movement (17). 

 

Statistical analysis 

One-way analysis of variance (ANOVA) followed by the 

Least Significant Difference test was used to assess the 

results statistically. Data are expressed as mean±standard 

error. P≤0.05 was chosen as the minimal degree of 

significance. The analysis was conducted with the statistical 

software SPSS 17. 

 

Results 

 

Effect of orphenadrine on the anesthesia induced by 

propofol in mice 

As shown in table 1, the latency to onset of propofol 

anesthesia within approximately four minutes, the duration 

of anesthesia continued for half an hour through the mice 

return to normal position, and the recovery period was 

approximately twenty-five minutes, which the mice 

represented a return to its normal movement and behavior. 

When treated with orphenadrine, there was a dose-dependent 

decrease in latency to the onset of anesthesia and an increase 

in the duration of anesthesia compared with the propofol 

group. It was noted that the orphenadrine prolonged the 

anesthesia duration time. In addition, there was an increase 

in the recovery period in the group treated with orphenadrine 

20 mg/kg compared to the propofol group. 
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Table 1: Impact of orphenadrine on anesthesia induced by 

propofol 

 

Groups Latency to 

onset (min) 

Duration 

(min) 

Recovery time 

(min) 

Group 1 4.16±0.22a 37.33±1.94c 25.44±1.14b 

Group 2 3.59±0.18a 61.49±1.43b 19.95±0.68c 

Group 3 2.39±0.25b 92.27±2.55a 35.55±1.00a 

At the 5% significance level, differences between values in 

each column denoted by various superscript letters are 

significant. Values are Mean±SE. 

 

Effect of orphenadrine on the anesthesia induced by 

thiopental in mice 

As shown in table 2, latency to onset of thiopental 

anesthesia within approximately ten minutes, the duration of 

anesthesia continued for a third of an hour through the mice 

return to normal position, and the recovery period was 

approximately ten minutes, which the mice represented a 

return to its normal movement and behavior. When treated 

with orphenadrine, there was a dose-dependent decrease in 

latency to the onset of anesthesia and an increase in the 

duration of anesthesia compared with the thiopental group. 

It was noted that the orphenadrine prolonged the anesthesia 

duration time. In addition, there was an increase in the 

recovery period in the orphenadrine group compared to that 

in the propofol group. 

 

Table 2: Impact of orphenadrine on anesthesia induced by 

thiopental 

 

Groups Latency to 

onset (min) 

Duration 

(min) 

Recovery time 

(min) 

Group 1 9.87±0.52a 21.03±0.73c 10.18±0.36c 

Group 2 4.74±0.17b 40.58±1.01b 20.31±0.65b 

Group 3 2.55±0.19c 84.41±1.34a 40.03±1.69a 

At the 5% significance level, differences between values in 

each column denoted by various superscript letters are 

significant. Values are Mean±SE. 

 

Effect of orphenadrine on the anesthesia induced by 

propofol and thiopental combination in mice 

As shown in table 3, concomitant treatment with propofol 

and thiopental resulted in the latency to onset of anesthesia 

within approximately one minute, the duration of anesthesia 

continued for almost two hours through the mice returned to 

the normal position, and the recovery period was 

approximately half an hour, which the mice represented a 

return to its normal movement and behavior. When treated 

with orphenadrine, there was a dose-dependent decrease in 

the latency to the onset of anesthesia and an increase in the 

duration of anesthesia compared to the propofol and 

thiopental group. It was noted that the orphenadrine 

prolonged the anesthesia duration time. In addition, there 

was an increase in the recovery period in the orphenadrine 

group compared to the propofol and thiopental group. 

 

Table 3: Impact of orphenadrine on anesthesia induced by 

propofol and thiopental 

 

Groups Latency to 

onset (min) 

Duration 

(min) 

Recovery time 

(min) 

Group 1 1.26±0.12a 86.88±0.88c 26.01±0.75c 

Group 2 0.93±0.06b 127.55±1.91b 39.28±1.88b 

Group 3 0.73±0.05b 177.43±5.92a 72.37±2.63a 

At the 5% significance level, differences between values in 

each column denoted by various superscript letters are 

significant. Values are Mean±SE. 

 

Discussion  

 

A logical method for multimodal general anesthesia 

should include the following steps: administration of 

combinations of antinociceptive drugs, each targeting a 

distinct circuit in the nociceptive system; continuous 

monitoring of levels of antinociception and 

unconsciousness; expressly using the sedative effects of 

antinociceptive medicines to minimize the doses of hypnotic 

medications and inhaled anesthetics used to maintain 

unconsciousness; and maintaining multimodal pain control 

during the in-hospital postoperative period and after 

discharge (18,19). No anesthetic medication can supply all 

the constituents of general anesthesia without interfering 

with essential organ roles. As a result, a multi-drug method 

(balanced anesthesia) is used to decrease sensory, motor, 

sympathetic, and parasympathetic response actions, as well 

as distinct constituents of the anesthetic state (20-22). 

Therefore, this study aimed to estimate a new combination 

of anesthetic drugs with orphenadrine, a muscle-relaxant 

drug, and its effect on anesthesia indices. 

