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SOLVABILITY OF THE OPERATOR MATRIX OF
VOLTERRA INTEGRAL EQUATIONS OF THE FIRST
KIND
I £ 53 ¢y Alalil) | il gb iy alaal 4B ghuaall Jiga Ja LG

Bushra Kadum Awaad
Department of Mathematics, College of Education, Al-Mustansiryah University,

Abstract:

In this paper, we have presented and discussed an algorithm for analytical method to
solve matrix of linear and nonlinear systems of Volterra integral equations of the first kind.
Algorithm of the analytical method for the system based on the Laplace transform and
generalized inverse. The proposed algorithm has been applied in example to demonstrate the
efficiency and simplicity of the algorithm.
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1- Introduction:

Biazar, Babolian and Islam [3] used adomian decomposition method to solve linear and
non-linear systems of Volterra integral equations of the first kind. Amaal and Sudad in [2]
introduced an algorithm to solve a system of linear Volterra integral equations of the first kind by
using generalized inverse.

In this paper, we introduce an algorithm to solve a matrix of systems of integral Volterra
equations.

2- The Analytic Algorithm:
2.1 Laplace Transform, [6]:

A system of linear Volterra integral equations of the first kind can be reduced to a matrix
form by Laplace transform as follows:

X n
[ > ki Huty dt="fi(x),i=1,2,...,m
0 =
where f, i = 1, 2, ..., m; are known functions, kj(x, t), i =1, 2, ..., m, j =1, 2, ..., n; are the kernel of
the i-th integral equation and u;, j =1, 2, ..., n are unknown functions.

Take the Laplace transform to the both sides, yields:

n X

> I{ j ki, U;(1) dt} = LERGOY i=1,2, oy Mo, (1)

0

=1
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X
Note that, the term L{ [ k;(x, t)uj(t) dt} in the left hand side of the equation
0
(1) could not be evaluated unless kij(x, t), i =1, 2, ..., m; j =1, 2, ..., n; are the
difference kernel, that is, k;(x, t) = kjj(x — t) or constant kernel.
If kij(x, t) are difference kernels in equation (1). Then can be used the

convolution property of Laplace transform, we get:
n

Z Kii(S)Uj(s) = Fj(S), 1=1,2, ..o, M (2)
j=1
Where Ki(s) = L{k(x, O}, Ui(s) = L{u;(0}, Fi(s) = LI} i =1,2, ....m;j=1,2,
.., .
If kij(x, t) = c, where c is any constant, then:
Z”: cU;(s)
j=1
Consequently equations (2) and (3) are both systems of linear equation is Uj(s), j =1, 2, ..., m.
Solving it by generalized inverse to find Uj(s), j =1, 2, ..., m.
Finally, using inverse Laplace transform on uj(x), j = 1, 2, ..., m to obtain the solution of
the original system of linear Volterra integral equation.
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2.2 Generalized Inverse:

Throughout the paper, H and K are Hilbert spaces over the same field. We denote the set
of all bounded linear operators from H into K by £(H, K) and £(H), when H = K. For A € £(H, K),
let R(A) and N(A) be the range of A and the null space of A, respectively. A € £(H, K) is g-
invertible, if there exists an operator A c £(H, K), such that AAA = A. In this case A is called a
g-inverse, or an inner generalized inverse of A. Recall that A € £(H, K) is g-invertible if and only if
R(A) and N(A), respectively, are closed and complemented subspaces of K and H. In this case, the

Moore-Penrose generalized inverse of A, denoted by A™ [5] is the unique operator A* € £(H, K),
which satisfies:

AATA=A A'AA" =A"

(AAN* = AA* and (ATA)* = A'A

It is well-known that if A € r£(H, K), then using the following
decompositions:

H=N@®N" and K=A(N) ® A(N)"

[where (L) is aperpendicular rotation, (*) is adjoinnt rotation and( @) is
direct sum rotation]

