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ABSTRACT  

This investigation presents a methodology and practical guidelines for developing 

predictive models for reverse osmosis plants by a data-based approach using neural networks 

based on the back-propagation algorithm. This study utilizes actual operating data from reverse 

osmosis (RO) desalination plants. Our resulting neural network model is capable of accurately 

predicting the actual operating data from RO desalination plants, but the accuracy of a neural 

network model depends on both the proper selection of input variables and the broad range of data 

with which the network is trained. A neural network model can handle noisy data more effectively 

than statistical regression and performs better in predicting the performance variables of RO 

desalination plants. Permeate flux and salt passage are the key performance parameters. They are 

mainly influenced by variable parameters such as pressure, temperature, salt concentration, feed 

flow rate and pH of feed water. When the temperature of feed water is increased, the permeate flux 

and salt passage increase and permeate flux increases with decreasing pH and concentration of 

feed water and increasing pressure. The salt passage decreases with increasing pressure, when 

the concentration of feed and pH decrease too. When increasing the feed flow rate, the permeate 

flux and salt passage would be increased. A good agreement prediction is obtained using the 

ANN predictions and the experimental data with a deviation not more than 2% for most of the 

cases considered. The ANN interpolative levels (which were not represented in the training phase) 

is shown to be of lesser quality. 

 الخلاصة : 

اس يت غزٗق ت لوٌظْه بث الخٌبظ ا السي  ٖ  ْحٌبئ٘ ت ه ي ال ت حي ْٗز ًو ب    َعول٘  َأدَِل   ّ َهٌِجُ٘ذا البحث ٗقدم  أى

دراس ت ح  خمدم ال ٍُ ذعلو ب  أى  .الزلس ٖالوسخو دة عل ٔ هٌِ ب  الخي ب ز   تالاص يٌبع٘ تالسص ب٘ تالش بي ب  ب٘بً بث ه  خمدهالقبعدة 

 تالسص  ب٘ ٌَ  بحل لش  بيالٌو  ْ   ال ح٘  ث ٗس  د  ٘بً  بث الخش  ا٘ت الةسل٘  ت ه  ي هٌظْه  بث ححل٘  ت الو٘  بٍ  ْاس  يت الخٌبظ  ا السي   ٖ.

لش بيت لدق٘ق للب٘بًبث السول٘ت الةسل٘ت هي ححل٘ت الو٘بٍ  ْاس يت الخٌبظ ا السي  ٖك لي ي دق ت الوْدٗ ت  ئبّ علٔ حٌ ا  درقب الاصيٌبع٘ت

 الش  بيتٌو  ْ   لٗوي  ي   .تالوخدر    الش  بيتّالو  دٓ الْاس  ب للب٘بً  بث ه  ب  تالداخل  ٗسخو  د عل  ٔ ححدٗ  د هٌبس  ي  للوخا٘  زاث  السص  ب٘ت

لوٌظْه بث فٖ حٌبئ فسبل٘ت الوخا٘زاث  ٘تالأفعلٗؤدٕ قد ّ ٖإحصبئًح بر افسبل٘ت هي   أكثزٗسبلل  ٘بًبث هعيز ت  أى تالسصب٘

ّٖ الٌةْ  الٌبفذ ّالوبء الجزٗبى كوب أى ال  ححل٘ت الو٘بٍ  ْاسيت الخٌبظا السي ٖ. الدرل ت  ف ٖ تالزئ٘  ٘ تالةسل٘  الأ س بدٗيًْ بى وِلْحِ

بد ٗ سدا ّه ب للو بء ال داخت. pHّهس د  الجزٗ بى ّ ال لوا ّحزك٘ شع اػ ّدرل ت الح زارة الّالخٖ حخأ ز  بلوخا٘زاث هثلا  الأّلٔ

ّٖ ٗ شدادالٌة ْ  الٌبف ذ ّالو بء اللزٗ بى لوبء ال داخت ف بى ادرلت حزارة   pH ضًمة بب ٌبف ذ ٗ شداد الو بء اللزٗ بى  ح٘ ث اى  ,وِلْحِ 

ّٖ الٌة ْ  ال ّك ذل  الع اػ. دّاسدٗ بوبء ال داخت الّحزك٘ش هلا  للو بء  pHول ا ّال٘ ش ًمة ط حزكّاالع اػ  داسدٗ بٗق ت ه ب  وِلْحِ 

ّٖ س ْي ٗ شدادالٌة ْ  الٌبف ذ ّالو بء ال لزٗبىوبء الداختك فبى الهسد  لزٗبى  دأسدا فئ ا. أٗعبالداخت  وٌ  جن ال خٌب ؤأى ال. اىوِلْحِ 

 لأغل ي% 2ل ٘  اكث ز ه ي  ياًح زاه ب  تالسول٘ ّالب٘بً بث  الاص يٌبع٘ت تالسص ب٘ تلش بيا حٌبؤاث م بسخمداج٘د ٗيْى هُيْخََ ي ال

 لأق تف ٖ غ ْر الخ درٗيت  حي ْى هسزّظ ت  َهُسَل و )الخ ٖ ل٘  ج  الاصيٌبع٘ت تالسصب٘ ته خْٗبث الاسخ٘ةبء للشبيّاى بلاث. الح

 .ًَْع٘
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1. INTRODUCTION 

The concepts of "osmosis" and "reverse osmosis" have been known for many years. Studies on 

osmosis were carried out as early as 1748 by the French scientist Nollet. Many researches reported on 

reverse osmosis system, most of them using hollow fiber or spiral wound membrane in their research 

(Shamel and Chung, 2006). The separations performance of reverse osmosis (RO) desalination (e.g., 

salt passage and permeate flux) and membrane longevity are impacted by numerous factors including, 

but not limited to different operating parameters (feed water concentration, temperature, pressure and 

flow rate) effects on membrane performance are examined using RO system (Hawlader et al., 2000). 

