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Abstract 
 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural 

network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously 

reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications 

to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to 

improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the 

wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control 

performance of the SRWNN-based MRAC. As the training method, the recently developed modified micro artificial 
immune system (MMAIS) was used to optimize the parameters of the SRWNN. The effectiveness of this control 

approach was demonstrated by controlling several nonlinear dynamical systems. For each of these systems, several 

evaluation tests were conducted, including control performance tests, robustness tests, and generalization tests. From 

these tests, the SRWNN-based MRAC has exhibited its effectiveness regarding accurate control, disturbance rejection, 

and generalization ability. In addition, a comparative study was made with other related controllers, namely the original 

WNN, the artificial neural network (ANN), and the modified recurrent network (MRN). The results of these comparison 

tests indicated the superiority of the SRWNN controller over the other related controllers. 

 

Keywords: Artificial neural network, micro artificial immune system, model reference adaptive control, self-recurrent 

wavelet neural network , Wavelet neural network. 
 

 

1. Introduction 
 

Adaptive control techniques have gained 

widespread popularity among researchers due to 
their ability in handling different types of complex 

and nonlinear control problems. Model reference 

adaptive control (MRAC) is a major type of 
adaptive control strategies. Owing to its ability to 

guarantee the global asymptotic stability, the 

MRAC scheme has been successfully employed 

to control different linear systems [1-5]. However, 
it is well-known that most real systems are 

inherently nonlinear in nature, and hence, it is 

impractical to describe such systems by linear 
mathematical models. This fact limits the 

effectiveness of utilizing the conventional MRAC 
scheme to control such nonlinear systems. In 

order to mitigate this difficulty, many researchers 

have utilized the nonlinear function 

approximation capability of artificial neural 
network (ANN) to form a nonlinear ANN-based 

MRAC scheme to control nonlinear systems [6-

10]. Despite this widespread utilization of ANN, 
recently a more powerful neural network 

structure, namely the wavelet neural network 

(WNN), has received extensive attention in the 
literature, especially in handling various control 

problems [11-14]. The strength of WNN 

approximation capability is realized by combining 

the theory of wavelets and the ANN into a unified 
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framework. Hence, WNNs possess both the 
localization property of wavelet transform 

together with the learning and generalization 

abilities of ANNs. In spite of these desirable 
properties of WNNs, only few efforts have been 

made to employ WNNs in MRAC schemes. For 

instance, Wai and Chang [15] employed a WNN-

based MRAC scheme to control an induction 
motor drive. In addition, the authors used the back 

stepping approach to design another feedback 

control action to get the required performance. In 
this method, to optimize the above structure, 

several learning rates had to be chosen according 

to the controlled system. Therefore, the above 

method is characterized by its difficulty in 
implementation due to the involvement of two 

complex control methods. As another MRAC 

system, Yoo et al. [16] used two SRWNNs, one of 
which acts as an identifier and the other as a 

controller, in a MRAC structure to control 

nonlinear systems. Both of these SRWNNs were 
trained by a gradient descent (GD) method to 

achieve the desired response. However, in 

addition to the complexity of this control 

approach, GD techniques are characterized by 
their slow convergence rates and the inclination to 

get stuck at local minima in the search space [3]. 

In order to avoid these limitations in GD methods, 
more attention has been given to evolutionary 

algorithms, due to their ability in finding the 

global optimal solution of a particular problem. In 
this regard, genetic algorithms (GAs) are regarded 

as the most essential types of evolutionary 

algorithms [17, 18]. However, in recent years, a 

more powerful evolutionary algorithm has 
received considerable attention among 

researchers. This relatively new algorithm is the 

artificial immune system (AIS), which was built 
based on some concepts from the natural immune 

system. Compared to the GA, the AIS algorithm 

has a more efficient mutation operator which 

results in a better diversity of populations [19, 
20]. In this regard, utilizing this promising 

optimization method, Lutfy [21] proposed to use a 

modified micro artificial immune system 
(MMAIS) to train a WNN as the main controller 

in the MRAC scheme. However, in the above 

work, the WNN controller was treated as a black 
box approximator without using an initializing 

phase, which can affect the WNN approximation 

capability. In this context, it is worth noticing that 

the wavelet is a rapidly vanishing function which 
is fully defined by dilation and translation factors 

[22]. Consequently, suitable initialization of these 

factors plays an important role in improving the 
WNN approximation capability. However, despite 

this importance for the initialization process, 
several researchers did not consider a specific 

initialization approach for these parameters [11, 

13, 16, 21, 23].To this end, aiming at enhancing 
the performance of the WNN controller, the 

motivation of the present work was to propose a 

more efficient version of the WNN structure. This 

modified WNN structure encompasses two 
amendments, namely; adopting an initialization 

phase to enhance the convergence to the optimal 

weights and including self-feedback connections 
to the wavelons in the wavelet layer. These 

modifications have contributed in improving the 

approximation capability of the proposed 

controller compared to other related controllers, as 
will be seen in the simulation results of the 

present work. Moreover, an on-line MMAIS-

based adaptive control design is used to further 
enhance the performance of the SRWNN 

controller. To the best of the authors' knowledge, 

this is the first utilization of the MMAIS in an on-
line adaptive control design. The remaining 

content of this paper is arranged as follows: 

Section 2 discusses the utilization of the SRWNN 

controller within the MRAC. The SRWNN 
structure is elucidated in Section 3. Basic 

concepts of the AIS and the MMAIS algorithms 

are given in Section 4. To demonstrate the 
efficiency of the proposed SRWNN-based 

MRAC, several performance tests along with two 

comparative studies are presented in Section 5. 
Finally, the main conclusions are drawn in 

Section 6. 

