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A modified associated flow rule in classical plasticity 

 قاعدة انسياب مطورة في اللدونة التقليدية

 وجاح فهذ جاسماىمذسس اىمساعذ 

 قسم اىهىذست اىميناوينيت، مييت اىهىذست، جامعت مشبلاء.
 

 

 الخلاصة : 
 

ىتشمو اىتطبيقاث راث الأبعاد اىماينشويت في اىصىاعاث ىقذ تم في هزا اىبحث تىسعت وظشيت الاوسياب في اىيذووت اىتقييذيت  

تفادة اىذقيقت اىتي يىشط فيها تأثيش اىمشتقت الاتجاهيت ىلاوفعاه اىيذن. و رىل مه خلاه اقتشاح قاعذة ىيتقسيت اىمعتمذة عيى الاوفعاه بالاس

الاوفعاه -مه اىحصىه عيى علاقاث الإجهاد مه وظشيت الاوخلاعاث في عيم اىمىاد، حيث إن هزي اىقاعذة اىمقتشحت تمنه اىباحث

ىيمىاد راث الابعاد اىماينشويت اىمتعشضت ىلاجهاداث اىيذوت. ىقذ تم تذعيم صحت اىتىسعت اىمقتشحت مه خلاه دساست اىسيىك اىيذن ىعذة 

ئج اىمستحصيت مه هزي اىذساست ومارج وظشيت راث ابعاد ماينشويت اعتماداً عيى قاعذة اىتقسيت اىمقتشحت في هزا اىبحث و مقاسوت اىىتا

ً مبيشاً، مما يذعم صحت اىتىسعت ىىظشيت  مع وتائج متىفشة في ادبياث اىيذووت راث الابعاد اىماينشويت، حيث تبيه اىمقشوت تىافقا

 الابعاد.    الاوسياب اىتقييذيت اىمقتشحت في هزا اىبحث و قابييت قاعذة الاوسياب اىمطىسة ىىصف اىسيىك اىيذن ىيمىاد اىماينشويت 

 

Abstract: 
 

 In this paper the flow theory in classical plasticity is extended to micro-scale plasticity, which is 

one of the most important active fields in micro-scale industries, where the directional derivative of 

plastic strain affects significantly on material's hardening. This is accomplished throughout 

proposing a new strain-hardening rule based on some facts from dislocations theory, where this 

proposed hardening rule enables the researcher from obtaining constitutive stress-strain relations for 

materials of micro-scale size undergoing plastic loading. Simulations are performed to show the 

plastic behavior of several theoretical models with micro-scale sizes based on the modified flow rule 

developed in this paper, and the results obtained from these simulations show good agreement with 

published results available in the literature. This agreement proves the validity of the extension of the 

classical flow theory proposed in this paper and the ability of the modified flow rule to describe the 

plastic behavior of materials at the micron scale.  

 

Nomenclature 
             For all  

      There exist   

       
P   Plastic Strain 

   0   Initial Stress 

   
P    Gradient of plastic strain 

      Material internal variable that characterizes its strength 

   
p

   Generalized plastic strain 

   S  Set of plastic strain increment components 

   H  Set of measures of strain hardening components. 

   
i

e   Unit vector of the i-th axis direction. 
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1   Introduction 
 

The materials are -generally- classified into associated and non-associated materials, and the basis of 

this classification is the normality property. Accordingly, the materials which its plastic strain 

increment  Pd  is normal to the yield surface are known as associated materials, while the other 

materials which do not exhibit this property are called non-associated materials. The conventional basis 

of normality property is Drucker’s postulate [1] which has been employed extensively in the classical 

theory of plasticity in order to formulate a constitutive relationship between the plastic strain increment 

and the stress gradient of the yield function. This relationship is known as the associated flow rule. On 

the other hand, many researchers employed the principles of thermodynamics in the formulation of the 

constitutive relationships in plasticity theory ([2-4]). In spite of the employment of the work concept in 

Drucker’s postulate, it is not based on thermodynamical laws and it is restricted to strain-hardening – 

and, in the limit, perfectly plastic- materials to prove the validity of the associated flow rule to be 

applied in this class and does not introduce the physical interpretation of this flow rule. 