The development of advanced RO process control strategies would benefit from predictive models of 

plant operation that are capable of identifying deviations (as well as upsets) of process conditions due 

to fouling (Jamal et al., 2004). 

In recent years, there have been various attempts to use the artificial neural networks (ANN) as 

a viable approach to develop data-driven models to describe the performance of membrane processes 

(Niemi et al., 1995; Abbas and Al-Bastaki, 2005; Chen and Kim, 2006; Sahoo and Ray, 2006). 

Neural networks can be applied to the predictive modeling and optimization of desalination plants. The 

goals are to achieve better design, improve process efficiency, and enhance operational safety. 

Desalination plants make good candidates for neural network modeling, because of their computational 

process complexity, nonlinear behavior, many degrees of freedom, and the presence of uncertainty in 

the control environment (Rao et al., 1994). Quantitative optimization of operating variables could lead 

to increased production rates, higher product quality, and better plant performance with less energy 

consumption and lower operating costs. This optimization can also give the operator an early warning 

of any decline in unit performance (Al-Shayji and Liu, 2002). 

Previously developed ANN models of RO plant performance were based on the use of training 

data sets whereby the data points for training and testing were inter dispersed throughout the complete 

data. These models were reasonably successful for data interpolation (i.e., predictions for an input 

variable range for which the ANN model was trained) but lacked forecasting capability (i.e., 

performance predictions for data that were not covered by the training data set). The ability to forecast 

membrane plant performance, even for short forward data, would provide additional flexibility for 

developing an integrated process control strategy and as an early warning system to signal the need for 

remedial action (e.g., membrane cleaning, adjustment of process variables such as pressure and flow 

rates). Arguably, the ANN approach is data-driven and, therefore, results in a plant-specific 

performance model. However, such an approach would have the advantage of capturing the unique 

aspects of the plant under consideration, including specific operational behavior of plant equipment 

(e.g., pumps, valves, monitoring devices and control system), process elements (i.e., membrane 

modules, feed pretreatment modules), plant configuration, as well as feed quality variations (Libotean 

et al., 2009). 

This study is aimed at investigating the reverse osmosis process performance of permeate flux 

and salt passage and describes a methodology and practical guidelines of developing predictive models 

of water desalination plants by a data-based approach using a neural network based on the back-

propagation algorithm. The performance of RO for different operating parameters has been examined 

and the best operating condition of RO system with the best permeate quality were utilized to produce 

fresh water from salt water. 
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2. PROCESS DESCRIPTION 

 This research is a pilot plant experimental study and the essential components of the pilot 

used includes a feed tank of 3 m
3
 capacity with a mixer (1500 rpm), a pressure pump (centrifuge 

pump) of type (KSB/COK-C50-250) of 30000 L/h capacity with speed 2900 rpm to control pressure 

within range (4 – 6 bar) and the RO membrane module (Figure.1).  

 The RO unit use in Daura Power Plant is a spiral wound module of TFC-8822HR made of 

polyamide by Fluid System Company. Also the dimension of membrane (93.5 cm × 105 cm) and 

the module contains 34 membranes; its surface area is 333795 cm
3
, separate the membranes from 

one another by mesh made of fine plastic material to assist to pass the water between the 

membranes. For starting the work distills water (conductivity 2 µs/cm) is passed from the RO pilot 

to determine the initial flux in various pressures of 4, 4.5, 5, 5.5 and 6 bar at an ambient temperature 

of 25 ºC. Then, the RO system is operated to determine the optimized applying pressure. At last, the 

optimum values of temperature, pH and NaCl concentration is investigated at the optimum pressure. 

The amount of permeate flux and salt passage which can pass from the RO membrane is measured. 

In each step of the experiments, analyses of samples are done after measurement of feed flow; 

permeate flux and salt passage in a predetermined period of less than 30 min. for about 3 months.  

 Studying the effect of temperature on RO treatment is accomplished for 18, 19.3, 20.6, 21.9 

and 23.2 degrees Centigrade adjusted by using heater with thermocouple and effect of NaCl 

concentration is examined using of five solutions of NaCl (391, 450, 504, 564 and 618 mg/L). All 

these synthetic samples are prepared in the laboratory by dissolving certain amounts of a pure salt 

of food in distilled water and the concentrations of salt is measured by means of electric 

conductivity. The variation effect of pH on RO performance accomplished for 5, 6, 7, 8 and 9 to 

control pH by addition little amount of HCl (9.5 N) or NaOH (9.9 N) for all experiments. 

