
MJPS,   VOL.(7),   NO.(1),   2020 

 

13 
 

Modeling the crashes count using finite mixture models 

2and   Sadeq A. Kadhim 1Safaa K. Kadhem 

Department of Mathematics and Computer Applications, College of Science1, 

Al-Muthanna University, Iraq  

Higher Education and Scientific Research Ministry, Iraq2 

Received 28/3/2020    , Accepted  5/5/2020   , published:10/5/2020 

DOI: 10.18081/2226-3284/10-5/13-27 

Abstract 

This paper aims at the modeling the crashes count in Al Muthanna governance using finite mixture 

model.  We use one of the most common MCMC method which is called the Gibbs sampler to implement 

the Bayesian inference for estimating the model parameters. We perform a simulation study, based on 

synthetic data, to check the ability of the sampler to find the best estimates of the model. We use the two 

well-known criteria, which are the AIC and BIC, to determine the best model fitted to the data. Finally, 

we apply our sampler to model the crashes count in Al Muthanna governance. 
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1.1 Introduction 

Mixture models have been developed as 

a flexible tool to model date with an 

unobserved heterogeneity, for example, 

different types of date can form clusters 

or groups. A finite mixture model 

(FMM) is generally used when an 

observation belongs to one of K groups 

(components) that have distinct features 

and can be described by different 

probability distributions. In other 

words, these models are a weighted 

average of a finite number of 

distribution (mixing components).  

FMMs may be a finite mixture of 

distributions such as Gaussian or 

Poisson distributions. Interest in FMMs 

has increased over the last decades. 

They can be used for cluster analysis, 

latent class analysis, discriminant 

analysis, image analysis, survival 

analysis, disease mapping and meta-

analysis. There are many textbooks 

which have focused in detail on finite 

mixture models such as [7], [2]. 

Bayesian methods to model these 

mixtures of distributions have been 

used widely for inference.  The wide 

use of those distributions resulted in the 

large development in posterior 

simulation ways, for instance, the 

Markov chain Monte Carlo (MCMC) 

procedures [7]. Therefore, MCMC 

procedures have been used to handle the 

difficulties in the estimation processes 

of parameters of FMM, for instance, 

determining the rank of the mixture 

model [8], and the problem of label 

switching [10],[4]. Moreover, the 

Bayesian theory has been used to 

facilitate the modeling the complicated 

structure in these models via classifying 

them into a set of similar structures 

using the augmentation procedure. 

This paper includes the following 

aspects. In Section 2, we address the 

literature review concern the estimation 

and selection processes of finite mixture 

models. Section 3 introduces the 

definition of model. The model 

selection method is given in Section 4, 

and the simulation results and two real-

data examples in Section  5.  We present 

some  conclusions  in  Section  6. 

 

1.2   Definition of the finite 

mixture model 

Let  y = (y1 , 
 y2 , … , yT) denote a 

sample of observed data of size T, the 

probability density function (p.d.f.) of a 

mixture model can be defined as a 

combination of K component p.d.f.: 

Pr (y Θ)⁄ = ∑ πk
k
k=1 Prk(y θk⁄ ),       (1.1)                                 

Where  Prk(y θk⁄ ) denotes the p.d.f. of 

the kth component, πk is the weight of 

the population k such that 0 ≤ πk ≤

1, and ∑ πk = 1,k
k=1  Θ = (π; θ) =
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(π1, π2, … , πk;  θ1, θ2, … , θk) denotes a 

set of all unknown weight and 

parameters of a mixture model. In many 

applications, a family of distributions 

having the density in Equation (1.1) can 

be called a k-component finite mixture 

model. 

The main idea of mixture model is that 

the observations y are generated from k 

distinct  random processes so that each 

process is modelled by the density  

Prk(y θk⁄ ), and πk represents the 

corresponding proportion of 

observations from this process. For 

example, consider a FMM where 

Pr (y Θ)⁄  is constituted from densities 

which are all Normal or Poisson 

distribution.  