 

 

2. The SRWNN-based MRAC Structure 
 

The main idea behind the MRAC is to specify 
the desired behavior of the controlled system by a 

reference model. This reference model is simply a 

plant of known dynamical structure whose task is 
to provide the desired output by applying a given 

input signal. Then, by applying a suitable 

optimization method, the main goal of MRAC 
design is to regulate the controller parameters by 

minimizing the difference between the outputs of 

the reference model and the controlled system 

[24]. Utilizing this basic MRAC design approach, 
the SRWNN structure is employed in this work as 

the main controller to constitute a nonlinear 

MRAC scheme. Figure 1 depicts a block diagram 
of the proposed SRWNN-based MRAC scheme. 
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Fig. 1 Structure of the SRWNN- based MRAC 

system. 

 
 

In particular, the design of the SRWNN 

controller in the framework of MRAC is based on 

the generalized inverse control technique. In other 
words, the SRWNN is trained to work as an 

inverse controller, as illustrated in Fig. 1. In order 

to clarify this design approach, consider the 
following nonlinear autoregressive moving 

average (NARMA) model, which is utilized to 

describe single-input single output (SISO) 
discrete-time nonlinear systems [9, 21, 24]:  �� + 1� = ��	���, 	�� − 1�, … , 	�� − 
+ 1�, ����, … , ��� − �+ 1��                                      … �1� 

Where 	��� and ���� are the system output and 

input, respectively, ��. �is a smooth nonlinear 

function, n and m are the system orders, and k 

represents the discrete-time instant. Subsequently, 

In order to deduce the control law, it is assumed 

that Equation (1) above is invertible resulting in 
the following equation:  ��� = ℎ�	��� + 1�, 	���, 	�� − 1�, … , 	�� −
 + 1�, ��� − 1�, … , ��� −  � + 1��          …(2) Where,	��� + 1� represents the output of the reference model at time instant �k + 1� and ℎ�. �is the inverse function of f in Equation �1�, such that:ℎ�. � = �+,�. �. In order to realize the control law given in Equation �2�, a suitable function approximator must be used to approximate the inverse function ℎ�. �. In particular, due to its remarkable nonlinear function approximation capability, the SRWNN is employed in this work to achieve this task. As can be seen from Fig. 1, the training of the SRWNN structure is accomplished by minimizing the error signal between the outputs of the actual system and the reference 

model. More precisely, this error signal is described by the following formula [22]:    
= = 12 >�	�� + 1� − 	�

?
@A, �k +   1��B ,       … �3� 

Where N represents the number of samples. In 
particular, this error signal is utilized as the 

performance index to be minimized viaan 

appropriate optimization method. In the present 

work, the MMAIS algorithm is employed for this 
task, as illustrated in Fig. 1. 

 

 

3. The SRWNN Structure  

As mentioned before, the proposed 

SRWNN structure, which is shown in Fig. 2, 

is an improved version of the previously 

reported WNN structure [21].  

 

 
 

Fig. 2. Structure of the SRWNN controller. 

 
 

As depicted in Fig. 2, the SRWNN is a multi-

input single-output network which has an input 
layer, a mother wavelet (wavelon) layer, and an 

output layer. These layers work together to 

generate the final output of the SRWNN structure. 
In the following, the functions of these layers are 

discussed in detail [16, 21]:  

Layer 1: The function of this layer, which is 

called the input layer, is to convey the input 
variables as they are to the next layer. As 

explained in Section 2, the utilization of the 

SRWNN as the controller in the MRAC requires 
the selection of the input variables to be of the 

form:  [	��� + 1�, 	���, … , 	�� − 
 +   1�, ���   − 1�, … , ��� − � + 1�]   … �4� 
Therefore, the number of nodes in this layer 

depends on the orders of the controlled system. 
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Layer 2: This layer is referred to as the mother 
wavelet or the wavelon layer. Each node 

(wavelon) in this layer possesses a mother wavelet 

and a self-feedback connection with an adjustable 
parameter. As the mother wavelet, the Mexican 

hat function is employed in this work, and this 

function has the following form: 

�E� = �1 − EB�F+ 2

2

1
x                                     … �5� 

To compute the wavelon outputs, the wavelet 

ψ Hof each node is obtained from its mother 

wavelet function Iaccording to the following 
expression:  IH�E� = I�JH�,        KLMℎ JH  

= NH O> PHQEQ + IH �� − 1�. RH
?S

QA, T MH              … �6� 

where dj and tj demarcate dilation and translation 

factors of the SRWNN, respectively, Ni is the 

number of input nodes, xi denotes the ith input 
variable, vji is the link connection from node i in 

the input layer to wavelon j in the mother wavelet 

layer, 
)1( −kjψ

represents the memory term, 
whose task is to store the previous state of the jth 

wavelon, and jθ
is the link value of the self-

feedback connection belonging to the jth wavelon. 
Specifically, this weight value is responsible for 

deciding the rate of information storage. Finally, 

the jth wavelon's output is calculated by making 
use of the Mexican hat function as expressed in 

the following: �JH� = �1 − JHB�FEV W− 12 JHBX                         … �7� 

It is worth to highlight that as an advantage of the 

SRWNN over the WNN, the self-feedback 

connections in the wavelon layer have the ability 
to reserve the previous network information. In 

other words, the current network state contributes 

in producing the network output for the next 

sample of time. This feature enhances the overall 
approximation ability of the SRWNN compared 

to the conventional WNN, as will be 

demonstrated in the simulation results of this 
work.     