Among the significant results noted in our research is that 

the administration of orphenadrine in doses 10 and 20 mg/kg 

reduced the period of onset of anesthesia and increased the 

induction period of anesthesia (period of surgical operation). 

This effect is recorded for the first time and needs further 

study and research to reveal the mechanism of this 

synergistic effect at the level of anesthesia. GABA is the core 

inhibitory neurotransmitter in the mammalian central 

nervous system (23,24). Glutamate is the primary excitatory 

amino acid neurotransmitter acting on NMDA and non-

NMDA receptors, which play a main part in physiological 

processes such as memory and learning (and thus 

consciousness under anesthesia) and principal pain 

transduction mechanisms (25-27). 

Propofol inhibits postsynaptic neurons by preventing 

GABA from dissociating from its receptors. This increases 

chloride entry via channels, leading to hyperpolarization of 

postsynaptic cell membranes and inhibition of postsynaptic 

neurons (28,29). Propofol also inhibits the NMDA subtype 
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of the glutamate receptor, probably by modulation in the 

channel gating (30). Propofol inhibits voltage-gated sodium 

currents and controls calcium influx via slow calcium 

channels (31,32). 

Thiopental works in a manner analogous to barbiturate 

drugs. It acts as an agonist of (the GABAA) receptor, 

increasing inhibitory neurotransmission. It increases GABA 

binding to its receptor (an inhibitory neurotransmitter) and 

then increases transmembrane chloride entrances, causing 

hyperpolarization of the postsynaptic cell and inhibition of 

the postsynaptic neurons (33,34). Thiopental inhibitory 

activity on NMDA receptors may not be mediated via the 

secondary effects of the GABAA receptor agonist. These 

findings suggest that NMDA receptors play a role in mice's 

thiopental-induced anesthesia (35). 

Notably, orphenadrine has no anesthetic effects; 

however, studies have indicated its effects on different 

receptors (36). Orphenadrine is a diphenylmethane analog of 

diphenhydramine with antimuscarinic, NMDA antagonistic, 

and antihistaminic characteristics to a lesser extent (37). The 

synergistic action of orphenadrine on propofol and thiopental 

anesthesia indices can be explained by its action on different 

receptors. Nevertheless, the hypothesis closest to explaining 

this synergistic effect may be through NMDA antagonism, 

as N-methyl-D-aspartate (NMDA) receptors are essential in 

the nervous system's excitatory neurotransmission. Some 

general anesthetics preferentially block them, so they have 

been implicated in mediating their effects (38). Hypnotic 

effects of ketamine occur by blocking NMDA receptors in 

nervous tissue (39). Blocking NMDA receptors is related to 

the immobilization effect of inhalational anesthetics (40,41).  
 

Conclusion 
 

It could be concluded that pretreatment with 

orphenadrine affects anesthesia indices for both propofol and 

thiopental alone or together. These results provide a 

foundation for further research and investigation. 

Orphenadrine can be used in clinical studies on different 

animals to investigate its safety and its possible use in 

various surgical procedures. 
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الكشف عن التأثيرات المحتملة للاورفينادرين على 

 التخدير بالبروبوفول و/أو الثايوبنتال في الفئران
 

 أحمد صلاح ناصر و خالد احمد شعبان ياسر محمدامين البدراني و
 

معة فرع الفسلجة والكيمياء الحياتية والأدوية، كلية الطب البيطري جا

 الموصل، الموصل، العراق

 

 الخلاصة

  

الاورفينادرين هو دواء مضاد للكولين يستخدم سريريا كمرخي 

للعضلات. ويعمل على العديد من المستقبلات بما في ذلك مستقبلات 

.هدفت هذه الدراسة إلى NMDAالمسكارين والهستامين ومستقبلات 

تقييم تأثير المعاملة المسبقة بألورفينادرين على مؤشرات التخدير لعقارين 

فأر لكل  15ر بالحقن في الفئران. أجريت ثلاث تجارب مع مهمين للتخدي

 20و  10تجربة. في جميع التجارب تم استخدام الاورفينادرين بالجرع )

 100ملغم/كغم/في الخلب( كدواء معاملة مسبق. تم استخدام البروبوفول )

ملغم/كغم/في الخلب(، وكلا  50ملغم/كغم/في الخلب(، والثايوبنتال )

ا في التجارب الأولى والثانية والثالثة على التوالي. تم الدوائيين سوي

تسجيل مؤشرات التخدير، المتمثلة في بداية التخدير، ومدة التخدير، 

والتعافي من التخدير. أظهرت النتائج الرئيسية للاستخدام الاورفينادرين 

كعلاج مسبق انخفاضًا يعتمد على الجرعة في بداية التخدير وزيادة في 

خدير مقارنة بمجموعات السيطرة في كل التجارب. نستنتج أن مدة الت

للأورفينادرين تأثير على مؤشرات التخدير، والتي تم تسجيلها لأول مرة، 

مما يضع الأساس لمزيد من الدراسات وإمكانية استخدامه كعلاج مرافق 

 في التخدير.
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