1.3 Bayesian estimation of 

mixture model 

Given an independent identically 

distributed (iid) random sample, y =

(y1, y2, … , yT),  generated from a k-

component  mixture model defined in 

Equation (1.1),  the likelihood function 

of these observations, assuming that yt 

is independently distributed, can be 

written as 

𝐏𝐫(𝒚 𝚯⁄ ) = 𝐋(𝚯; 𝒚) = ∏ ∑ 𝝅𝒌𝑷𝒓𝒌(𝒚𝒕 𝜽𝒌).     (𝟏. 𝟐)⁄

𝒌

𝒌=𝟏

𝑻

𝒕=𝟏

 

In the FMM in Equation (1.2), the 

unknown parameter vector  𝚯 = (𝝅; 𝜽) 

needs to be estimated.   In order to 

obtain the posterior distribution of   𝚯, 

we need to combine the data-dependent 

likelihood function L(𝚯; 𝒚) of the 

mixture model and the prior distribution 

of the unknown parameters; 𝜽 and 𝝅. 

The posterior distribution can be given 

as  

𝐏𝐫 (𝚯 𝒚) ∝ 𝐋(𝜽, 𝝅; 𝒚) 𝐏𝐫(𝝅) 𝐏𝐫(𝜽),       (𝟏. 𝟑)⁄  

where L(θ, π; y) = ∏ Pr (yt θ, π) =⁄T
t=1  

= ∏ {∑ πkf(yt θk)⁄K
k=1 }T

t=1  is the 

likelihood, Pr (θ) and Pr(π)  represent 

the prior distribution of θ and π 

respectively. 

An efficient method for simplifying the 

sampling from the posterior distribution 

is the date augmentation method 

proposed by [11]. This method is based 

on sampling  from the complete date 

posterior distribution Pr (Θ, z y)⁄  rather 

than Pr (Θ y)⁄  by proposing auxiliary 

variables, called z, also referred as 

latent indicator variables. If we know y 

and z, then the analysis will be more 

straightforward. 

We assume that there are discrete latent 

indicators, z = {zkt}, associated with 

each observation  of the vector y =

(y1, y2, … , yT). Sine these indicators in 

real life are unknown parameters, the 

inference about a mixture model 

requires estimating two unknown 

quantities : the component indicators, z, 

and the component parameters, Θ =

(π, θ) . in the Bayesian perspective, in 

order to obtain those quantities, these 

can be sampled from the fallowing 

complete date posterior: 

𝐏𝐫 (𝐳, 𝛑, 𝛉 𝐲) ∝ 𝐋𝐜(𝛉, 𝛑; 𝐲, 𝐳) 𝐏𝐫(𝛑) 𝐏𝐫(𝛉) ,⁄  

(1.4) 

where Lc(θ, π; y, z) is the complete 

data likelihood of a finite mixture 

model, Pr(θ) and Pr(π) are 

independent prior distribution of the 

parameter θ and of the components 

weights π respectively. The complete-

data likelihood can be written as  
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Lc(θ, π; y, z) = ∏ πzt
Pr (yt θzt

)⁄

T

t=1

 

                                       =

∏ ∏ πkPr (yt θk⁄ )t:z1=k
K
k=1  

= ∏ πk

∑ I(zt=k)T
t=1

K

k=1

∏ Pr (yt θk)⁄

t:zt=k

.                                

