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Abstract: 
In this paper, we have presented and discussed an algorithm for analytical method to 

solve matrix of linear and nonlinear systems of Volterra integral equations of the first kind. 

Algorithm of the analytical method for the system based on the Laplace transform and 

generalized inverse. The proposed algorithm has been applied in example to demonstrate the 

efficiency and simplicity of the algorithm. 

 

 انمستخهص:
في هذا انبحث قًنا بعزض ويناقشة خىارسيية بطزيقة تحهيهية نحم يصفىفة أنظًةة خطيةة وريةز انةطيةة نًعةا    

فىنتيزا انتكايهية ين اننىع ا ول. انةىارسيية نهطزيقة انتحهيهية نهذه انًصفىفة تقىو عهى تحىيةم  بة و وانًعكةىو انعةاو.  ًةا 

 نهتدنيم عهى  فائتها وبساطتها. وتى تطبيق انةىارسيية عهى يثال

 

1- Introduction: 
Biazar, Babolian and Islam [3] used adomian decomposition method to solve linear and 

non-linear systems of Volterra integral equations of the first kind. Amaal and Sudad in [2] 

introduced an algorithm to solve a system of linear Volterra integral equations of the first kind by 

using generalized inverse. 

In this paper, we introduce an algorithm to solve a matrix of systems of integral Volterra 

equations. 

 

2- The Analytic Algorithm: 

2.1 Laplace Transform, [6]: 

 
A system of linear Volterra integral equations of the first kind can be reduced to a matrix 

form by Laplace transform as follows: 

x

0


n

j 1

 kij(x, t)uj(t) dt  fi(x), i  1, 2, …, m 

where fi, i  1, 2, …, m; are known functions, kij(x, t), i 1, 2, …, m, j 1, 2, …, n; are the kernel of 

the i-th integral equation and uj, j  1, 2, …, n are unknown functions. 

Take the Laplace transform to the both sides, yields: 

n

j 1

 L{
x

0

 kij(x, t)uj(t) dt}  L{fi(x)}, i  1, 2, …, m .................................... (1) 
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Note that, the term L{
x

0

 kij(x, t)uj(t) dt} in the left hand side of the equation  

(1) could not be evaluated unless kij(x, t), i 1, 2, …, m; j  1, 2, …, n; are the 

difference kernel, that is, kij(x, t)  kij(x  t) or constant kernel. 

If kij(x, t) are difference kernels in equation (1). Then can be used the 

convolution property of Laplace transform, we get: 
n

j 1

 Kij(s)Uj(s)  Fj(s), i  1, 2, …, m ............................................................. (2) 

Where Kij(s)  L{kij(x, t)}, Uj(s)  L{uj(x)}, Fi(s)  L{fi(x)}, i 1, 2, …, m; j  1, 2, 

…, n. 

If kij(x, t)  c, where c is any constant, then: 
n

j 1


jcU (s)

s
  Fi(s), i  1, 2, …, m ................................................................. (3) 

Consequently equations (2) and (3) are both systems of linear equation is Uj(s), j  1, 2, …, m. 

Solving it by generalized inverse to find Uj(s), j 1, 2, …, m. 

Finally, using inverse Laplace transform on uj(x), j  1, 2, …, m to obtain the solution of 

the original system of linear Volterra integral equation. 

 

2.2 Generalized Inverse: 
Throughout the paper, H and K are Hilbert spaces over the same field. We denote the set 

of all bounded linear operators from H into K by L(H, K) and L(H), when H  K. For A  L(H, K), 

let R(A) and N(A) be the range of A and the null space of A, respectively. A  L(H, K) is g-

invertible, if there exists an operator A   L(H, K), such that A A A  A. In this case A  is called a 

g-inverse, or an inner generalized inverse of A. Recall that A  L(H, K) is g-invertible if and only if 

R(A) and N(A), respectively, are closed and complemented subspaces of K and H. In this case, the 

Moore-Penrose generalized inverse of A, denoted by A
+
 [5] is the unique operator A

+
  L(H, K), 

which satisfies: 

AA
+
A  A, A

+
AA

+
  A

+
 

(AA
+
)*  AA

+
  and  (A

+
A)*  A

+
A 

It is well-known that if A  L(H, K), then using the following 

decompositions: 

H  N  N

  and K  A(N)  A(N)

 

[where (  ) is aperpendicular rotation, (*) is adjoinnt  rotation and( ) is 

direct sum rotation]   

 

Then: 

A  
1 2

3 4

A A

A A

 
 
 

  L(H, K) 

is equal to: 
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* * * 1 *
1 1 1 1 1G (F A G ) F 0

0 0

 
 
  

  L(H, K) 

Such that A1  F1G1, where F1 G1 are two bounded operators. 