`  

Figure 1. Schematic of the reverse osmosis (RO) pilot plant.  

3. ARTIFICIAL NEURAL NETWORKS 

 Artificial neural networks (ANN) are numeric techniques able to capture and represent 

complex input-output relationships. They have the ability to learn linear, as well as non-linear 

correlative patterns between sets of input data and corresponding target values, directly from the 

data set that is modeled. They can also be successfully used in classification problems, since there 

are specific algorithms available to group the input patterns in different clusters based on 

similarities-dissimilarities between them. The ANN are characterized by processing units (neurons) 

and adjustable parameters (weights) (Bhagat, 1990). 

ANN models were built, separately, for the permeate flux and salt passage (i.e., target 

variables) using a back-propagation algorithm (Bhagat, 1990) to establish the relationships between 
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the selected model inputs and the target variables (permeate flux and salt passage). Baughman and 

Liu, 1995 described the fundamentals and applications of neural networks in bioprocessing and 

chemical engineering, including the back-propagation algorithm for the development of multilayer 

feed forward networks. Back-propagation is a neural network training method based on a forward 

flowing of information, and back-propagated error corrections (Bhagat, 1990; Vapnik, 1995). The 

back-propagation networks are usually organized in layers of neurons, as the architecture presented 

in the figure.2. 

 
Figure 2. Multilayer feed forward neural network (Al-Shayji and Liu, 2002). 

 Connections are made between the neurons of adjacent layers: a neuron is connected so that 

it receives signals from each neuron in the preceding layer and transmits signals to each neuron in 

the immediately succeeding layer. Each processing element (neuron) receives a number of inputs, 

using the neuron’s assigned weights, which is transformed by an activation function to produce a 

single output signal that is sent to the neurons in the succeeding layer. The activation function 

defines the output of the neuron in terms of the activity level at its input. Briefly, the current back-

propagation architectures consist of one input layer (with the number of inputs required by each 

model tested) which receives the input data, one or more hidden layers in which a different number 

of neurons are used for different models to evaluate the performance of various model architectures 

and one output layer (one output target variable). Additionally, a bias neuron that supplies an 

invariant output is connected to each neuron in the hidden and output layer (Bishop, 2002). 

Different expressions can be used for the neuron’s activation function like a sigmoid, hyperbolic 

tangent or linear transfer functions. Linear and hyperbolic tangent transfer functions are utilized for 

the input and output layers, respectively and a hyperbolic tangent transfer function is used for the 

hidden layer (Bishop, 2002; Libotean et al., 2009). 

 In the ANNs approaches, data normalization is necessary before starting the training 

process, to ensure that the influence of the input variable in the course of model building is not 

biased by the magnitude of their native values, or their range of variation. The zero-mean 

normalization technique used for the input/output variables to the range [-1, +1], having an average 

value set at zero. This technique utilizes the entire range of the hyperbolic tangent transfer function, 

and every input variable in the data set has a similar distribution range (Al-Shayji and Liu, 2002). 

 The back-propagation training consists of two passes of computation: a forward pass and a 

backward pass. In the forward pass an input pattern vector is applied to the neurons in the input 

layer. The signals from the input layer propagate to the units in the first hidden layer, each one 

producing an output as described above. The outputs of these neurons are propagated using the 

same algorithm to units in subsequent layers until the signals reach the output layer where the actual 

response of the network to the input vector is obtained. Extending the formula for calculating the 
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output of a single neuron for the general case of any unit from any layer, leads to the networks’ 

weights, that are fixed during the forward pass, are all adjusted during the backward pass in 

accordance with a back-propagated error signal for minimizing an error function (Chitra, 1993). 

The error gradient is calculated based on the difference between the target value and the neuron’s 

output, while for the hidden layer neurons the error gradient is determined by calculating the 

weighted sum of errors at the previous layer. The principle used for weights adaptation is also 

known as generalized delta rule. Once the error gradients are evaluated for every layer, the biases 

and the weights are updated (Hinton, 1992).  

 A more efficient method used for weights adaptation as the Levenberg-Marquardt algorithm 

(Levenberg, 1944; Marquardt, 1963), which is a combination between the gradient descent rule and 

the Gauss-Newton method. The algorithm uses a parameter to decide the step size, which takes 

large values in the first iterations (equivalent with the gradient descent algorithm), and small values 

in the later stages (equivalent with the Gauss-Newton method). It combines the ability of both 

methods (i.e., convergence from any initial state in the case of gradient descent, and rapid 

convergence when reach the vicinity of the minimum error in the case of Gauss-Newton method) 

while avoiding their drawbacks (Bishop, 2002; Hagan and Menhaj, 1994). For the learning phase, 

the data must be divided in two sets: the training data set, which is used to calculate the error 

gradients and to update the weights, and the validation data set, which allows to select the optimum 

number of iterations in which the networks learns general information from the training set. As the 

number of iterations increases, the training error drops whereas the validation data set error begins 

to drop, then reaches a minimum and finally increases. Continuing the learning process after the 

point when the validation error arrives to a minimum leads to a process called over-fitting, when the 

network became specific to the pattern vectors that form the training data set. After finishing the 

learning process, another data set (test set) is used to validate and confirm the prediction accuracy 

(Delgrange et al., 1998). 