Then:

A A,
A= e £(H, K)
As Ay

Is equal to:
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Gi(RAG) 'R O
0 0

Such that A; = F1G;, where F; G; are two bounded operators.
In this case, the Moore-Penrose generalized inverse of A has the following matrix
decomposition:

} e £(H, K)

G*(F*AG*)IF* 0
0

Now, in finite dimensional spaces, let A be mxn matrix of the rank(r), where r(A) <
min{m, n} and A; = F;G;, such that F and G are two matrices also have rank(r). Then the
generalized inverse A" of A can be obtained from the following relation [1]:

F N (=N 1 Tl =L TP (4)

Now, construct the matrices F and G.

Firstly, the general Gaussian elimination procedure [4] applied to the matrix A, we obtain a
new matrix have the rows below the matrix all elements are zeros and the other rows up the matrix
represent the matrix G. The number of rows of G is the rank of matrix A.

To find the matrix F. Firstly, we write the identity matrix (I) of order mxm if n <m or nxn
if m < n, then we apply the same operations which may be applied on the matrix A (to get the
matrix G), but we begin from the last to the first operation with change sign the addition or the
subtraction.

Finally, we find the matrix F from the first columns, such that the number of columns in F
equal to the number of rows in G.

The solvability of the equation:

A" = e £(A(N) ® N, K)

A A
AU =B, where A = e £(H, K)
Az Ay
and

B= {Bl 22} () TSSO (5)

B; By
are given operators, and U is a Laplace transform matrix.
The above system has a solution:

U=AB

_|G*(F*AGY)'F* 0 {Bl Bz}
0 0][Bs Ba

| G*(F*AGH)IF*B, G*(F*AlG*)lF*BZ}
0 0

This analytic algorithm will be illustrated by the examples in the ne xt
section.

Example:

Consider the following matrix of system of linear Volterra integral equations with exact
solutions f(x) = x* and g(x) = x.
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JIf (y) -g(y)ldy
0

JIf(y)+(x=y)a(y)1dy | 0
0

Jox=y)f(y)dy
0

The algorithm start by taking the Laplace transform with using (2 and 3) and

0 0
simplify, we get: i
1]

F(s) - G(s) s

sF(s)+G(s)| O — | 0
=1]s

F(s) ,

i 0 0 3
0 O

The above linear system can be described by the following matrix form:

AU =B

1
A=|s 1 ,Ulz[F(S)j and B; =
0 G(s)

Then equation (5) can be solved for the vector U;, of coefficients by generalized inverse can be

summarized by the following:

0

Step (1):
Consider the matrices F,G,, such that A = F,G,, as follows:
(1 -1\ ] 1 -
s 1] 0 Ry-sR; 0 1+s
1 0 R3-R1 0 1
0 0] 0
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(1 -1 ] c
1 1
R31+SR2> 0 1+s O=£Oj 0
0 O
0 0
- 0 O_
Then:
1 -1
G, =
(0 1+s}
Now, to find F, let the identity matrix of order 3x3 i
(1 0 0) | 1 0 0
1
01 0| O R3—1;§R2 R 0O 1 0] O
0 0 1 0 1 1
0 0 1+s
) ) i 0 0]
1 0 O (R 0} |
Ro+5Rq S 1 0 O 0| O
R2+R -
3+R1 1 _i_ 1 1
1+s 0 0
] 0 0] )
Where:
1 0
Fi=|s 1
1 1
1+s
Step (2):

Using equation (3) generalized inverse A* of matrix A and show that:

1 1+s 1+s 2 0
A'=|s?+25+3 |—(s®+s+1) 2+s 1-s
0 0 0
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Step (3):
U=A'B
2
s
S| L[ s (6)
S2
(S)
= G(s)
Step (4):

Using the inverse Laplace transformation for both sides of equation (6), we

(f(x)j 0 [xzj 0
g(x) = x

0 0 0 O

have:
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