In this case, the Moore-Penrose generalized inverse of A has the following matrix 

decomposition: 

A
+
  

1
1G *(F*A G*) F* 0

0 0

 
 
  

  L(A(N)  N, K) 

Now, in finite dimensional spaces, let A be mn matrix of the rank(r), where r(A) < 

min{m, n} and A1  F1G1, such that F and G are two matrices also have rank(r). Then the 

generalized inverse A
+
 of A can be obtained from the following relation [1]: 

A
+
  G

T
(F

T
AG

T
)
1

F
T
 ....................................................................................... (4) 

Now, construct the matrices F and G. 

Firstly, the general Gaussian elimination procedure [4] applied to the matrix A, we obtain a 

new matrix have the rows below the matrix all elements are zeros and the other rows up the matrix 

represent the matrix G. The number of rows of G is the rank of matrix A.  

To find the matrix F. Firstly, we write the identity matrix (I) of order mm if n < m or nn 

if m < n, then we apply the same operations which may be applied on the matrix A (to get the 

matrix G), but we begin from the last to the first operation with change sign the addition or the 

subtraction. 

Finally, we find the matrix F from the first columns, such that the number of columns in F 

equal to the number of rows in G. 

The solvability of the equation: 

AU  B, where A  
1 2

3 4

A A

A A

 
 
 

  L(H, K) 

and 

B  
1 2

3 4

B B

B B

 
 
 

  L(H) .................................................................................... (5) 

are given operators, and U is a Laplace transform matrix. 

The above system has a solution: 

U  A
+
B 

 
1

1G *(F*A G*) F* 0

0 0

 
 
  

1 2

3 4

B B

B B

 
 
 

 

 
1 1

1 1 1 2G *(F*A G*) F*B G *(F*A G*) F*B

0 0

  
 
  

 

This analytic algorithm will be illustrated by the examples in the ne xt 

section. 
 

Example: 
Consider the following matrix of system of linear Volterra integral equations with exact 

solutions f(x)  x
2
 and g(x)  x. 
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x

0

x

0

x

0

[f (y) g(y)]dy

[f (y) (x y)g(y)]dy 0

(x y)f (y)dy

0 0

  
  
  
  
  

   
  
  
  
  
  
  







  






















































0.....................0

0...

12

2

23

4

3

23

X

X

XX

 

The algorithm start by taking the Laplace transform with using (2 and 3) and 

simplify, we get: 

F(s) G(s)

sF(s) G(s) 0

F(s)

0 0

   
  

  
   
 
  

  

2

2

3

1

s

3
0

s

2

s

0 0

  
  
  
  
  
  
  
   
 
  

 

The above linear system can be described by the following matrix form: 

AU  B 

A1  

1 1

s 1

1 0

 
 
 
 
 

, U1  
F(s)

G(s)

 
 
 

  and  B1  

3

2

3

2 s

s

3

s

2

s

 
 
 
 
 
 
 
 
 

 

Then equation (5) can be solved for the vector U1, of coefficients by generalized inverse can be 

summarized by the following: 

Step (1): 

Consider the matrices F1G1, such that A  F1G1, as follows: 

1 1

s 1 0

1 0

0 0

   
  
  
   
 
  

 2 1

3 1

R sR

R R




  

1 1

0 1 s 0

0 1

0 0

   
  

  
   
 
  
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3 2
1

R R
1 s


  

1 1

0 1 s 0

0 0

0 0

   
  

  
   
 
  

  

1G
0

0

0 0

  
  
  
  

 

Then: 

G1  
1 1

0 1 s

 
 

 
 

Now, to find F1, let the identity matrix of order 33 

1 0 0

0 1 0 0

0 0 1

0 0

  
  
  
   
 
  

 
3 2

1
R R

1 s

  

1 0 0

0 1 0 0

1
0 1

1 s

0 0

  
  
  
  
  
  

  
  

 

2 1

3 1

R sR

R R




  

1 0 0

s 1 0 0

1
1 1

1 s

0 0

  
  
  
  
  
  

  
  

  

1F 0

0 0

1

0 0

  
  
  
   
 
  

 

Where: 

F1  

1 0

s 1

1
1

1 s

 
 
 
 
 
 

 

 

 

Step (2): 

Using equation (3) generalized inverse A
+
 of matrix A and show that: 

A
+
  2 2

1 s 1 s 21
0

s 2s 3 (s s 1) 2 s 1 s

0 0 0

   
           
 
 
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Step (3): 

U  A
+
B 

 

3

2

2

s
0

1

s

0 0

  
  
  
  
  
  
 
 

 ............................................................................................... (6) 

 

F(s)
0

G(s)

0 0

  
  
  
 
 

 

Step (4): 

Using the inverse Laplace transformation for both sides of equation (6), we 

have: 

f (x)
0

g(x)

0 0

  
  
  
 
 

  

2x
0

x

0 0

  
   
  
 
 
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