 The goal of a neural network is to map a set of input patterns onto a corresponding set of 

output patterns. The network accomplishes this mapping by first learning from a series of past 

examples defining sets of input correspondences for the given system. The network then applies 

what it has learned to a new input pattern to predict the appropriate output. Developing a neural 

network requires three phases: training, recall, and generalization. The training phase repeatedly 

presents a set of input-output patterns to the network, adjusting the weight of interconnections 

between nodes until the specified inputs yield the desired outputs. The recall phase subjects the 

network to a wide array of input patterns seen in training to test its memory. The generalization 

phase tests the network with new input patterns, for which the system will hopefully perform 

properly (Al-Shayji and Liu, 2002). We used Neural Network Toolbox / MatLab (the Language of 

Technical Computing, Version 6.1.0.450 Release 12.1) manufactured by The MathWorks, Inc. 

(2001) software tools to accomplish this work. 

4. DATA PREPROCESSING AND ANALYSIS 

 To permit accurate monitoring of the operation of the RO unit, we collect data of varied 

natures and log them properly. In any experiment, as the number of observations increases, the 

resulting statistical correlations become increasingly reliable. Therefore, the investigator should use 

a large sample size wherever possible. In this study, we recorded the operational variables from the 

RO pilot plant measured every 30 min. for a period of 3 months (4375 data sets for each period). 

 Real-life data often contain outliers, which are observations that do not reasonably fit within 

the pattern of the bulk of the data points and are not typical of the rest of the data. Some outliers are 

the result of incorrect measurements and can be immediately rejected and removed from the data 
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set. Other outliers are observations caused by unusual process phenomena that are of vital interest. 

Data require careful inspection and examination to observe this distinction. The inclusion of outliers 

in training data forces the network to consider a larger solution space and can therefore reduce the 

overall precision of the resulting network. This is observed as occasional large differences between 

actual and predicted values of output variables. The root-mean-square (RMS) error decreased after 

the outliers had been removed. Removing outliers generally improves network performance.  

5. MODEL DEVELOPMENT AND OPTIMIZATION 

5-1. Network Parameters  

To control the prediction ability of neural network for the modeling and optimization of RO 

process that is to say, the practical guidelines for developing and optimizing neural network models 

for RO desalination processes. Importantly, these guidelines represent effective starting points for 

neural network modeling of RO process. 

The first step in neural computing, prior to training a neural network, is to initialize the 

weight factors between any two nodes of the hidden layers. Since no prior information about the 

system being modeled is available, it is preferable to set all the free weight factors of the network to 

random numbers that are uniformly distributed (Gaussian weight-factor distribution) inside a small 

zero-mean range of values, say, between -0.5 and +0.5. A multilayer prediction network trained 

with the back propagation algorithm will, in general, learn faster when the transfer function built 

into the network is symmetric (hyperbolic tangent function, with values between -1 and +1) rather 

than nonsymmetrical (sigmoid function, with values between 0 and 1). Therefore, we use a 

hyperbolic tangent transfer function throughout this study. 

We normalize the input and output data sets between limits of -1 and +1, having an average 

value set at zero. This zero-mean normalization method utilizes the entire range of the hyperbolic 

tangent transfer function, and every input variable in the data set has a similar distribution range in 

conformity with (Al-Shayji and Liu, 2002).  

5-2. Effect of Number of Training Data  

Neural network is designed to predict the behavior of output variable based on number of 

training data for input variable and it is also unable to consider the interactions between input 

variables. Development of neural networks for predictive modeling of water desalination process, as 

our work utilizes actual operating data (not simulated data). Two subsets of data are used to build a 

model: a training set and a testing set. The training phase needs to produce a neural network that is 

both stable and convergent. Therefore, selecting what data to use for training a network is one of the 

most important steps in building a neural-network model.  

Training is the process by which the neural network systematically adjusts the weights of 

interconnections between nodes so that the network can predict the correct outputs for a given set of 

inputs. For the best “learning” possible, we need a large and robust set of historical input/output 

data. It adjusts the weight factors and the process continues, iteratively, until the error (i.e., sum-of-

square errors) between the predicted and actual outputs has been minimized for effective initial 

weight-factor distributions used in training back propagation networks based on number of training 

data of input variables and total number of nodes in the hidden layer(s). Figure.3 shows affect the 

number training data which increase the number of training data led to increase the degree of 

simulation between the predicted and actual data by means of Neural Network Toolbox / MatLab. 
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Figure 3. The effect of increasing number of examples in training sets. 

 

5-3. Effect of Number of Nodes in the Hidden Layer(s) 
The number of input and output nodes corresponds to the number of network inputs and 

desired outputs, respectively. The choice of the number of hidden layers and the nodes in the hidden 

layer(s) depends on the network application (Libotean, 2009; Baughman and Liu, 1995). 

