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Abstract:

In this paper the flow theory in classical plasticity is extended to micro-scale plasticity, which is
one of the most important active fields in micro-scale industries, where the directional derivative of
plastic strain affects significantly on material's hardening. This is accomplished throughout
proposing a new strain-hardening rule based on some facts from dislocations theory, where this
proposed hardening rule enables the researcher from obtaining constitutive stress-strain relations for
materials of micro-scale size undergoing plastic loading. Simulations are performed to show the
plastic behavior of several theoretical models with micro-scale sizes based on the modified flow rule
developed in this paper, and the results obtained from these simulations show good agreement with
published results available in the literature. This agreement proves the validity of the extension of the
classical flow theory proposed in this paper and the ability of the modified flow rule to describe the
plastic behavior of materials at the micron scale.
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1 Introduction

The materials are -generally- classified into associated and non-associated materials, and the basis of
this classification is the normality property. Accordingly, the materials which its plastic strain

increment  de” is normal to the yield surface are known as associated materials, while the other

materials which do not exhibit this property are called non-associated materials. The conventional basis
of normality property is Drucker’s postulate [1] which has been employed extensively in the classical
theory of plasticity in order to formulate a constitutive relationship between the plastic strain increment
and the stress gradient of the yield function. This relationship is known as the associated flow rule. On
the other hand, many researchers employed the principles of thermodynamics in the formulation of the
constitutive relationships in plasticity theory ([2-4]). In spite of the employment of the work concept in
Drucker’s postulate, it is not based on thermodynamical laws and it is restricted to strain-hardening —
and, in the limit, perfectly plastic- materials to prove the validity of the associated flow rule to be
applied in this class and does not introduce the physical interpretation of this flow rule.

The development of a flow theory for the fields of strain gradient plasticity, which are
expanding steadily to involve a wide range of problems ([5-11]), has been attempted by several groups
based on different approaches. Qiu and his group [12] established a flow theory of mechanism-based
strain gradient plasticity based on the same framework of the deformation theory of mechanism-based
strain gradient plasticity connected with the Taylor model in dislocation mechanics. While
Gudmundson [13] presented a theoretical frame work applicable to incremental plasticity model in
strain gradient plasticity by using an expression for plastic dissipation. On the other hand, a nonlocal
flow rule in the form of a tensorial second-order partial differential equation for the plastic strain has
been formulated by Gurtin and Anand based on a developed small-deformation theory of strain
gradient plasticity [14]. Abu Al-Ruba et al [15] presented a formulation of small strain higher-order
gradient plasticity theory based on thermodynamical principles incorporated with the theory of
dislocation mechanics.

The main contribution of this paper can be outlined in the following points:

1) Proposing a strain-hardening/softening rule based on some facts from dislocations theory.

2) Explaining a theoretical basis for the flow theory in classical plasticity based on the proposed
hardening rule.

3) Developing an associated flow rule applicable to micro-scale plasticity in the light of the
proposed hardening rule.

4) Verifying the modified associated flow rule throughout simulations of micro-scale case studies,
and comparing the results obtained from these simulations with published results available in
the literature.

Notation: A function g:S — H is said to be bijective in Abstract Analysis literature if it maps all

elements of S to all elements of H such that each different elements in S are mapped to different
elements in H.

2 Conventional Approach to the Associated Flow Rule

Drucker (1951) has stated in his postulate that over a cycle of loading and unloading the work
performed by the additional external agency is non-negative. This postulate leads to the important
inequality[1]:

(a—ao).dgp >0 (@)
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where o is the stress state at the yield surface, o, is the initial stress state lying inside or on the yield
surface and de” is the incremental plastic strain vector.

As a consequence, Drucker has shown that the plastic strain increment de” must be normal to
the yield surface [1].

On the other hand, the stress gradient of the yield function Z— is proportional to the direction
o
cosines of the normal to the yield surface F. Consequently, the plastic strain increment de® must be

directed along the gradient vector 2— yielding the associated flow rule which can be written as:
o

de” —dr & )
oo

where dA is an infinitesimal scalar multiplier.

3 Main Results

The main result of this paper is a modified associated flow rule obtained from extending the flow
theory in classical plasticity to micro-scale plasticity. We accomplish this task in three steps. In the first
step, we propose a strain hardening rule based on some facts from dislocations theory combined with
some principles of Abstract Analysis. Then this proposed hardening rule is employed to show a
theoretical basis for the associated flow rule in classical plasticity. Based on the same theoretical basis,
we conclude a modified associated flow rule applicable for the plasticity at the micron scale. In the
resulting modified associated flow rule, we impose a size parameter that accounts for geometrically
necessary dislocations (GNDs), associated to the non-uniform straining in polycrystalline aggregate,
that affect significantly on material’s hardening at the micron scale.