 (1.5) 

To complete the Bayesian specification 

of the model, we need to specify priors 

for the unknown parameters of the 

model: π and θ. The prior on the 

component weights is represented by a 

Dirichlet distribution as 

𝐏𝐫(𝛑)                                                

= ∏ 𝛑𝐤   

𝐊

𝐤=𝟏

∝ ∏ 𝐤𝐤
𝛅𝐤−𝟏

𝐊

𝐤=𝟏

= 𝐃𝐢𝐫𝐢𝐜𝐡𝐥𝐞𝐭 (𝛅𝟏, 𝛅𝟐, … , 𝛅𝐤),    (𝟏. 𝟔) 

Where δk,        k = 1,2, … , k are the 

positive (δk > 0) hyper-parameters of 

the Dirichlet distribution. The prior on 

the component-specific parameter, θ, 

based on the form of the parametric 

distribution assumed for observations, 

y. As a general case for representing the 

prior on the component-specific 

parameter, θ, we can write the following 

expression 

𝜽~Pr (𝜽 𝝋),                                (𝟏. 𝟕)⁄  

Where φ is referred to a collection of the 

hyper-parameters governing the shape 

of the prior distribution of θ. Common 

MCMC approaches can be employed. 

We use the Gibbs sampler [6] to 

simulate from the full conditional 

posterior distributions of the FMM. 

1.3.1  Estimation using  the Gibbs 

sampler 

The posterior distribution in Equation 

(1.6) involves three full conditional 

distributions which can be written as 

𝒛~ 𝐏𝐫(𝒛 𝒚⁄ , 𝝅, 𝜽), 

𝝅~ 𝐏𝐫(𝝅 𝒚⁄ , 𝒛),          (𝟏. 𝟖) 

𝜽~ 𝐏𝐫(𝜽 𝒚⁄ , 𝒛). 

It is easy to implement the Gibbs 

sampler [3] to sample those 

distributions. In Bayesian inference for 

FMMs, the mixture proportion 

{π1, π2, … . , πk}  can be viewed as the 

prior distribution that one observation 

belongs to sub-population k. Given the 

observations, yt, the full conditional 

posterior distribution of zt can be 

obtained as 

Pr (𝑧𝑡 = 𝑘 𝑦𝑡, 𝜋, 𝜃) ∝ 𝜋𝑘Pr (𝑦𝑡 𝜃𝑘)⁄⁄  

=
𝜋𝑘Pr (𝑦𝑡 𝜃𝑘)⁄

∑ 𝜋𝑙Pr (𝑦𝑡 𝜃𝑙)⁄𝐾
𝑙=1

.                (𝟏. 𝟗) 

From Equation (1.9), the marginal 

distribution of the zt is a multinomial 

distribution 

𝑧𝑡~multinomial {Pr(𝑧𝑡 = 1) , Pr(𝑧𝑡

= 2) , … . , Pr(𝑧𝑡

= 𝐾)}.                               (𝟏. 𝟏𝟎) 

Given component indicators z, the full 

conditional posterior of the component 

weights, π, can be sampled as follows 

𝐏𝐫 (𝝅 𝒚, 𝒛, 𝜹) ∝ 𝑳𝒄(𝜽, 𝝅; 𝒚, 𝒛)𝐏𝐫 (𝝅 𝜹)⁄⁄  
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∝ ∏ 𝜋𝑘

∑ 𝐼(𝑧𝑡=𝑘)𝑇
𝑡=1

𝐾

𝑘=1

∏ Pr (𝑦𝑡 𝜃𝑘) ∏ 𝜋𝑘
𝛿𝑘−1

         

𝐾

𝑘=1

⁄

𝑡:𝑧𝑡=𝑘

 

∝ ∏ 𝜋𝑘

∑ 𝐼(𝑧𝑡=𝑘)+𝛿𝑘−1𝑇
𝑡=1                  

𝐾

𝑘=1

 

𝛑~Dirichlet (𝑛1 + 𝛿1, 𝑛2 + 𝛿2, … , 𝑛𝑘

+ 𝛿𝑘),                (𝟏. 𝟏𝟏) 

where nk = ∑ Izl=k,   k = 1,2, … , K,T
l=1  

denote the allocation sizes. Given 

component indicators z and observation 

y, the posterior of θ is 

𝐏𝐫 (𝜽 𝒚, 𝒛) ∝ 𝑳𝒄(𝜽, 𝝅; 𝒚, 𝒛)𝐏𝐫 (𝜽)⁄  

~ 𝐏𝐫(𝜽) ∏ Pr (𝑦𝑡 𝜃𝑘).           (1.12)⁄

𝑡:𝑧𝑡=𝑘

 

Algorithm(3) provided by [6] describes 

the steps of sampling from the full 

conditional posterior distributions of a 

mixture model. 