Determining the number of hidden layers is a critical part of designing a network and it is not 

straightforward as it is for input and output layers. To determine the optimal number of hidden 

layers, and the optimal number of nodes in each layer, we train the network using various 

configurations, and then select the configuration with the fewest number of layers and nodes that 

still yield the minimum (RMS) error quickly and efficiently. The network consists of 5 input 

variables, and 2 output variable. It uses a back-propagation network, the delta learning rule, the 

hyperbolic tangent transfer function, 0.3 for the learning rate, and 0.4 for the momentum 

coefficient. We use 325 data sets to train these configurations with 10,000 iterations. The network is 

tested with one- and two-hidden-layer configurations with an increasing number of nodes in each 

hidden layer(s). Figure.4 illustrates the network response as the number of nodes in one- and two-

hidden-layer networks increases. The results show that the 2-hidden-layer network performs 

significantly better than the 1-hidden-layer network in accordance with (Al-Shayji and Liu, 2002). 
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 Figure 4. Comparison of the average errors for the prediction network for the permeate flux and 

salt passage trained with various one- and two-hidden-layer configurations. 

The average errors for the best performing architecture for each length of training time 

considered are in agreement with the former analysis based on explained variance in prediction and 

number nodes in hidden layers, as illustrated in figure.5. The optimal configuration in 2-hidden-

layer networks with minimum average error is 30:15 (i.e., with 30 nodes in hidden layer 1 and 15 

nodes in hidden layer 2). This configuration agrees with what (Baugham and Liu, 1995) recommend 

as effective hidden nodes in their text and it will be used throughout our work. 

 

Figure 5. Average error for the best architecture for each length of training time for the prediction 

network for the permeate flux and salt passage trained with two-hidden-layer configurations. 
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5-4. Effects of Learning Rate and Momentum Coefficient. 

(a)         (b)  

Figure 6. (A-B) Comparison of the RMS error in training the permeate flux and salt passage 

network with different learning rates (LRs) and momentum coefficients (MCs). 

The learning rate and momentum coefficient are two important parameters that control the 

effectiveness of the training algorithm. The learning rate is a positive parameter that regulates the 

relative magnitude of weight changes during learning. However, how would a change in the 

learning rate change the performance of the algorithm? To understand the effect of the learning rate 

on the network training, let us consider the prediction network for the permeate flux and salt 

passage with 325 training examples. We use a back-propagation network with the 30:15 hidden-

layer configuration, the delta learning rule, the hyperbolic tangent transfer function, and zero 

momentum coefficient. Figure.6 (b) compares the RMS error using a low learning rate of 0.01, a 

moderate learning rate of 0.3, and a high learning rate of 5.0. In general, a smaller learning rate 

results in slower convergence. When the learning rate is low (0.01), the network takes a longer time 

(4,000 iterations) to reach an RMS error of 0.2. This is due to the fact that the smaller the learning 

rate, the smaller will the changes to the weights in the network be from one iteration to the next, and 

the larger the number of update steps needed to reach a minimum.  

However, when the learning rate is 0.3, the network reaches an RMS error of 0.2 in a shorter 

time (200 iterations). If increase the learning rate to 5.0, such that we will be taking larger steps, the 

algorithm will become unstable; the oscillating error fluctuations will increase instead of decaying 

and thus not reaching a minimum (see point (z) in Figure.6(b)).  

Figure.6 (a) illustrates the effect of increasing the momentum coefficient on the speed of 

convergence. The network takes a longer time (500 iterations) to reach an RMS error of 0.15 when 

no momentum coefficient is used. By contrast, it reaches the same error at a shorter time (50 

iterations) when the momentum coefficient is increased to 0.4. Therefore, to avoid the danger of 

instability and improve convergence as we increase the learning rate, a momentum coefficient is 

introduced, which will smooth out the oscillation. The momentum coefficient is a constant, between 

0 and 1, used to promote stability of weight adaptation in a learning rule, and it tends to accelerate 

descent in a steady downhill direction. In back-propagation with momentum, the weight changes in 

z z 
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a direction that is a combination of the current gradient and the previous gradient. This will help in 

moving the minimization routine out, if during training, it is prevented excessive weight changes 

and possible oscillation, the algorithm slows down the weight changes by a term that is proportional 

to the previous weight change and the momentum coefficient. Accordance with (Al-Shayji and Liu, 

2002), a smaller learning rate results in a slower convergence and that as the learning rate decreases, 

a larger momentum coefficient increases the speed of convergence. In other words, it decreases the 

training time. The use of high learning rate and momentum coefficient causes oscillation in the 

RMS error during learning. 

5-5. Neural Networks versus Statistical Regression  

We use three subsets of data to build a model: a training set, a testing set and a 

generalization set. Neural networks interpolate data very well, but they do not extrapolate. 

Therefore, we should choose the training set to include data from all regions of desirable operation 

and we pick the sets as equally spaced points throughout the original data. To effectively visualize 

how well a network performs recall and generalization, we often generate a training curve, which 

represents the RMR error for both the recall of training data sets and the generalization of the 

testing data sets. 
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Figure 7.  Training curve to comparison the RMS error for both the recall of training data sets and 

the generalization of the testing data sets. 