3.1  Proposed Strain Hardening/Softening Rule

In this section, a strain hardening rule is proposed such that a greatest hardening is induced in the
direction of the plastic strain with greatest Euclidean norm. Let s, denotes the projection of de® in the

direction of a unit vector u,, while S represents the set of all possible elements of s,, where i belongs
to the set of all positive integers J. Therefore:
S={s,:s,=de”.u,iel} (3)
Let h, represents a measure of the hardening induced in u, direction due to a plastic strain s,
then H is the set of all h;s.
Therefore:
g:S—>H |Vs;>s 3 h;>h 4)
where j, | € J, and g is a bijective function which maps S to H.
This proposed hardening rule agrees with the interpretation of strain hardening hypothesis
which is based on the back stress induced due to the pile-up of dislocations at the barriers. Then, the

greatest hardening is due to a greatest back stress which is corresponding to a plastic strain with
greatest Euclidean norm.
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Moreover, based on this proposed hardening rule, every component of the plastic strain
increment de” must produce a corresponding hardening and so that de” has no component tangent to

the yield surface. As a consequence de” must be normal to the yield surface.

In a similar manner, a strain softening rule is proposed such that a greatest softening is induced
in the direction of the plastic strain with greatest Euclidean norm. Let hi represents a measure of the
strain softening induced in u, direction due to a plastic strain s,, while H is the set of all h;s. Then:

g:S>H |V s;>s, 3 h; >h (5)

where g is a bijective function which maps Sto H .

This proposed softening rule agrees with the softening mechanism in some polymeric materials
in which the yield strength is decreased with the increased plastic strain due to a morphological change
in molecular chains and entanglement of amorphous parts [16]. Then, the greatest softening is caused
by a plastic strain with greatest Euclidian norm which is corresponding to a greatest morphological
change in molecular chains and entanglement of amorphous parts.

Similarly, every component of de” must produce a corresponding softening and hence de”
must be normal to the yield surface.

3.2 A Theoretical Basis for the Classical Associated Flow Rule

In the present analysis, two independent approaches are introduced for deducing the associated flow
rule based on the proposed hardening rule presented in this paper. In the first one, the shape of the yield
surface “after” the application of an incremental stress is considered. While in the second one, the
behavior of the yield surface “during” the application of an incremental stress is considered.

3.2.1 First Approach

The yield criteria are empirical relationships proposed for predicting the plastic yielding of a material
subjected to a combination of stresses. One of the fundamental experimental observations is that the
plastic yielding depends on the stress deviators and is not influenced by the hydrostatic stress.
Therefore, the yield criterion could be represented by the following general form:

fe)="1() (6)
where f (o) is a function of the stress state which causes plastic yielding and ?(() represents the

distance of the yield surface from the hydrostatic line, which is a function of a set of internal variables
¢ . According to the distortion-energy criterion [17], the function f (o) can be expressed as:

f(o)= \/g{af +o0+0l-0,0,-0,0,-0,0, }1/2 @)
while: (&) =2/3Y(() (8)

where o,, o, and o, are the principal stresses, while Y ({) is the yield stress of the material in

uniaxial tension.
If the material is strain-hardening one such that it obeys the hardening rule proposed in this

paper, then the maximum hardening induced due to plastic strain increment de” will be directed along
de” itself because the maximum projection of a vector is the vector itself. On the other hand, the
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greatest hardening is corresponding to the farthermost point a way from the hydrostatic line.
Consequently, a local maximum is obtained in the direction of de® as shown in Fig. (1). For this local
maximum, the function f (o) in (7) has its maximum value, and as a consequence:
of Q) _d©) _, ©
0s 0s
where ds is an incremental distance on the yield surface. Therefore:
of d01+8f d02+8f d0'3:O (10)
0o, ds OJo, ds Oo, ds
The left hand side of (10) can be thought of as the dot product of two vectors as follows:
of e, + A e,+ of e, .(dgl e1+0|62 e2+d03 egjzo (11)
oo, oo, ds ds ds
wheree,, e, and e, represent the unit vectors along the direction of the principal stresses
o,,0, and o, respectively. Hence that the unit vector in the direction tangent to the yield surface can

oo,

do do do
le, +—2e, +—2

be written as: e =
" ds ' ds ? ds °

O3

A

de”

0, o,
Fig. (1). Representation of local maximum yield strength.
Then (11) can be rewritten as:

f
A e =0 (12)
oo
Moreover, the plastic strain increment de” must be normal to the yield surface at the point of
local maximum, otherwise there will be a component of de” that doesn’t produce a hardening, leading

to a violation of the proposed hardening rule in which every component of de” must produce an
extension of the yield surface in the deviatoric plane. Therefore:

de® .e, =0 (13)

and hence that S—f must be directed along de” yielding the associated flow rule (2).
o

If the material is strain-softening one such that it obeys the softening rule proposed in this
paper, then the maximum softening induced due to plastic strain increment de” will be directed along
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de” itself. Moreover, the greatest softening is corresponding to the nearest point from the hydrostatic

line. As a consequence, a local minimum is obtained in the direction of de® as shown in Fig. (2).