Layer 3: This layer, known as the output layer, 

has only one node. The task of this node is to 
generate the SRWNN output, using the following 

equation: 

	 = > ZHIH�E� + > [Q
?S

QA,
?\

HA, EQ + ]                 … �8� 

where, as can be observed from Fig. 2, Nw and Ni 
denote the number of nodes in the wavelon layer 

and the input layer, respectively, cj is the weight 

connecting wavelon j and the output node, ai is the 
weight connecting node i in the input layer and 

the output node, and b represents a bias 

connection to the output node. Since the SRWNN 

structure described above is utilized as a 
controller in this work, the SRWNN output in 

Equation (8), y, represents the control action 

applied to the controlled system at a given sample 
of time. 

 

3.1. Initialization of the SRWNN 

Parameters 

In conventional ANN, the network parameters 
are randomly initialized to small values and the 

whole network functions as a black box 

approximator. This initialization process may lead 
to getting stuck at local minima and decrease the 

network convergence rate [25]. However, unlike 

ANNs, the WNN structure consists of dilation and 
translation factors which affect the shape of the 

wavelet. More precisely, a wavelet is a waveform 

defined by suitable dilation and translation 
parameters which determine the waveform 

effectiveness during only a limited duration. 

Therefore, a random initialization for dilation and 

translation parameters may generate ineffective 
wavelons which negatively affect the network 

convergence rate. For example, a very small value 

for the dilation factor may result in a wavelet with 
too local property that makes it inappropriate for 

the training data under consideration. On the other 

hand, if the translation factor is not initialized 

properly, the wavelet may materialize outside the 
domain of the training samples. Nevertheless, 

despite this influence for dilation and translation 

factors, several researchers did not consider a 
specific initialization process for these parameters 

[11, 13, 16, 21, 23].  

In this work, in order to handle this issue, 
dilation and translation factors are initialized 

according to the available information from the 

dataset according to the following procedure [22, 

25]. 
Let the variables a and b be the minimum and the 

maximum values that the input variables can take, 

respectively. Then, the translation and the dilation 
factors are initialized as follows: MH = 12 �[ + ]�                                                   … �9� 

and NH = 0.2�] − [�                                               … �10� 
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where tj and dj are translation and dilation factors 
of wavelon j in the wavelet layer and j = 1, 2, …, 

Nw. As stated before, this initialization process 

takes into account the input domain defined by the 
training samples, and hence, it ensures the 

coverage of the whole input domain by the initial 

wavelets. On the other hand, initial value selection 

for the remaining SRWNN parameters is less 
crucial; therefore, they are initialized to small 

random values. As can be noticed, the above 

initialization procedure is very simple, yet it has 
considerably improved the approximation 

capability of the SRWNN. 

         

3.2. Training of the SRWNN   

 
In the framework of MRAC, training of the 

SRWNN controller dictates finding the optimal 

values for the SRWNN parameters by minimizing 
the error between the outputs of the reference 

model and the controlled system. As discussed in 

Section 3, the SRWNN consists of different 

adjustable parameters, which can be summarized 
by the following set 

S = [cj dj tj vji ai b RH],                                       … �11� 

Where the adjustable parameters in the above 

equation were defined in Section 3. These 

parameters are optimized by the MMAIS 
algorithm in this work, as discussed in the 

following section.  

 

 

4. Artificial Immune System  
 

The underlying principle behind artificial 

immune system (AIS) is based on the information 

processing capability of the biological immune 

system which is a parallel, highly evolved, and 
distributed adaptive system. As a result, the AIS 

algorithm possesses powerful exploration and 

exploitation operators. In particular, compared to 
other evolutionary techniques, the AIS algorithm 

has more efficient mutation operators, and 

moreover, it can achieve better diversity of 
populations which leads to faster convergence 

rates [19, 20]. In order to understand the basic 

operators of the AIS algorithm and relate them to 

their biological counterparts, the main functions 
of the biological immune system are discussed 

below.  

    

4.1. Biological Immune System  
 

The biological immune system is a powerful 

defense network whose responsibility is to detect 

the incursion of foreign antigens and destroy them 
to protect the human body from these disease-

causing substances. For this purpose, the 

biological immune system employs an enormous 
variety of antibodies, which are produced by the B 

cells, to counteract the effect of these harmful 

antigens [26]. More specifically, each antibody 

type has the ability to identify a specific antigen 
type using a correlation measure between the 

antibody and the antigen. This correlation 

measure is called the affinity value [27]. Based on 
this affinity value, once an external antigen is 

recognized, the B cells with high affinity to that 

antigen will explosively generate antibodies 

(cloned cells) to fight the antigen in a process 
known as the cloning operator. Moreover, these 

cloned cells undergo certain somatic 

hypermutation to make sure that the cloned cells 
will differ from their parent cell to adapt the 

immune system against other possible variations 

of the stimulating antigen [20]. To globally 
enhance the population of cells, the cells that are 

seldom stimulated by the attacking antigen are 

removed and replaced by other recruited cells. 

