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Calculations Of Coulomb Collisions Time For Plasma

Particles inside fusion Reactors
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Abstract:

In this paper study the coulomb collisions among plasma particles, using Maxwellian
Distribution to reach of collisions time equations for electron, ion and transfer energy between
the electron and ion inside plasma by indication of Coulomb Logarithm (Ln A). The coulomb
collisions time calculations are necessary for the fusion reactors because Collisions between ions
and electrons give rise to an electrical resistance which leads to ohmic heating of the plasma.
Because of the collisions the particles and energy transfer leading to losses in the plasma. In
order to control on the fusion reaction which happen inside the ionization medium (the plasma)
must be control the temperatures to reach the max. possible period of energy confinement.
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Introduction:

A plasma is an ionized gas composed of ions, electrons and neutral particles. These two
components are strongly coupled because any substantial separation of charges within the plasma
leads to a very large restoring force. Such separation can therefore only occur over short lengths.
Small charge separations do arise as results of thermal fluctuations. In a plasma with electron
density (ne) and temperature (T,) the thermal energy density of electrons per degree of freedom is
(1/2 ne Ty). if this compared to the electrostatic energy density resulting from a separation of charge
over a length (d), that is (1/2 ey E2~1/2 eo(ne ed/ &o)?, its seen that substantial separation of charge
can only occur over length up to d= 1p where (4,) Is the Debye length. Over lengths much larger
than this the average electron and ion charge densities are held almost equal the electric field of
individual particles is shielded over distances much larger than (1p), the process being called Debye
shielding. For (T.=1keV) and (n.=10%° m™) the Debye length (1p=0.024 mm).

When the plasma is in a magnetic field the individual particles are constrained in their
motion. They are free to move parallel to the magnetic field but perpendicular to the field they
gyrate in Larmor orbits. In fusion reactor the ion orbits typically have a radius of a few millimeters
and the electron orbits are smaller by the square root of the mass ratio. Although the precise
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behavior of the plasma is determined by the motion of the individual particles in the local
electromagnetic field the constraints on the particle motions described above give the plasma fluid-
like properties on lengths larger than the Larmor radii [1].

Many processes in the plasma are determined by particle collisions. Typically ion collision
times are in the range (1-100 ms). Electron collision times are shorter by the square root of the
mass ratio. Collision times increase with increasing temperature varying as ( T3/2). As a
consequence ohmic heating becomes inefficient at high temperatures. On the other hand Collisional
plasma losses are reduced [1].

The basic behavior of fusion reactor plasma is poorly understood. The energy loss
substantially exceeds that predicated on the basis of simple collisions and this not explained. Its
widely believed that the anomaly is due to small scale plasma instabilities. The plasma behavior is
also strongly influenced by impurities which enter the plasma from the surrounding material. In
this work we studying coulomb collisions between plasma particles, by use of Maxwellian
Distribution to reach of collisions time equations for electron, ion and transfer energy between the
electron and ion inside plasma by indication of Coulomb Logarithm (Ln A). The calculations of

coulomb collision times, electron collision time (z,), ion collision time (7;),exchanging time

(Tie),proton collision time (zp),tritium collision time (7;),deuterium collision time(zy). procedure
IS necessary for the fusion reactors because Collisions between ions and electrons give rise to an
electrical resistance which leads to ohmic heating of the plasma. Because of the collisions the
particles and energy transfer leading to losses in the plasma. In order to control on the fusion
reaction which happen inside the ionization medium (the plasma) must be control the temperatures
to reach the max. possible period of energy confinement [2]. The results arranged in tables
(1,2,3,4). As a comparison we compare between the calculated collision times (Theo.) and the
collision times values taken from reference (ref.[6]), the results was arranged in table (5).