 

 

 

Algorithm 3 : Gibbs Sampler for a k-

component finite mixture model 

Initialization: Choose 𝝅(0) and 𝜽(0) 

arbitrarily 

Iteration m (m ≥ 1): 

1- Generate zt
(m)

  (t = 1, 2, … , T) from 

Pr (zt
(m)

= k πk
(m−1)

, θk
(m−1)

, yt) ∝ πk
(m−1)

f(yt θk
(m−1)

)⁄⁄ ; k

= 1,2, … . , K. 

2- Generate π(m) from Pr(π z(m)),⁄  

3- Generate θ(m) from Pr(θ z(m)⁄ , yt). 

 

1.4 Selection model 

We use two popular criteria for model 

selection are: the Akaike's information 

criterion (AIC)[1] and the Bayesian 

information criterion (BIC) [9]. Both 

AIC and BIC are based on the log-

likelihood evaluated and penalized for 

the number of parameters in the model.  

AIC = −2LogPr(yt �̂�⁄ ) + 2K                               

(1.13) 

BIC = −2LogPr(yt �̂�⁄ ) + ℎ𝑙𝑜𝑔(𝑛)                     

(1.14) 

Where h is the number of parameters, n 

is sample size and LogPr(yt θ̂⁄ ) is log 

likelihood function which typically is 

being estimated under the classic 

framework. We adopt modified 

versions of these criteria in which the 

log likelihood  is evaluated using the 

Bayesian method [5]. 

 

2.1 Study design  

In this section we perform a simulation 

study to estimate the model mixture 

parameters using the Gibbs sampler.  In 

addition, under the same simulation 

study, we try to select the best mixture 

model among several competing 

mixture models using criteria: AIC and 

BIC.   

 

2.2 Simulation study 
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In this section we want to implement a 

simulation study. This study includes 

generating several data set from 

different models 

 2.2.1: Generating synthetic data 

sets 

We generated three data sets with size 

n=600 for each from Normal mixture 

models with K0=2,3 and 4 respectively, 

where K0 denotes the model order: 

First model:            0.3Pr(𝑦𝑡 2⁄ , 1) +

0.7Pr(𝑦𝑡 10⁄ , 1) 

Second model:         0.3Pr(𝑦𝑡 2⁄ , 1) +

0.5Pr(𝑦𝑡 8⁄ , 1) + 0.2Pr(𝑦𝑡 12⁄ , 1) 

Third model:    0.25Pr(𝑦𝑡 2⁄ , 1) +

0.25Pr(𝑦𝑡 8⁄ , 1) +

0.25Pr(𝑦𝑡 12⁄ , 1) +

0.25Pr(𝑦𝑡 20⁄ , 1) 

Figures (1), (2) and (3) show the 

histograms of the data sets simulated 

from the three models. 

 

 

Figure (1):  The probability density function of 

data set generated from the first model ( 2-

components Normal mixture model). 

 

 

Figure (2):  The probability density function of 

data set generated from the second model ( 3-

components Normal mixture model). 

 

 

Figure (3):  The probability density function of 

data set generated from the third model (4-

components Normal mixture model). 

 

2.2.2: Estimation of the model 

parameters 

In this section, we estimate the model 

parameters using the Gibbs sampler [3] 

of each model of the three models that 

generated the data sets. The parameters 

of the model is explained as following: 

𝜎𝑗
2~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝑎𝑗 , 𝑏𝑗) 

𝜇𝑗 𝜎𝑗
2~𝑁(𝜂𝑗, 𝜎𝑗

2 𝜉𝑗)⁄⁄  

 𝜋𝑗~𝐷𝑖𝑟(𝛿𝑗) 
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Where ηj, ζj, aj, bj and δj are known 

hyper-parameters, j = 1,2. The hyper-

parameters need to be specified [6]. 