Then, after eliminating the antigen, mature B cells 
are repressed gradually to certain regular level 

except some cells which become memory cells. 

These memory B cells facilitate the immune 
system response when the same or similar antigen 

attacks again, since all the information on the 

attacking antigen are already stored in the 
memory cells [26, 28, 29]. 

  

4.2. Micro-AIS  
 

Utilizing certain concepts from the biological 

immune system described above, several 

variations of the AIS algorithm have been 
effectively employed to solve various 

optimization problems [27, 30, 31]. However, the 

cloning operator in the traditional AIS algorithm 
has a drawback represented by the increase in the 

population size which entails a long execution 

time and substantial memory exploitation. To 
alleviate this problem, the authors in [32] 

suggested another version of the AIS algorithm, 

which was called the Micro-AIS algorithm, based 

on utilizing a reduced population size. The 
assumption behind the Micro-AIS was that 

decreasing the antibody number in a population 

results in a decrease in the number of cost 
function evaluations, which consequently 

increases the convergence speed and reduces the 

memory usage. However, in the original Micro-
AIS algorithm, the mutation operator did not offer 

the necessary variable variations for solving a 
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particular problem. Thus, to enhance the 
searching capability of the original method, a 

MMAIS algorithm was presented in [21] by 

improving the mutation operator of the original 
method. Due to its effectiveness in several 

applications [21, 33, 34], the MMAIS algorithm is 

exploited in this work to optimize the parameters 

of the proposed SRWNN controller based on the 
MRAC strategy, as will be elucidated in the 

following section. 

 

4.3. Procedure of Applying the MMAIS 

Algorithm to Train the SRWNN 

Controller 
    

The following procedure illustrates the 

application of the MMAIS algorithm to train the 

SRWNN controller in the framework of MRAC 

strategy. 
Step 1: Initialize the maximum number of 

iterations and the probability of mutation, Pm. 

Step 2: Produce a starting (initial) population. 
This population consists of five antibodies which 

are randomly generated within preselected ranges. 

Each of these antibodies represents a single 
SRWNN controller which is defined by the 

adjustable parameters given in Equation (11). 

These five antibodies enter a nominal 

convergence loop, with 10 iterations, as described 
below. 

Step 3: Set the counter of the nominal 

convergence loop to 1, and do the following: 
Step 3-1: For each antibody in the current 

population, compute the objective function using 

the performance index defined in Equation (3). 
Next, for each antibody, find the affinity value 

according to the following equation:            ��L
LM	 = 1a]bFZMLPF ��
ZMLc
 + d       … �12� 

Where ε is a small constant which is used to evade 

the division by zero. 
Step 3-2: Sort descending the antibodies based on 

their affinity values. As a result, the antibody with 

the largest affinity value, which is called BestAb, 
becomes the first one.  

Step 3-3: Generate a specific number of clones 

from the current five antibodies utilizing the 
following expression: 

ef = >�
 − �L − 1��g
QA,                                   … �13� 

Where efthe number of clones to be produced, n 
isis the number of antibodies in the current 

population, and I is the antibody index. Thus, by 

using Equation (13), a five-antibody population 

produces a 15-clone population. In particular, 
BestAb produces five clones; the second antibody 

produces four clones; and so on until the fifth 

antibody is encountered which produces one 
clone. 

Step 3-4: Perform the maturation of clones using 

the mutation operator. First, determine the 

mutation probability of each group of clones 
generated from a given antibody. This probability 

is computed according to the antibody affinity 

value and then it is uniformly reduced with 
iterations. Therefore, the clones related to BestAb 

are mutated less than other groups of clones. More 

specifically, the mutation probability is 

determined according to the following equation: 

Vhc�ijkjQlg�Q� =   m���L�∑ m���L�gQA,                   … �14� 

Wherei is the antibody index and n is the 
number of antibodies in the old population. 

Moreover, to reduce the mutation probability 

within the nominal convergence loop, the 

following expression is utilized: L� V� ≥ Vhc] _��M[MLc
�L�LMFh[MLc
                        … �15� 

, MℎF
 [VVq	 MℎF ��M[MLc
 cVFh[Mch 
Where iteration in the above equation is the 
current nominal convergence loop iteration. Next, 

perform the mutation operator using the following 

expression: �h[
N. h[
r��LMFh[MLc
. rhc�V_ef�                                … �16� 

 

where x' and x are the mutated decision variable 
and the decision variable to be mutated, 

respectively, rand is a random number generated 

within the range [0, 1], iteration is the current 

nominal convergence loop iteration, and group_Nc 
represents the number of clones for each antibody 

group. Regarding the five BestAB clones, the 

variable range in Equation (16) represents a 
random number generated between lower and 

upper bounds of the decision variables. For the 

remaining clones, other than the first five clones, 
range is the equivalent decision variable from 

BestAb and the mutation operator is performed 

using Equation (16).      

Step 3-5: For each clone in the new population, 
calculate the objective function and the affinity 

value using Equations (3) and (12), respectively.   

Step 3-6: Sort the 15 clones of the new population 
based on their affinity values in a descending 

order.  

Step 3-7: From the sorted 15 clones, constitute a 
new population of five clones. In particular, as an 

elitism strategy, the first two clones are copied 
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into the new population. The other three clones 
are chosen randomly from the population of the 

15 clones.  