Theory:
If we consider a test particle with mass (m;), velocity (Vv 1), charge (e1), and momentum

(§=m1\71) interacting with field particles having mass (m,), velocity (V,), charge (e;) and
momentum ( P = m,V, ). By definition, [2]:

Relative velocity U=V, — Vot i cenas (@D)
mm
Reduced mass m, = — L (2)
m, +m,
m,v, + m,v,

Il
~

w
=

Center-of-mass velocity \7c = T i
m, +m,

The rate of change of test particle momentum may be written:

(;—T = (collision frequency )( change in P per collision )...... . (4)

In small differential volume (dv,) of field particle velocity space, this may be written:

Where [dn#= f (V,)dV,] is the number of field particles per unit volume, (do) is the differential
cross section for coulomb scattering, and (JP) is the change in momentum per collision. The
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differential scattering cross section is a function of scattering angle and relative velocity (u).
Expressing the cross section in terms of differential solid angle (dQ):

the total rate of change of momentum by integrating over all field particle velocities and scattering
angles [2]:

dP do
_jd Ide(z)ud—QéP .................... (7)
Slmllarly, the rate of change of test particle kinetic energy is given by:
do
_jd def(z)u—chvv ............. (8)

Where (oW) is the change due to a single collision. These are the basic equations for momentum
and energy change due to coulomb collisions. We will derive expressions for (P),(dW), and the

coulomb scattering cross section (j—g), then evaluate the integrals. From Fig.1 (P-11), to evaluate

the differential area (dA) on the surface of the sphere and use it in the definition of differential Solid
Angle@d®) [2]:

A (rsin rd
do = 9A _ (rsin@ig)(rdo)
r r
If azimuthally symmetry exists, then jd¢ =2z, anddQ=2zsin&dé.

=singd@dé.......... .(9)

To Evaluation Of (&P),(W):- after a collision the final velocities of the test particle and field
particle will be (V, + &v,)and (V, + &V,) . From momentum conservation:

mv, + m,v, =m,(V, + &,) + m, (V, + &,) > m~N, =—m,N,...(10)

In the coordinate system in which (my) is at rest the velocity of the test particle is equal to (G), the
relative velocity .
From conservation of kinetic energy [2]:

%mu2 ; m(i + oU)° —> 0. 5J+%515U=0 ------------ 1D

Which shows that the magnitude of (u) remains unchanged although its direction changes during the
collision as illustrated in Fig.2.
From Egs. (1) and (10) :

=N, —N, =NA+m, /m,) =& (m/m) — &, =(m /m)d...(12)
Then

Let the subscripts N and | denote components parallel and perpendicular to the original direction

of motion. Because the scattering is symmetric in azimuthally angle the (6P, ) component will
average to zero during integration over (d¢ ) , and we only need to find (6P )

22



Journal of Kerbala University , VVol. 8 No.3 Scientific . 2010

From Fig.2 (P-11) we find:
AU | =ucosd-u =-u(l-cosf) = -2u sinz(ge) ........... (14)
From Eqgs. (13) and (14):

SR :—2mrﬁsin2(%6’) ..................... (15)

The change in kinetic energy is [2]:

SW =%ml(\71 +V,)? —%mlvlz =m,V, - &, +%m15v1 -,

— ml(mlvl + m2\72) OV, +m,m, (\71 _\72)-5‘71 1

+—=m, oV, - V.
m, +m, 2 b
:ml\7c-5\71+mrﬁ-§\71+%m15\71-évl
=m1\7C-6V1+(mf/ml)(ﬁ-&]+%5l]-é’l])
=m,\V; -V,
S RV = (16)

Where Egs. (1), (2), (3), (11), (12) and (13) have been used since (V. ) is independent of scattering
angle it may be taken outside of the (d©2) integral sign in Eq.(8). As before the (JP, ) component
averages to Zero, and only (éﬂ ‘) needs to be taken into account.