Then, at the point of local minimum yield strength, the function f (o) in (7) has its minimum

value, and in a similar manner for the case of strain-hardening, the following can be obtained:

A e =0 and def.e =0
oo

yielding the associated flow rule.

3.2.2  Second Approach

During the plastic yielding, and according to (6), the stress function f (o) takes the value of T(g“)
which represents a measure of the yield strength, so that the hardening induced during the

O3

A

0, o,

Fig. (2). Representation of local minimum yield strength.

application of an incremental stress do can be represented by the directional derivative Dy, f,ie. the
hardening induced in a direction of a unit vector u, can be expressed as:

Dy f=Vf.u |iel (14)
Then, the hardening rule proposed in this paper, can be rewritten as:
V de".u >de”.u 3 i.u.>i.uI (15)
! oo ' Oo

Since the function which maps the set of plastic strain components to the set of the corresponding
hardening is a bijective function, therefore:

Vv def.u, =max(s) 3 (;i .u, = max(h ) (16)
o

But:
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of
d&‘P 8f %O‘
)=deg". , h)=—.
max(s) max(n) = 2.
oo
Then

8f

]

. : f : . .
i.e. the gradient vector a must be directed along de&”, leading to the associated flow rule.

17)

oo
Similarly, for strain softening materials:
V de.u, =max(s) 3 i .u, = max(h) (18)
oo
So that:
af
gP

]
3.3 Extension of the Flow Theory in Classical Plasticity

Experimental evidence [5] shows that in applications at micron and submicron scales the hardening
evolution is increased with the decreased size due to the presence of plastic strain gradients. To
combine the effect of the plastic strain to the effect of its gradient, various proposals have been
introduced, leading to the formulation of strain gradient plasticity theories (SGP) ([5-11]).

Since the work concept, which is independent of the strain gradient, is the basis of Drucker’s
postulate, the effect of strain gradient cannot be embodied in the mathematical formulation of the
associated flow rule, leading to a main difficulty in extending the flow theory in classical plasticity to
the fields of strain gradient plasticity.

In contrast, based on the present approach, the effect of the plastic strain gradients can be
conveniently incorporated to the effect of the plastic strain to produce a generalized associated flow
rule applicable to micron and submicron plasticity where the strain gradients play a significant role in
hardening evolution.

3.3.1 General Formulation

Let " denotes the generalized plastic strain vector, which can be expressed in the general incremental
form:

dy’ =219 dp" (19)

where dp® is an incremental vector which represents the response of the material - which may be

increment of the plastic strain, its gradients or others- to the applied incremental stress do, such that
this response contributes to the generalized-strain hardening of the material, n is the total number of
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response vectors which contribute to the hardening, and 1 is the length parameter which characterizes
the size-dependence of p“ in its contribution to the hardening. The hardening caused by o is

assumed to obey the hardening rule proposed in this paper. If p is assumed to denote the projection
of p“ in the direction of a unite vector u,, then S™ is the set of all possible elements of p* where
i e J, while h" is a measure of the hardening in the direction of u, dueto p*,and H® is the set of
all possible elements of h®. Accordingly:

g(k) -Gk _y H® | 4 pj(k) >,0|(k) 3 hj(k) > hl(k) (20)
where g is a bijective function which maps S™ to H®.

Then, the maximum hardening induced due to incremental stress do must be directed along
dy”. The generalized normality can be represented as in Fig. (3), while the generalized associated

flow rule can be expressed as:

n of

dy’ =>1Ydp" =di— (21)
=1 oo
O3

A

o, 0>

Fig. (3). Representation of the generalized normality.
The parameter dA expressed by:

dx{ dy” . dy } 22)
(of 100)". (of 160)

can be determined conveniently depending on the specific application as established in the next section
where the application of strain gradient plasticity is considered.
It is clear that, for the case of size-independence, the following condition is satisfied:
[ =1

3.3.2 Application to Strain Gradient Plasticity
The condition expressed by (20) agrees with the mechanism of hardening due to strain gradient, where

the hardening evolution is believed to be attributed to the geometrically necessary dislocations (GNDs)
which are associated with the non-uniform straining in polycrystalline aggregate [18]. Then, the
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greatest plastic strain gradient is corresponding to the greatest density of geometrically necessary
dislocations leading to a greatest hardening.