Step 3-8: If the counter of the nominal 
convergence loop has reached to its maximum 

limit, go to Step 4. If not, set counter = conter + 1 

and go back to Step 3-1. 

Step 4: After completing the nominal 
convergence loop, a new population of five 

antibodies is constituted by selecting the best two 

antibodies along with three other randomly 
generated ones. This new population enters the 

nominal convergence loop, specifically, Step 3 

above. The whole algorithm, including Steps 3 

and 4, continues until the stopping criterion is 
satisfied. Particularly, the stopping criterion in the 

present work is defined by reaching the maximum 

iteration number.  
As an off-line design approach, the objective of 

the above training procedure is to optimize the 

SRWNN parameters defined in Equation (11). 
However, to realize adaptive control, the best 

controller found by the off-line design approach is 

further tuned by the MMAIS algorithm using the 

on-line training procedure described below. 

 

4.4. On-line Training Procedure 
 

In the on-line design stage, the MMAIS 

algorithm starts with an initial population of five 

antibodies which include the best controller found 
from the off-line design stage along with other 

related controllers. As the on-line adapted 

parameters, only the weights between the wavelon 
and the output layers are allowed to be adjusted 

by the optimization algorithm. At each time step, 

the MMAIS algorithm selects the best controller, 

from a set of several candidate controllers, to 
control the plant. The general idea of the proposed 

on-line design approach was adopted from [35]. 

The following procedure illustrates the on-line 
training steps used in this work.  affinity = 1

│J│                                                  … �18� 

Step 1: As the starting population in the on-

line design stage, constitute an initial population 

of five antibodies in which the first two antibodies 
represent the exact copies of the off-line designed 

controller. The remaining three antibodies are 

initialized by randomly generating the weights 

between the wavelon and the output layers. In this 
way, the best controller obtained from the off-line 

design stage is effectively utilized to provide 

useful information for the adaptive design stage.  
Step 2: Set the simulation time, k, to zero. 

Step 3: Collect the current reference input, r(k), 
the current system output, y(k), and the current 

reference model output, ym(k).  

Step 4: Calculate the next reference model output, 
ym(k+1), using the desired reference model 

equation. 

Step 5: For each antibody in the current 

population, which consists of five antibodies, 
calculate the objective function using the 

following performance index: t = 	�� + 1� − 	��� + 1�                           … �17� 
Where y(k+1) is the system output at sample 

(k+1). After that, the affinity value of each 

antibody is found according to the following 

equation: ��L
LM	 = 1│t│                                                … �18� 

Step 6: The antibody with the largest affinity 

value is chosen as the controller for the current 

sampling time. However, due to the random 

operators in the MMAIS algorithm, the selected 
controller might not be the best solution for the 

current sampling time. To alleviate this difficulty, 

the error produced by the on-line designed 
controller is compared with that of the off-line 

designed one at a given sampling time. Based on 

this error, which is defined by Equation (17), if 
the on-line designed controller achieves less error 

value, it is used to control the plant at the next 

sampling time. Otherwise, the off-line designed 

controller is selected as the controller for the next 
sampling time. From several simulation tests, this 

strategy has resulted in the best on-line controller 

performance as will be seen from the simulation 
results of the next section.  

Step 7: Produce the next population of the 

MMAIS algorithm using the procedure described 
in Section 4.3, in particular Steps 3-1 to 3-8. 

However, instead of Equations (3) and (12), 

Equations (17) and (18) are used to evaluate the 

performance of each antibody. After completing 
the nominal convergence loop, a new population 

of five antibodies is generated.  

Step 8: If the simulation time, k, has reached to 
its maximum value, the algorithm is terminated. 

Otherwise, set k = k +1 and go back to Step 3. 

         

    

5. Simulation Results 
    
This section is dedicated to assess the 

performance of the proposed SRWNN-based 

MRAC in terms of control accuracy, robustness 

ability, and generalization to various input signals. 
In addition, a comparative study with other 
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controllers within the framework of MRAC is 
conducted in this section. Utilizing the MMAIS 

algorithm, the initial learning and the on-line 

design procedure discussed in Sections 4.3 and 
4.4, respectively, were employed to control all the 

considered plants. As the main parameters in the 

MMAIS algorithm, the mutation probability and 

the maximum number of iterations were set to 0.3 
and 500, respectively. Moreover, for all the 

controlled plants, only six wavelons (with self-

feedback connections) were used to constitute the 
wavelon layer in the SRWNN structure. These 

settings for the optimization algorithm and the 

SRWNN structure were adequate to attain the 

required control performance. As mentioned 
before, the main contribution of this work is 

represented by the performance improvement 

achieved by the SRWNN compared to the original 
WNN structure, as will be seen in Section 5.5. 

Furthermore, unlike the training method of the 

original WNN controller, an on-line training 
procedure is adopted in this work to further 

enhance the control performance and to realize an 

effective adaptive control strategy.   

  

5.1. Control Performance Tests 
 
To show the applicability of the proposed 

SRWNN-based MRAC to control various 

dynamical systems, three different nonlinear 
systems were adopted. These systems include a 

nonlinear non-minimum phase system, a water 

bath temperature control system, and a nonlinear 
minimum phase system. 