If we consider the coordinate system in which (m,) is at rest as illustrated in Fig.3. The differential
scattering cross section for scattering into angles between (6) and (6+d6) is simply the target area of
the ring between (b) and (b+db):

do=2dDuueeiiies e, (17)

In view of the azimuthally symmetry [3]:
do | 27bdb | | bdb |
dQ 27rsin¢9d9\ \sin@de\

The absolute value signs have been added to keep (j—g) positive since (% < 0), we will derive a

relation between the impact parameter (b) and the scattering angle (6). From Newton's law (non-
relativistic) and the coulomb force:

dv, ee, [ _ av,

= =—m
Ldt dzer? ? dt
Where (r) is defined in Fig.4, then:
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= = Rl Etemm—— 20
dt dt dt dze,r? 0

di dv, dv, eer|1 1 ee,r
m m,| 4zemr’

By symmetry (&) is in the z-direction and we only need to consider components of the coulomb
force in that direction to calculate (& ), then [2,3]:

S :_fdt dul _ ja° da 3t oo (21)
dt |, <= dadt
From conservation of angular momentum around the point (m,):
da dt  r?
—> ]
dt da ub
By using Egs. (22), and (20), in (21):

m,ub = m,r?

> ge ee :
ol :ja(’ dar—chosa:#ZSma0 ..... (23)
% pudzg,m.r 4re,m bu

From Fig.4 (P-11):
T 0

2&0+9 =T — Qap— E - E ................ (24)

With the aid of a trigonometric identity Eq. (23) becomes :

Su=—2%  5c0sE0)......... (25)
4drre,m bu 2

From Fig.5 :
1 .1 .1
Edu:usm(ae) — 5u:2usm(50) ......... .(26)

From Egs. (25) and (26):

1
ee, cos( =0) -
b:—22 ) db: el e2 da """ (27)
47T€0mru SﬂgomrUZSinz(Elg)

After substituting these values into Eq.(18) and using the identity: /Sin@=2sin(1/2 8) Cos(1/2 )]

We obtain the ((Rutherford Scattering Cross Section)):
2

do e e,
= —22 | 28
o) (28)

Sngomruzsinz(;e)
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To Find Coulomb Logarithm: by symmetry /(dQ) =2zsinf df]. Substituting Eqgs. (15) and (28)
into Eq. (7), [2,3]:
2

‘:j_i’:jdvz [ 2nsingde f(3,)u

min

€&

2
{— 2m,ﬁsin2(%0)}

87zgomruzsin2(29)

—ele o f(W)Ip 1 1
= dv d(=0)cot(=0
mozmrjz J, 8GO0t 0)

_-ele;

- 1
bl i)

The minimum scattering angle corresponds to the maximum impact parameter.
From Eq.(27):

tan (% Hmin) = el eZ

4remu’b,

5 O30

Since the angle is very small, the electrostatic potential in plasma is self-shielded by charged
particle motions and decays exponentially with a characteristic scale length called the Debye
Length- (4p). therefore its logical to choose:

D max =4 Dee v eevenn(31)

Because of the logarithm function the numerical result would vary little if we chose (2/1p) instead of
(4p). the logarithmic function is called the Coulomb Logarithm(Ln A) in the form[4]:

472'80meVp2 )
(LNA = = S ) or inthe form:
Z2e*NZ,
Aze,m Ul
LnA = |n+ N In{h} ................ (32)
i 0,,) %1%
2
e e
from above relation: {b =—212 2} -------------- (33)
4rgym.u

Then Eq. (32) will become:
INA ~ |n[%>] ................ (34

Introducing the temperature through:

1 > 3
The expression required for Eq. (34) is [2,4]:
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7Y
E
)I’D == (@J .................... (36)

If (e;=e,=e), equation (34) needs modification if b is less than (/2z) where (1) is the De Broglie
Wavelength (h/mv), this occurs for:

Where( Z,=e./e) ,( Z,=e,/e), and the fine structure constant (a=e?/2eohc=1/137).
Using relation (35) the condition (37) for the applicability of the classical formula for singly

2

. m,cC .
charged particles become: (T < c r10 ), since the rest mass energy of electrons,(meCZ: 0.5MeV)
X

Collision Times: the characteristic times for the collision relaxation processes are functions of the
velocity of the test particle. Typical values of the times involved may be obtained by taking the test
particle to have the average thermal velocity.