Figure.7 shows the training stopped after 20 iterations because the generalization error 

increased. It is a useful diagnostic tool to plot the training, generalization and test errors to check 

the progress of training. The result here is reasonable, since the test set error and the generalization 

set error have similar characteristics, and it doesn't appear that any significant overfitting has 

occurred. 

The next step is to perform some analysis of the network response. We will put the entire 

data set through the network (training, generalization and test) and will perform a linear regression 

between the network outputs and the corresponding targets. In this case, we have two outputs, so we 

perform two regressions. Figure.8 present the predicted and actual outputs from the neural networks 

and from statistical regression. The correlation coefficient R values for the permeate flux and salt 

passage are: 0.984 and 0.985, respectively. Despite the very good R values, the neural network still 

outperforms the regression analysis. Neural networks have been very effective in predicting and 



Journal of Kerbala University , Vol. 8 No.3 Scientific . 2010 
 

 168 

optimizing the performance variables of the RO desalination plants. It also outperforms the 

regression models in prediction problems.  
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(B) Salt Passage / Statistical Regression 

Figure 8. Actual and predicted RO plant outputs from neural network and statistical 

regression: (A) Permeate Flux; and (B) Salt Passage.  

  

6. RESULTS AND DISCUSSION 

6-1. Effect of pressure on permeate flux and salt passage (ANN predictions)  
The permeate flux and salt passage with different pressures, pHs and concentrations are 

studied by varying operating pressure (Feed water pressure) from 4 - 6 bar. Consistent with (Ujang 

and Anderson, 1998) and present in figure.9 (a-b) shows the increase of pressure will improve 

quantity of permeate flux. This is due to the driving force of reverse osmosis membrane is 

transmembrane pressure. All of the water fed to membrane resulted in a similar trend. The results 

presented in figure.9 (a) indicate that concentration of 450 mg/l results highest permeate flux, 

followed by 564 mg/l and 618 mg/l concentrations. On the other hand, permeate flux increases with 

decreasing pH and increasing pressure, as shows in figure.9 (b) that membrane can produce 

permeate flux up to 540 l/hr at pH of 6 and 516 l/hr at pH of 9 at 6 bar. 

The next study, the influence of pressure to salt passage content is depicted in Figure.7(c-d) 

indicates that operating pressure will tend to increase salt passage and then the lower it. During 

membrane operation, membrane will retain solid molecule at its surface, and the solid will 

accumulate at membrane surface that is in agreement with (Mulder, 1996). With existence of 

pressure increase operates for, hence bait which can penetrate membrane layer more and more so 

that sum up solid which retained at membrane surfaces also more and more. This matter will result 

membrane ability to retain solid component will be on the wane. Descend of this membrane ability 

expressed in salt passage tend to downhill along with pressure increase. It is clear from the 

figure.9(c-d) that the salt passage decreases with high pressure and lower concentration of feed and 

pH.   

The ANN’s prediction of permeate flux and salt passage is shown as lines in figure.9. Solid 

symbols are used to identify experimental data points which are used in the training phase of the 

ANN while open symbols are used for data points not included in the training phase, i.e., points 

used in the generalization phase. According to points not included in the training phase, i.e., of the 

ANN while open symbols are used for data figure.9, it can be seen that the ANN successfully 

predicts the nonlinear behaviour of permeate flux and salt passage vs pressure. A good prediction is 
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obtained for all concentration and pH levels with very small deviation (< 2%) between the 

experimental data and the ANN predictions to compare with predictions by (Al-Zoubia et al., 2007) 

has deviation (< 10%) between the experimental data and the ANN predictions .  
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Figure 9. Neural network prediction of the permeate flux and salt passage vs. pressure using two 

effective factors: (a & c) concentrations of feed (CF), (b & d) pH. Experimental data used in the 

training process are marked as symbols, whereas lines represent the best fit of the net prediction. 
 

6-2. Effect of pH on permeate flux and salt passage (ANN predictions)  
According to (Bellona and Drewes, 2005) and shown in figure.10 (a-d), the pH is decreasing 

with the permeate flux and salt passage. We attach importance to the solution pH on the membrane 

performance, especially related to possible changes on the surface charge of membrane. The 

phenomenon is likely due to the charged membrane and the charged solute which leads to a Donnan 

potential. The charged membrane attracts ions of opposite charged ion to achieve equilibrium. At 

the same time, the membrane will repel the same charged ions by an electrostatic force. In addition, 

the opposite charged ions will also be rejected due to an electroneutrality in the solution. Because of 

these phenomena, the water can pass through the membrane. Our study find that the charge of the 

membrane surface is shifted from negative to positive for acidic solutions with pH less than 5.0 that 

is in accordance with (Ku et al., 2005) and, on the other hand, those differences in electrical charge 

between the membrane and solute caused concentration polarization phenomenon, blocking the 

diffusion of solute to coincide with (Akbari et al., 2002).   

The ANN’s prediction of permeate flux and salt passage is shown as lines in figure.10. Solid 

symbols are used to identify experimental data points which are used in the training phase of the 

ANN while open symbols are used for data points not included in the training phase, i.e., points 

used in the generalization phase. The optimum pH should be explained that the surface charge of a 

RO membrane is dependent to the ionic strength of the surrounding solution and the best 
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performance of a membrane is expected when its surface charge becomes similar to the electrical 

charges of the molecules in solution witch obviously may be happened only in a definite pH. 