Plant 1:This plant represents a nonlinear non-

minimum phase system which is described by the 

following discrete-time equation [9]: �� + 1� = 	������ − 1�1 + 	B��� + 	B�� − 1� + ����
+ 1.5�� − 1�                      … �19� 

As the reference model for the above system, 

the following equation is used: 	��� + 1� = 0.6	���� + h���                    … �20� 
 

The SRWNN-based MRAC, shown in Fig. 1, 

is required to track the following reference signal: �k� = 0.5sin W2πk150X + 1.2sin W2πk250X          … �21� 

Figure 3 (a) illustrates the result of controlling 

Plant 1, while Fig. 3 (b) shows the on-line 
adaptation made to the six weights connecting the 

wavelon and the output layers in the SRWNN 

structure.  

 

a 

 

b 
Fig. 3. Plant 1 (a) outputs of the reference model 

and the controlled plant (b) on-line  adaptation of 

the six weights in the SRWNN structure. 

 
From Fig. 3 (a), it is obvious that the proposed 

control approach has achieved an accurate control 
performance by following the desired reference 

model output. On the other hand, Fig. 3 (b) 

demonstrates the on-line adaptation ability of the 
MMAIS algorithm in finding the optimal value 

for the six weights at each sampling time. 

Furthermore, it is worth mentioning that the initial 

learning for the SRWNN controller has resulted in 
a value of 0.1 for the performance index of 

Equation (3) after 500 iterations, while the on-line 

training procedure has further reduced the above 
value to 0.015, which indicates the effectiveness 

of the on-line training procedure. 
 

Plant 2: As the second nonlinear controlled plant, 

the water bath temperature control system is 

considered. This system is governed by the 

following discrete-time equation [36, 37]: 	�� + 1� = [�wx�y�k� + ]�wx�1 + Fy.z{�@�+{ ����+ [1 − [�wx�]|y             … �21� 

where y(k) is the output temperature of the  

system in Co , u(k) is the system control input, 

which is limited by the following bounds0 ≤u�k� ≤ 5 V, Y0 is the room temperature in Co
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,a�T�� = e∗�� , andb�T�� = �� �1 − e+���. As for 

the parameters of this system, the following 

settings were used: 

CY o25,40,1067973.8,1000151.1 0

34 ==×=×= −− γβα

 and T� = 30 s . These values have been adopted 

from a real water bath system [37]. The desired 
reference signal, which represents the desired 

water temperature in Co , is given by the following 
signal: 

 

 
 

 

 

 

                                                                    … �23� 

The desired system output is specified by the 

following first-order reference model equation 
[38]:  y��k + 1� = 0.6y��k� + 0.4r�k�              … �24� 

The actual system output, the reference model 

output, and the resulting control signal are 
exhibited in Fig. 4 (a), while the on-line 

adaptation achieved on the six network weights is 

depicted in Fig. 4 (b). 

 

 

a 

 

b 
 

Fig. 4. Plant 2 (a) outputs of the reference model 

and the controlled plant (b) on-line. 
 

As it is evident from Fig. 4 (a), the actual system 

output has accurately followed the reference model 
output. Figure 4 (b) clearly shows the on-line 

adaptation ability of the MMAIS algorithm at each 

sampling time. The initial learning for the controller 

after 500 iterations has achieved a performance index 

of 53.965, while the on-line training has further 

reduced this value to 21.393, signifying the efficiency 

of the on-line algorithm. Bearing in mind the control 

signal limitation within a specific rang [0,5], it can be 

concluded that the proposed controller has achieved the 

desired performance even with the existence of such 

constraints. 
 

Plant 3:This is a nonlinear plant expressed by the 

following difference equation [24]: 

	�� + 1� = 	��� + 	�� − 1�1 + 	B��� + 2	B�� − 1� + ���� … �25� 

The desired system behavior is given by the 

following reference model equation: 	��� + 1� = 0.5	���� + 0.3	��� − 1�+ h���                                  … �26� 

While the reference signal is as follows:  h��� = 0.5[sin�10��� + sin �25��+ 0.5�]                                … �27� 
Figure 5 (a) shows Plant 3 output together with the 

reference model output, and Fig. 5 (b) illustrates the 
on-line adaptation of the six network weights. 

 

 

a 

 

b 
Fig. 5. Plant 3 (a) outputs of the reference model 

and the controlled plant (b) on-line adaptation of 

the six weights in the SRWNN structure 
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From Fig. 5 (a), it can be seen that the 
SRWNN-based MRAC has done well in tracking 

the desired reference model output. The ability of 

the optimization method in adapting the network 
weights can be observed in Fig. 5 (b). As with 

Plants 1 and 2, the on-line training algorithm has 

achieved a smaller performance index value of 

0.027, compared to the initial learning value of 
0.057.  

 

5.2. Robustness Tests  
 

These tests aim at investigating the robustness 
ability of the proposed SRWNN-based MRAC by 

conducting a disturbance rejection test on each 

plant considered in the previous section. For 

Plants 1 and 3, a bounded disturbance of 50% 
from the controlled system output was applied for 

10 samples at different periods of the simulation 

time. In particular, the disturbance was applied at 

the intervals 171161 ≤≤ k , 371361 ≤≤ k , and 

771761 ≤≤ k , for Plant 1, and at the intervals 

3930 ≤≤ k  and 6960 ≤≤ k , for Plant 3. For 

the water bath temperature control system, a 

disturbance of -3 Co was applied at the 50th 
sample. It is interesting to notice that all of these 

disturbances were applied during only the 

controller testing phase of each plant. This means 

that the SRWNN controller was not trained to 
handle these disturbances. Nonetheless, the 

SRWNN controller managed to cope with the 

unexpected effects of these disturbances by 
maintaining the desired output response for all the 

plants. Figures 6 (a), (b), and (c) show the results 

of these tests for Plants 1, 2, and 3, respectively.  