Thus putting (u=vr) and using (mvs>=T) its seen that all of the resulting characteristic collision

0
ne*InA

. . . . & . .
times are proportional to a time having the form:( ). Test particles have a Maxwellian

Distribution characterized by temperature (T) we can average over that distribution to find the rate
of energy transfer between the two maxwellian distributions if we define Equilibration Time or
Heat Exchange Time (7¢q) by the equation, Let us consider (m;=m ) and (M,=m;) we get [2,4]:
aT _T,-T, @27°)23¢2 mm, [KT, KT, T

—= =Ty = > +

dt 7 neInA m m;

eq e i

Where (m;) is the ion mass , (M) is the electron mass , (T,) is the electron temperature in (KeV)
and (n) is the plasma density (m™) k-Boltzmann constant.

And its convenient to define collision times with the numerical factors which occur in the
calculation of macroscopic quantities such as the electrical conductivity. For a plasma with ions of
charge (2) this lead to an:

Electron Collision Time [2,5]:

2 23/2
3/2 5omey Te/

=327)7 " L, — .. 39
‘e (27 nZ’e*InA (39)
And an lon Collision Time [2,5]:
2,1/2 13/2
m;" < T.
o =127%2 S0 i (40)

nZ%e*In A
Where Z-atomic number, The ratio of these times, (ze /7. ) is of order (me/m;)*? reflecting the
faster thermal velocity of the electrons compared with that of the ions. A further characteristic time
is that for heat exchange between the electron and ion components of the plasma. The frequency of
the collisions involved is determined by the faster component, the electrons. However because of

the difference in mass the energy transfer is inefficient only a fraction of order (m¢/m;) of the
electron energy being transferred to the ions. A precise calculation leads to a Heat Exchange Time:

m.

T=—"""7
( e 2m e)-

e
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From Eqgs (32),(34): Some of the references use ((Ae = LnA)) , where (A¢) -collisional mean free path
for electron or (A;) for ion. The Precise Calculations For These Equations After Calculate The
Constants, lead us to the following formulae :

Electron-Electron Collisions (Te> 10eV):

whereT, inKeV

From Ref.[5]: LNA, =235 Ln(n,2T, )~ [10°° + (LT, = 2)? /16] ........(42)

Electron-lon Collisions (T, > 10eV):

In/\:15.2—%ln(ne/1020)+InTe ......... (43)
whereT, inKeV

FromRef[5]: LNA, = 23— LN(N2ZT, %) eovoric oo (44)

lon-lon Collisions: singly charged ions, (T; >25KeV ):
In/\:17.3—%ln(ne /1020)+glnT. (45)

whereT, inKeV

Expressing ( T) in (KeV) by calculate the constants to get the collision times from Egs. (39),(40)
in new forms:

T3/2
7, (second) =1.09x10° —=—
nZInA
m /m_ )¥* T2
T, (second):6.60><10”( M) T ...(46)
nZ*InA Where T in KeV.
m /m )T
7., (second) = 0.99x10% %
nZ°InA

The coulomb logarithm for ions is approximated by (Ln A; =1.1 Ln A), to within 10% over the
range covered by Fig.5 (P-11), using relations in Eq.(46) give the following approximations when
(T;=T,) from ref.[6]:

ions(Z=1) 17, = i(ﬂ)mre
1.1 m,
protons T, =597, o (47)

deutrons 7, =787,
tritons 7, =957,
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Calculations and Results:

By using the equations (41, 43, 45) the calculation of the coulomb logarithm (Ln A) for high
density ( ne=10"'°, 10°°) m™ —Densities Of Fusion Reactors Plasma [7]) and temperatures reach
(100keV) for electron-electron collisions, electron-ion collisions and ion-ion collisions as shown in
tables (1,2,3). Then from calculate (Ln 4) we can calculate the collision times in side fusion plasma
by using the relations in equations (46,47) as shown in table (4) at ionic charge (Z=1) and plasma
temperature reach (10keV).