We specify non-informative priors: 

a = 0.001, b = 0.001, η = 0 and ζ =

0.001. The weigh parameter, π, is 

given a Dirichlet  prior with non-

informative value, δk = 1, k =

1,2, … , K. Given the above 

parameterization on the hyper-

parameters of the priors distributions, 

we follow algorithm (2), given by [6], 

to implement the sampling process. 

2.3: Results 

2.3.1: Results of the model 

estimation  

We run separately the Gibbs sampler 

for 10000 iterations for each model.  

We adopted the last 5000 iterations for 

inference and discarded 5000 iterations 

as a burn-in period. Tables (1), (2) 

and(3) show estimation result of each 

model receptively. Figures (4), (5) 

and(6) show the MCMC result of each 

model receptively. As we see that the 

sampler performs well for estimating 

the true parameters of all three models. 

3.1: Modeling data count using 

Poisson Mixture model 

 Let  y = (y1 , 
 y2 , … , yT) denote count 

data length T , the Poisson mixture 

model of K component  can be given 

by  

Pr (y λ)⁄ = ∑ πk
k
k=1 Poik(y λk⁄ ),                                                  

(1.1) 

Where  Prk(y λ⁄ ) denotes the 

probability mass function (p.m.f.) of 

the Poisson mixture model , πk is the 

weight of the population k such that 

0 ≤ πk ≤ 1, and   ∑ πk = 1.k
k=1  

By following the same procedure with 

respect to the normal mixture model 

mentioned in the section 2, with 

replace the p.d.f. of normal distribution 

by the p.m.f. of Poisson distribution, 

we  apply the Poisson mixture model 

to application including   monthly 

accidents count data as described in the 

next section. 

3.1.1- Real application data 

In this section we consider an 

application including a series of 

monthly accidents count data occur in 

period (2014-2017) in the motorway 8 

which links the Nasiriya city by the 

hila city that pass through the Al 

Muthanna city. Figure (7) shows the 

map of these accident count data. 

 

 

 

 

 

 

Algorithm  2 :   Gibbs Sampler for a 𝐾-component Normal mixture model with conjugate 

priors 

1. Initialization: Choose 𝜋𝑘
(0)

 and 𝜃𝑘
(0)

 ,𝑘 = 1,1, … , 𝐾 

tel:(2014-2017
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2. Iteration: for 𝑚 = 1,2, … , 𝑀 

(a) Generate 𝑧𝑡
(𝑚)

; 𝑡 = 1, … . , 𝑇 from (𝑘 = 1,2, … 𝐾) 

Pr (𝑧𝑡
(𝑚)

= 1) = 1 − Pr (𝑧𝑡
(𝑚)

= 2) ∝
𝜋𝑘

(𝑚−1)

𝜎𝑘
(𝑚−1)

exp (−
𝑦𝑡 − 𝜇𝑘

(𝑚−1)2

2(𝜎𝑘
2)(𝑚−1)

). 

Compute: 𝑛𝑘
(𝑚)

= ∑ 𝐼
𝑧𝑙

(𝑚)
=𝑘

𝑛
𝑙=1  and 𝑠𝑘

𝑦(𝑚)
= ∑ 𝐼

𝑧𝑙
(𝑚)

=𝑘
𝑛
𝑙=1 𝑦𝑙 . 

(b) Update 𝜋𝑘
(𝑚)

 from 𝐷𝑖𝑟(𝛿1 + 𝑛1
(𝑚)

, 𝛿2 + 𝑛2
(𝑚)

, … . , 𝛿𝑘 + 𝑛𝑘
(𝑚)

) 

(c) Generate 𝜇𝑘
(𝑚)

; 𝑘 = 1,2, … , 𝐾 from   

𝑁(
𝜂𝑘𝜁𝑘+𝑠𝑘

𝑦(𝑚)

𝜁𝑘+(𝑛𝑘)(𝑚) ,
𝜎𝑘

2(𝑚−1)

𝜁𝑘+(𝑛𝑘)(𝑚)). 