 

a 

 
b 

 

c 
Fig. 6. Outputs of the reference model and the 

controlled plant when a disturbance is applied at 

the output of (a) Plant 1 (b) Plant 2 (c) Plant 3 
objective functions against generations. 

 

 

It is noteworthy that the large disturbance 
amplitude, specifically the 50% of system outputs 

for Plants 1 and 3, indicates that the SRWNN 

controller possesses the ability to counteract large 

disturbances even when such disturbances are not 
encountered during the controller training phase. 

       

5.3 Parameter Variation Test 
 

This test is conducted to evaluate the controller 
ability in handling inherent changes in the system 

parameters. To perform this test, certain variations 

are made on a parameter in the water bath 
temperature control system at different time 

samples. More specifically, an increase of 10% in 

the original value of b(Ts) in Equation (22) was 

considered at sample numbers 30, 50, and 70. As 
was done in the previous section for disturbance 

rejection tests, the parameter variations were 

made only during the controller testing phase, 
which means that the controller was not trained to 

face these dynamic changes in the system. Figure 

7 illustrates the outputs of both the system and the 
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reference model along with the control action of 
the controller.  h��� = 0.5[sin�15���+ sin�35�� + 0.5�]         … �29� 

 

 

 
Fig. 7. Outputs of the reference model and the 

controlled plant when a parameter variation test is 
applied on Plant 2  objective functions against 

generations. 

 

 

As can be clearly seen from Fig. 7, the 
SRWNN controller has done well in tracking the 

desired reference model output even with the 

existence of an unexpected time-variant parameter 

in the system model. The control signal in Fig. 7 
indicates the adaptation made on the controller 

behavior to deal with such nonlinear time-variant 

system.  

 

5.4 Generalization Tests 
 

The objective of these tests is to demonstrate 

the ability of the SRWNN controller in handling 
reference signals different from those used in the 

controller training stage. This controller feature is 

known as the generalization ability. The tests 
were conducted on Plants 1 and 3 by using the 

same training signals of Equations (21) and (27) 

for Plants 1 and 3, respectively. While, for the 
testing stage, the following signals were used: h��� = 0.5�L
 W2��25 X + 1.2�L
 W2��100X     … �28� 

Equations (28) and (29) represent the testing 
signals for Plants 1 and 3, respectively. The 

results of these tests are shown in Fig. 8, where it 

is clear that the SRWNN controller has 

appropriately generalized its learning to handle 
input signals which were not encountered 

throughout the controller training phase for Plant 

1, Fig. 8 (a), and for Plant 3, Fig. 8 (b). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 
 

 

b 
 

Fig. 8. Outputs of the reference model and the 

controlled plant resulted from the generalization 

tests applied on (a) Plant 1 (b) Plant 3 objective 
functions against generations. 

 

 

5.5. A Comparative Study with other 

Related Controllers  
 

In this section, the performance of the 

proposed SRWNN controller is compared against 

those of other related controllers in terms of 
control accuracy and processing time. 

Specifically, the controllers under consideration 

include the original WNN controller, the ANN 
controller, and the modified recurrent network 

(MRN) controller. These controllers are used 

within the same MRAC structure shown in Fig. 1. 

For a fair comparison, the same MMAIS 
algorithm was employed to train each of the 

above controllers using the off-line procedure 

described in Section 4.3. The structure of the 
original WNN controller [21] is similar to that of 

the SRWNN discussed in Section 3, with the 

exception of the wavelons' self-feedback 

connections and the initialization phase in the 
SRWNN structure. On the other hand, the ANN 

structure consists of an input layer, a hidden layer 
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with hyperbolic tangent as the neurons' activation 
functions, and an output layer. Finally, the 

structure of the MRN, which was proposed in 

[39], has an input layer, a hidden layer, a context 
layer, and an output layer. The context layer has 

the same number of nodes as the hidden layer. 

Each node in the context layer receives two 

inputs, the first of which represents a self-

feedback connection with an adjustable weight,
β

, while the second input is the previous output of 

the corresponding hidden node multiplied by an 

adjustable weight, 
ξ

. As the hidden nodes' 
activation functions, the hyperbolic tangent 

functions were used. In fact, the MRN is an 
improved version of the modified Elman network 

[40]. It is worth to highlight that only 6 neurons 

were used in each hidden layer of the networks 

mentioned above. Plants 1 and 3 used before are 
considered in this comparative study, along with 

the following time-delay nonlinear plant [21]: 

�� + 1� = 1.2�1 − F+y.��	���1 + 	B��� + ��� − 1�   … �30� 

The MMAIS is classified as a stochastic 
algorithm, since it employs several random 

operators. As a result, the performance of a final 

optimized controller might vary for different 

simulation runs. Hence, to achieve a reliable 
comparative study, 10 runs were conducted for 

each plant and the average result was taken. Table 

1 summarizes the results of this comparative 
study. As can be concluded from Table 1, the 

proposed SRWNN-based MRAC has attained the 

best results with respect to the other controllers. In 

terms of control accuracy, the SRWNN controller 

has achieved the least values for the performance 
indices for all the plants. Regarding processing 

time, the SRWNN controller took the shortest 

times except for Plants 1 and 2 controlled by the 
original WNN controller. However, this slight 

increase in processing time for the SRWNN, 

which was the result of including the self-

feedback weights, can be ignored in light of the 
superior results of the proposed controller 

compared to the original WNN controller. 