According to points not included in the training phase, i.e., of the ANN while open symbols are 

used for data figure.10, it can be seen that the ANN successfully predicts the nonlinear behavior of 

permeate flux and salt passage vs pH. It is clear from the figure.10 (a-d) that the permeate flux and 

salt passage increases with increasing pH and feed flow rate and decreasing concentration of feed. 

A good prediction is obtained for all concentration and feed flow rate levels with very small 

deviation (< 2%) between the experimental data and the ANN predictions. 
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Figure 10. Neural network prediction of the permeate flux and salt passage vs. pH using two 

effective factors: (a & c) concentrations of feed (CF), (b & d) feed flow rate (FF). Experimental 

data used in the training process are marked as symbols, whereas lines represent the best fit of the 

net prediction. 

 

6-3. Effect of temperature on permeate flux and salt passage (ANN predictions)  
The effect of temperature on membrane performance is the most important parameter. 

Figure.11 (a-b) shows that increasing the feed temperature increases the permeate flux. This is 

attributed to the effect of the temperature of the feed water. As this temperature increases, on one 

hand, this will decrease the net driving pressure due to an increase in osmotic pressure and, on the 

other hand, will lead to increasing in water permeability coefficient due to the decrease in both 

viscosity and density. The later one, will overcomes the effect of net driving pressure thus the 

permeate flux is increased this is in accordance with (Shamel and Chung, 2006).  

The increase pressure and decrease concentration of feed water with increasing feed 

temperature lead to increase permeate flux as shown in figure.11 (a-b). As the decrease pressure and 

increase concentration of feed water with increasing feed temperature lead to increase salt passage 

as shown in figure.11(c-d). The rate of water permeation through the membrane increases as the 
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feed water temperature increases since the viscosity of the solution is reduced and higher diffusion 

rate of water through the membrane is obtained to coincide with (Sourirajan, 1979). Increasing feed 

water temperature will yield higher salt passage due to higher diffusion rate for salt through the 

membrane that is in accord with (Cadotte et al., 1980).  

The ANN’s prediction of permeate flux and salt passage is shown as lines in figure.11. Solid 

symbols are used to identify experimental data points which are used in the training phase of the 

ANN while open symbols are used for data points not included in the training phase, i.e., points 

used in the generalization phase. According to points not included in the training phase, i.e., of the 

ANN while open symbols are used for data figure.11, it can be seen that the ANN successfully 

predicts the nonlinear behaviour of permeate flux and salt passage vs temperature. When 

temperature of feed water is increased for constant product flow the required applied feed pressure 

decreases and the product water salinity increases. Energy consumption is decreased as the applied 

pressure decreases. If the permeate flux is let to increase as the temperature increase fewer 

membrane elements will be required. Permeate flux and salt passage increase with increasing the 

feed water temperature. A good prediction is obtained for all concentration and pressure levels with 

very small deviation (< 2%) between the experimental data and the ANN predictions.  
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Figure 11. Neural network prediction of the permeate flux and salt passage vs. temperature using 

two effective factors: (a & c) concentrations of feed (CF), (b & d) feed pressure (P). Experimental 

data used in the training process are marked as symbols, whereas lines represent the best fit of the 

net prediction. 
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6-4. Effect of feed NaCl concentration on permeate flux and salt passage (ANN 

predictions)  
The profiles of permeate flux and salt passage change when the feed concentration change 

that is in accordance with (Shamel and Chung, 2006) and shown in figure.12 (a-d). When increasing 

salt concentrations will decrease permeate flux and increase salt passage. This is because the 

osmotic pressure difference across the membrane increases. Much higher driving force, for the 

same applied pressure to the feed, is due to the osmotic pressure which is directly related to the salt 

concentration. The higher feed concentration also leads to surface coating or fouling by salt.  

Osmotic pressure is a function of the type and concentration of salts or organics contained in 

feed water. As salt concentration increases, so does osmotic pressure. The amount of feed water 

driving pressure necessary to reverse the natural direction of osmotic flow is, therefore, largely 

determined by the level of salts in the feed water. Temperature also affects permeate flux because 

increases in temperature result in increases in osmotic pressure and solute and solvent permeability; 

the increase in solvent permeability results in an increase in permeate flux that is in conformity  

with (Bhattacharya and Williams, 1992) and shown in figure.12(a). This permeate flux can be often 

described by Arrhenius temperature dependence on pure water permeability constant. Pure 

permeate flux change with temperature can also be predicted by water viscosity changes. The 

permeate flux through the membrane increase as the feed water temperature increases since the 

viscosity of the solution is reduced and higher diffusion rate of water through the membrane is 

obtained.  

Figure.12(c) demonstrates that, the concentration gradient across the membrane acts as a 

driving force for the flow of salt through the membrane. As feed concentration increases membrane 

salt passage increases. Also increasing feed water temperature will yield higher salt passage due to 

higher diffusion rate for salt through the membrane that is in conformity with (Cadotte et al., 1980).  