Therefore, (19) can be applied with two material responses; de” and dzn®, where 5" is the

gradient of plastic strain, i.e.:
n =ve’ (23)
Then, the generalized normality can be represented as in Fig. (4), while the associated flow rule
can be written as:
of

dy’ =de” +19dnp" =di— (24)
oo

where: n=2, 1Y =1, dp” =d&” and dp"” =dp”°,

while 1 depends on the size of the specific application.
If the distortion-energy criterion expressed by:

om0y o)+ o))=Y 5)
is considered, then (24) can be expressed as :
o —1(0' +0,)
1 2 2 3
o 2 1
dyp" =—di{o,-=(o,+0) (26)
3 2
1
—=(o, +
0,~ (0, +0)

Then, the parameter dA can be explicitly calculated by the equation:

dr=39% @7)
20

where o is the effective stress and dz,z_/P is defined in a similar manner for defining the classical
effective strain, i.e.:

. 2

dy" =2 [dy? —dy) + (dy? —dy?) + (dys —dy;) ] (28)

0,

Fig. (4). Representation of normality in SGP.
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Hence the parameter dA can be evaluated from a (5-57) curve for an increment of the

generalized plastic strain d;;P, in a similar manner for evaluating the proportionality constant in Levy-
Mises equation in classical plasticity [19], as shown in Fig. (5), where:

di= gcote (29)

»
P

v

Fig. (5). Method of evaluating dA in Eq.(27).
5  Simulation

The modified associated flow rule developed in this paper based on a newly proposed hardening rule is
demonstrated in this section throughout a case study. In this case study, we consider uniaxial tensile
loading of a given material for several micro-scale diameters. Then we investigate the plastic behavior
of these cases based on the modified flow rule developed in this paper, and compare this behavior with
a published result available in the literature to show the validity of the proposed flow rule.
Consider a material whose simple tensile test gives the following stress-strain relation
=0 +v)" (30)
where Y, is the material's yield stress in tension. We assume Y, =80MPa .

Furthermore, assume that yield occurs after an elastic strain &, =0.01. Such a material can be
described by the stress-strain curve shown in Fig. (6).

o MPa ™!

&

Fig.(6). Material's stress-strain curve.

I's
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According to Von-Mises yield criterion, we have

F=(o,-0,)+(0,-0,) +(c,-0,) =2Y’ (31)
Based on this criterion, we can obtain the relation (30) from the proposed flow rule expressed in
(24) as follows. For simplicity, we employ the notation | =1?. For uniaxial tensile loading, we have
oc=o0,and o,=0,=0.Then F =20°=2Y’ and ai =4c . Letting dA =5x10"do, then based on
o
(24), combined with the fact that | =0 for macro scale case, we have
20x10"do =dg, (32)

Integrating (32), we get
[20x10"do = [de
Y 0

Which yields the relation expressed in (30). Hence for micro scale cases we have |1 >0 and therefore
20x10"do =ldn, +dg, (33)

The value of the size parameter | can be calculated experimentally. We assume values of | for different
diameters in Table.1. Hence the value of | increases with the decreased values of the size represented
by specimen diameter D.

D [

200um | 0.3

150um | 0.6

Oum 1

30um 15

Table.1. Values of | for different sizes.
We further assume that 7, = (¢,)", and so that we have dn, =——0d¢,, and (33) becomes
e
4 0.5
20')(10 dO-: I T"‘l dgp (34)

gp

Integration of (34) gives

o={(I e, +& )x107+v2}" (35)

Simulation of relation (35) is shown in Fig. (7) for the different specimen diameters listed in Table.1.

__—~D=30um

- D=90um

. __-D=150um

o MPa _ " __—~D=200um
0|

(| 03 03 8 o¢
Fig. (7). Effect of size on stress-strain curve at the
micron scale.
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The effect of size on material's hardening is shown clearly in this figure, where material's
strength increases with the decreased diameter. This observation agrees with the general plastic
behavior for micro-scale applications as shown, for example, in [8]. This agreement shows the validity
of the proposed flow rule and its ability to describe plastic behavior of materials at the micron scale.

6 Conclusions

The difficulty of extending the classical associated flow rule to strain gradient plasticity can be
ascribed to a fundamental restriction in Drucker’s postulate. Moreover, this postulate is not applicable
to strain-softening materials. In this paper, a new strain-hardening/softening rule is proposed based on
some facts from dislocations theory, and this proposed hardening rule is employed to develop a
modified associated flow rule applicable to micro-scale plasticity, which is one of the most important
fields in micro-scale industries. This extension of the classical flow theory to micro-scale plasticity is
of independent interest, where it provides a unifying framework for a plasticity theory applicable to
macro and micro-scale applications. Moreover, the simple stress-strain relations obtained from this
extension can be easily numerically solved with less efforts compared with the complicated relations
available in the literature of mechanism-based strain gradient plasticity.
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