 

5.6.  A Comparative Study on the Optimization 

Methods 

As stated earlier, it has been shown that the 
AIS algorithm is superior to the GA with regard to 

maintaining good population diversity due to the 

efficient mutation operator employed by the AIS 
algorithm [19, 20]. In this context, it is essential to 

compare the performances of both the MMAIS 

and the GA in training the proposed controller, 

and this section is dedicated for this purpose. As 
the controlled systems, the same plants considered 

in the previous section are used in this 

comparative study. Similar to the comparison 
procedure followed in Section 5.5, 10 runs were 

conducted for each plant and the average result 

was considered in order to attain a reliable 

comparative study. Table 2 exhibits the 
comparison results. Obviously, Table 2 signifies 

the advantage of the MMAIS algorithm over the 

GA. In particular, the MMAIS algorithm has 
accomplished the least values for the performance 

indices and took the shortest processing times for 

all the plants compared to the GA. 

Table 1, 

Comparison results of the WNN, the ANN, the MRN, and the proposed SRWNN. 

 

 

 

 

MRAC type Criterion                                Controlled plant 

Plant 1 Plant 2 Plant 3 

WNN-based 

MRAC 

Average Performance Index 0.636 1.261 0.386  

Average Time (sec.) 57.775 57.709  9.603  

ANN-based 

MRAC 

Average Performance Index 1.625 2.258 0.085 

Average Time (sec.) 71.341 75.574 12.085 

MRN-based 

MRAC 

Average Performance Index 0.843 2.758 0.155 

Average Time (sec.) 103.482 110.048 16.740 

Proposed 

SRWNN-based 

MRAC 

Average Performance Index 0.052 0.913 0.039 

Average Time (sec.) 58.928 62.028 9.327 
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Table 2, 

Results of comparing the performances of the GA and the MMAIS in training the proposed SRWNN-based 
MRAC 

 

 

6. Conclusions  
 

In this paper, a SRWNN-based MRAC scheme 

is proposed to control nonlinear dynamical 

systems. As an improved version of a previously 
reported WNN structure, a SRWNN structure is 

put forward by adopting a specific initialization 

phase and utilizing self-feedback weights in the 
wavelon layer. In addition, an on-line training 

procedure is followed to further enhance the 

control accuracy of the SRWNN controller. To 
train the above controller, the newly developed 

MMAIS algorithm is employed to optimize the 

SRWNN parameters. Several nonlinear dynamical 

systems are used to show the effectiveness of the 
proposed control approach via an extensive 

evaluation tests, including control performance 

tests, robustness tests, parameter variation test, 
and generalization tests. All these tests have 

indicated the effectiveness of the SRWNN-based 

MRAC. Furthermore, a comparative study with 

other related controllers has shown the superiority 
of the proposed controller. Finally, as compared to 

the GA, the MMAIS algorithm has achieved 

better results with regard to control accuracy and 
processing time. 
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ـةالخلاص  
 

اللاخطية. الشبكة  الأنظمةموديل مرجعي ذكي باستخدام شبكة عصبية مويجية ذاتية التكرار للسيطرة على  اذ ايقدم هذا البحث نظام سيطرة متكيف
. وهذان المقترحة هي نسخة محسنة لشبكة عصبية مويجية منشورة سابقا. وبالتحديد, هذا التحسين تم انجازه بتبني تعديلين على هيكل الشبكة الاصلي

العائدة لمويجات  الإشارةذاتية  أوزانتضمين المثلى, وثانيا  الأوزانلتحسين الاقتراب نحو قيم  الأوزاناستخدام مرحلة محددة لتوليد  أولاالتعديلات يتضمنان 
طريقة تعليم, تم استخدام نظام المناعة الصناعي بوصفها نظام السيطرة المقترح. و أداءذلك, تم اقتراح طريقة تعليم انية لتحسين  فضلا عنالطبقة المويجية. 

تخدمة. وقد تم عرض كفائة الطريقة المستخدة بالسيطرة على عدة انظمة ديناميكية الدقيق المعدل والذي طور حديثا لايجاد القيم المثلى لمعاملات الشبكة المس
اختبارات التعميم. لاخطية. وقد تم اعتماد عدة اختبارات تقييم لكل نظام مسيطر عليه وهذه الاختبارات تتضمن اختبارات اداء السيطرة و اختبارات المتانة و

كفائته من حيث دقة السيطرة و رفض المؤثرات الخارجية وقابلية التعميم. بالاضافة لهذه الإختبارات, تم اجراء ومن هذه الاختبارات اظهر النظام المقترح 
و الشبكة العصبية الصناعية والشبكة التكرارية المعدلة. وقد  الأصليةدراسة مقارنة مع مسيطرات اخرى ذات صلة وبالتحديد الشبكة العصبية المويجية 

 .الأخرىدراسة تفوق المسيطر المقترح على المسيطرات اظهرت نتائج هذه ال
 

 