Increasing the feed flow rate increases the permeate flux and salt passage. This is attributed 

to the effect of the feed flow rate of the water. As this feed flow rate increases, the salt 

concentration on the feed-brine side of the membrane increases, on one hand, this will cause an 

increase in salt passage across the membrane, on the other hand, will lead to increase the osmotic 

pressure because a higher salt concentration in the feed-brine solution, on the other hand, this will 

reduce the net driving pressure and consequently reducing the permeate flux and increasing salt 

passage according to figure.12 (b, d).  

The ANN’s prediction of permeate flux and salt passage is shown as lines in figure.12. Solid 

symbols are used to identify experimental data points which are used in the training phase of the 

ANN while open symbols are used for data points not included in the training phase, i.e., points 

used in the generalization phase. According to points not included in the training phase, i.e., of the 

ANN while open symbols are used for data figure.12, it can be seen that the ANN successfully 

predicts the nonlinear behaviour of permeate flux and salt passage vs feed NaCl concentration. The 

maximum feed temperature and feed flow rate of water in any RO system usually depends not on 

the limiting osmotic pressure, but on the concentration of the salt present in the feed water and their 

tendency to precipitate on the membrane surface. Chemical treatment of feed water can help in 

preventing salt precipitation and cause significant increase in permeate flux and salt passage. Good 

prediction is obtained for all temperature and feed flow rate levels with very small deviation (< 2%) 

between the experimental data and the ANN predictions. 
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Figure 12. Neural network prediction of the permeate flux and salt passage vs. feed NaCl 

concentration using two effective factors: (a & c) temperature (T), (b & d) feed flow rate (FF). 

Experimental data used in the training process are marked as symbols, whereas lines represent the 

best fit of the net prediction. 

 

6-5. Effect of feed flow rate on permeate flux and salt passage (ANN predictions)  
The permeate flux increases and salt passage increases at first and decreases at last when the 

feed flow rate change are shown in figure.13 (a-d). Feed flow rate of water to the RO is increased 

and increasing the pH of the feed impacts both the water chemistry and characteristics of the RO 

membrane. Increasing pH can change the water chemistry by affecting charge, size or solubility of 

specific constituents in the feed. Increasing pH can also influence the charge of an RO membrane 

and open the highly crosslinked molecules that form the polyamide structure. These changes in 

water chemistry and membrane characteristics can influence decreasing permeate flux and 

increasing salt passage that is in agreement with (Bellona and Drewes, 2005) and shown in 

figure.13 (b, d). 

Identify with (Shamel and Chung, 2006), the feed flow rate increases, when the salt 

concentration in the feed-brine side of the membrane increases, therefore this will cause an increase 

in salt passage across the membrane, on one hand, will lead to increase the osmotic pressure 

because a higher salt concentration in the feed-brine solution, on the other hand, this will reduce the 

net driving pressure and consequently reducing the permeate flux and increasing salt passage 

according to figure.13(a, b).  

The ANN’s prediction of permeate flux and salt passage is shown as lines in figure.13. Solid 

symbols are used to identify experimental data points which are used in the training phase of the 

ANN while open symbols are used for data points not included in the training phase, i.e., points 

used in the generalization phase. According to points not included in the training phase, i.e., of the 

ANN while open symbols are used for data figure.13, it can be seen that the ANN successfully 
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predicts the nonlinear behaviour of permeate flux and salt passage vs feed flow rate. It is clear from 

figure.13(a-d) that increasing feed flow rate, the permeate flux increases when low pH and 

concentration of feed and salt passage increases with high concentration of feed and pH and good 

prediction is obtained for all concentration and pH levels with very small deviation (< 2%) between 

the experimental data and the ANN predictions. 
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Figure 13. Neural network prediction of the permeate flux and salt passage vs. feed flow rate using 

two effective factors: (a & c) concentrations of feed (CF), (b & d) pH. Experimental data used in the 

training process are marked as symbols, whereas lines represent the best fit of the net prediction. 

7. CONCLUSION 

The performance of reverse osmosis system is studied and analyzed theoretically. Neural 

networks have very effective in predictive modeling of the performance variables of RO 

desalination plants and are capable of handling complex and nonlinear problems. A neural network 

model can handle noisy data more effectively than statistical regression and performs better in 

predicting desalination plant performance. The accuracy of a neural network model depends on the 

proper selection of input variables and the broad range of data with which the network is trained. 

Statistical analysis can aid in the selection of input variables, but the wise engineer will not hesitate 

to use engineering judgment when it comes to the final decision.  

We recommend the following network parameters and functions for modeling a neural 

network for a (RO) desalination plant: 

(1) zero-mean normalization method for input variables. 

(2) Gaussian weight-factor distribution for initial values. 

(3) Hyperbolic tangent transfer function. 

(4) Initial architecture including 30 nodes in hidden layer 1 and 15 nodes in hidden layer 2. 

(5) Initial values for both the learning rate and the momentum coefficient of {0.3} and {0.4}, 

respectively. 
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Our predictive model by means of ANN can interpolate and predict permeate flux and salt 

passage with increasing and decreasing of effective variable parameters such as pressure, 

temperature, salt concentration, feed flow rate and pH of feed water. 
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