Table: (1) For Electron-Electron Collisions (T¢> 10eV) , The Calculated ( Ln A)

n.= 10" (m®) n.=10° (m®)

Te (eV) LnA Te (eV) LnA
10 11.45 10 10.3
100 13.75 100 12.6

1000 16.10 1000 14.9
10000 18.40 10000 17.2
100000 20.70 100000 19.5
Table: (2) For Electron-lon Collisions (T, > 10eV) , The Calculated ( Ln A)
n.= 10" (m?) n.=10° (m?)

T. (eV) LnA T. (eV) LnA
10 11.74 10 10.6
100 14.05 100 12.9

1000 16.35 1000 15.2
10000 18.65 10000 17.5
100000 20.96 100000 19.8

Table:(3) For lon-lon Collisions (T; >25KeV ), The Calculated (Ln A)

n.=10° (m?) n.= 10 (m?
Ti (keV) LnA Ti (keV) LnA
25 23.28 25 22.13
50 24.32 50 23.17
75 24.93 75 23.78
100 25.35 100 24.20
Table:(4) The Calculated Collisions Times at Z=1
ne= 10°m> [8] ne= 10°m? [8]

T (eV) 100 1000 10000 [jf T(eV) 100 1000 10000
Te 2.36 us | 58.0 us | 1.7ms Te 0.27 us | 7.20 us | 0.20 ms
Ti 0.24ms | 0.46ms | 0.1s T 21.0us | 0.54 ms | 14.0 ms
Tie 40ms | 0.090s | 3.7s Tie 049ms | 13ms | 0.37s
T, 0.13ms | 3.70ms | 0.1s T, 14.9 us | 0.39ms | 11.0 ms
74 0.19ms | 5.20ms | 0.15s T4 21.1us | 0.56ms | 15.6 ms
Tt 0.23ms | 6.40ms | 0.18s Tt 25.7us | 0.68ms | 0.019s

As a comparison we compare between the calculated collision times (Theo.) and the collision times
values taken from reference (ref.), the results was arranged in table (5).
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Table (5): Theoretical Collision Times (Theo.) Compare With
Reference Collision Times Values (Ref.) at (n.=10*m™)

T Te T Tie
(eV) Theo. | Ref.[7] | Theo. | Ref.[6] | Theo. | Ref.[6]
100 236 us | 24us | 024ms | 0.2ms | 4.09ms | 440 ms
1000 | 589 wus | 67us | 046ms| 0.5ms | 0.090s | 0.12s
10000 | 1.74ms | 19ms | 0.109s | 0.13s | 3.70s | 3.40s
Conclusions:

1. Coulomb logarithm (Ln A) depending on temperature and density of electrons as shown
in tables (1,2), so coulomb logarithm (Ln A) decrease when density increase, increase
when temperature increase, and so that the collisions times increasing when temperature
reach 10keV but collision times decrease when density increase as shown in table (4) .

2. From table (3) we see also Coulomb logarithm (Ln A) increase when ion temperature
increase, we conclude that Coulomb logarithm (Ln A) constant when the plasma at
corona equilibrium (Ti=Te=T piasma), (Ne=Ni=N particles)-

3. Electron temperature and density effective more than the ions on the calculations of
collisions times where ( Te< 7;), because of the small mass of electron and the higher
kinetic energy.

4. Most of the collisions times depending on electron collision time so when( 7,) increase
all the collisions times increase too as shown in table (4).

5. From table (5) the comparison prove that our calculations are so reasonable.

6. From this work we conclude that the temperatures in fusion reactors should be

controlled to reach max. plasma (energy) confinement.
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