Compute:  𝑠𝑘
𝑣(𝑚)

= ∑ 𝐼
𝑧𝑙

(𝑚)
=𝑘

𝑛
𝑙=1 (𝑦

𝑡
− 𝜇

𝑘
(𝑚))

2
. 

(d) Generate 𝜎𝑘
2(𝑚)

; 𝑘 = 1,2, … , 𝐾 from 

InvGamma(𝑎𝑘 + 0.5 (𝑛𝑘
(𝑚)

+ 1) , 𝑏𝑘 + 0.5𝜁𝑘(𝜇𝑘
(𝑚)

− 𝜂𝑘)2 + 0.5(𝑠𝑘
𝑣(𝑚)

)). 

 

 

 

 

 

 

Table (1): The estimated and real values of the parameters of a Normal mixture model with K=2 using 

Gibbs sampler. 

 

Real parameters 

Weight Mean Variance 

w1 w2 w3 μ1 μ2 μ3 σ1
2 σ2

2 σ3
2 

0.3 0.5 0.2 2 8 12 1 1 1 

w1̂ w2̂ w3̂ μ1̂ 
 

μ2̂ 
 

μ3̂ 
 

σ1
2̂ σ2

2̂ σ3
2̂ 

0.31 0.48 0.21 2.07 7.89 12.02 0.98 1.07 1.04 

Table (2): The estimated and real values of the parameters of a Normal mixture model with K=3 using 

Gibbs sampler. 

 

Real parameters 

Weight Mean Variance 

w1 w2 μ1 μ2 σ1
2 σ2

2 

0.3 0.7 2 10 1 1 

w1̂ w2̂ μ1̂ 
 

μ2̂ 
 

σ1
2̂ σ2

2̂ 

0.281 0.719 2.049 9.956 1.096 1.026 
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Table (3): The estimated and real values of the parameters of a Normal mixture model with K=4 using 

Gibbs sampler. 

 

 

Figure (4):  The posterior distributions of the model parameter  with K0=2. 

 

 

 

 

 

Figure (5):  The posterior distributions of the model parameter with K0=3. 

Real parameters 

Weight Mean Variance 

w1 w2 w3 w4 μ1 μ2 μ3 μ4 σ1
2 σ2

2 σ3
2 σ4

2 

0.25 0.25 0.25 0.25 2 8 12 20 1 1 1 1 

w1̂ w2̂ w3̂ 

 

w4̂ 

 

μ1̂ 
 

μ2̂ 
 

μ3̂ 
 

μ4̂ 

 
σ1

2̂ σ2
2̂ σ3

2̂ σ4
2̂ 

0.26 0.27 0.24 0.22 2.09 8.34 12.19 20.07 1.33 1.04 1.13 1.07 
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Figure (6):  The posterior distributions of the model parameter with K0=4. 
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Figure (7) : The map of accident count in Al Muthanna City. 

 

Index Mouth Accident 
count 

Index Mouth Accident 
count 

1 Jan.2014 23 25 Jan.2016 35 

2 Feb.2014 40 26 Feb.2016 30 

3 Mar.2014 26 27 Mar.2016 63 

4 Apr.2014 30 28 Apr.2016 49 

5 May.2014 15 29 May.2016 44 

6 June.2014 28 30 June.2016 52 

7 July.2014 28 31 July.2016 46 

8 Aug.2014 35 32 Aug.2016 56 

9 Sept.2014 16 33 Sept.2016 46 

10 Oct.2014 18 34 Oct.2016 37 

11 Nov.2014 22 35 Nov.2016 38 

12 Dec.2014 10 36 Dec.2016 25 

13 Jan.2015 22 37 Jan.2017 36 

14 Feb.2015 37 38 Feb.2017 42 

15 Mar.2015 25 39 Mar.2017 45 

16 Apr.2015 31 40 Apr.2017 29 

17 May.2015 31 41 May.2017 27 

18 June.2015 36 42 June.2017 37 

19 July.2015 25 43 July.2017 33 

20 Aug.2015 25 44 Aug.2017 51 

21 Sept.2015 16 45 Sept.2017 57 

22 Oct.2015 16 46 Oct.2017 43 

23 Nov.2015 22 47 Nov.2017 52 

24 Dec.2015 10 48 Dec.2017 50 
Table (5): Shows the monthly accident counts in Al Muthanna city through period (2014-2017) 
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Figure (8): Shows the monthly accidents counts in Al Muthanna city 

 

3.2: Results 

Tables (6) shows the estimation and 

model selection results of six Poisson 

mixture model fitted to accident count 

data. The third column represent the 

estimated weights, while the fourth 

column show the estimated mean 

parameter of Poisson mixture model. 

The fifth column shows the log-

likelihood of each model fitted to those 

data. While the sixth and seventh 

columns represent the AIC and BIC 

respectively. Note that the best model 

for these data is the Poisson mixture 

model with K=3. The mean of the  first 

component of this model was 

λ̂1=16.838 with estimated weight is 

w1̂=0.213 and the mean  of the second 

component  was  λ̂2= 30.475  with 

estimated weight is  w2̂=0.452 .While 

the mean of the third component was 

λ̂3 =47.390 with estimated weight 

is w3̂=0.333 . This result can be 

supported by the density fitting of our 

selected model as shown in figure (9). 

Conclusion 

In this research, we have used two 

modified versions, under a Bayesian 

principle, for AIC and BIC to select the 

best mixture model. Under Bayesian 

framework, we have used one of the 

well-known MCMC procedure, which 

called the Gibbs sampler, to estimate 

the model parameters. We have 

performed a simulation study to 

estimate several Normal mixture 

models fitted to synthetic datasets. In 

addition, we have checked our criteria:  

AIC and BIC on the same synthetic 

datasets. These criteria have shown a 

better performance with respect to 

select the correct model. Finally, we 

have applied these criteria on real 
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application involving accidents count 

data occurred in the Al Muthanna city 

using a Bayesian Poisson mixture 

model.  

Table (6): Shows the results of the estimation parameters and model selection (AIC, BIC) of six models 

fitted to the real data (accident counts). 

 

Model components �̂�𝑗 �̂̂�𝑗 Log-likelihood AIC BIC 

2 
1 
2 

0.485 
0.514 

22.913 
43.531 

 
-197.990 

 
201.990 205.732 

3 
1 
2 
3 

0.213 
0.452 
0.333 

16.838 
30.475 
47.390 

 
-191.726 

 
197.726 203.339 

4 

1 
2 
3 
4 

0.130 
0.264 
0.321 
0.284 

14.810 
24.331 
34.537 
48.836 

-191.878 199.878 207.363 

5 

1 
2 
3 
4 
5 

0.091 
0.151 
0.237 
0.233 
0.286 

13.306 
21.181 
27.166 
36.129 
48.329 

-192.494 202.494 211.850 

6 

1 
2 
3 
4 
5 
6 

0.070 
0.119 
0.145 
0.233 
0.182 
0.249 

12.134 
18.441 
24.375 
30.259 
38.136 
49.270 

-192.998 204.998 216.225 

7 

1 
2 
3 
4 
5 
6 
7 

0.067 
0.102 
0.109 
0.179 
0.148 
0.186 
0.206 

11.982 
17.813 
23.297 
27.775 
32.735 
40.105 
50.572 

-193.467 207.467 220.566 
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Figure (9): Shows the densities of six Poisson mixture models fitted the accidents count.  
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