The development of a flow theory for the fields of strain gradient plasticity, which are 

expanding steadily to involve a wide range of problems ([5-11]), has been attempted by several groups 

based on different approaches. Qiu and his group [12] established a flow theory of mechanism-based 

strain gradient plasticity based on the same framework of the deformation theory of mechanism-based 

strain gradient plasticity connected with the Taylor model in dislocation mechanics. While 

Gudmundson [13] presented a theoretical frame work applicable to incremental plasticity model in 

strain gradient plasticity by using an expression for plastic dissipation. On the other hand, a nonlocal 

flow rule in the form of a tensorial second-order partial differential equation for the plastic strain has 

been formulated by Gurtin and Anand based on a developed small-deformation theory of strain 

gradient plasticity [14]. Abu Al-Ruba et al [15] presented a formulation of small strain higher-order 

gradient plasticity theory based on thermodynamical principles incorporated with the theory of 

dislocation mechanics. 

 The main contribution of this paper can be outlined in the following points: 

1) Proposing a strain-hardening/softening rule based on some facts from dislocations theory. 

2) Explaining a theoretical basis for the flow theory in classical plasticity based on the proposed 

hardening rule. 

3) Developing an associated flow rule applicable to micro-scale plasticity in the light of the 

proposed hardening rule. 

4) Verifying the modified associated flow rule throughout simulations of micro-scale case studies, 

and comparing the results obtained from these simulations with published results available in 

the literature. 

Notation: A function HSg :  is said to be bijective in Abstract Analysis literature if it maps all 

elements of S to all elements of H such that each different elements in S are mapped to different 

elements in H.    

 

2    Conventional Approach to the Associated Flow Rule 
 

Drucker (1951) has stated in his postulate that over a cycle of loading and unloading the work 

performed by the additional external agency is non-negative. This postulate leads to the important 

inequality[1]: 

                                        0)( 0  Pd .                                   (1) 
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where   is the stress state at the yield surface, 
0  is the initial stress state lying inside or on the yield 

surface and Pd  is the incremental plastic strain vector.  

As a consequence, Drucker has shown that the plastic strain increment Pd  must be normal to 

the yield surface [1].  

On the other hand, the stress gradient of the yield function 


F
  is proportional to the direction 

cosines of the normal to the yield surface F. Consequently, the plastic strain increment  Pd  must be 

directed along the gradient vector 


F
 yielding the associated flow rule which can be written as: 

                                      








F
λdd P                                             (2) 

where d  is an infinitesimal scalar multiplier. 

 

 

3  Main Results 
 

The main result of this paper is a modified associated flow rule obtained from extending the flow 

theory in classical plasticity to micro-scale plasticity. We accomplish this task in three steps. In the first 

step, we propose a strain hardening rule based on some facts from dislocations theory combined with 

some principles of Abstract Analysis. Then this proposed hardening rule is employed to show a 

theoretical basis for the associated flow rule in classical plasticity. Based on the same theoretical basis, 

we conclude a modified associated flow rule applicable for the plasticity at the micron scale. In the 

resulting modified associated flow rule, we impose a size parameter that accounts for geometrically 

necessary dislocations (GNDs), associated to the non-uniform straining in polycrystalline aggregate, 

that affect significantly on material's hardening at the micron scale. 

     

3.1 Proposed Strain Hardening/Softening Rule 

 

In this section, a strain hardening rule is proposed such that a greatest hardening is induced in the 

direction of the plastic strain with greatest Euclidean norm. Let is  denotes the projection of  
Pd  in the 

direction of a unit vector iu , while S represents the set of all possible elements of is , where i belongs 

to the set of all positive integers J. Therefore: 

  },:{ JuS  idss i

P

ii .    (3) 

 Let ih  represents a measure of the hardening induced in iu  direction due to a plastic strain is , 

then H is the set of all ih s.  

Therefore: 

 ljlj hhssg  |HS:    (4) 

where j, l  J, and g is a bijective function which maps S to H.      

 This proposed hardening rule agrees with the interpretation of strain hardening hypothesis 

which is based on the back stress induced due to the pile-up of dislocations at the barriers. Then, the 

greatest hardening is due to a greatest back stress which is corresponding to a plastic strain with 

greatest Euclidean norm. 
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 Moreover, based on this proposed hardening rule, every component of the plastic strain 

increment Pd  must produce a corresponding hardening and so that Pd  has no component tangent to 

the yield surface. As a consequence Pd  must be normal to the yield surface.   

 In a similar manner, a strain softening rule is proposed such that a greatest softening is induced 

in the direction of the plastic strain with greatest Euclidean norm. Let ih  represents a measure of the 

strain softening induced in iu  direction due to a plastic strain is , while H  is the set of all ih s. Then: 

  ljlj hhssg  |HS:    (5)  

where g  is a bijective function which maps S to H . 

 This proposed softening rule agrees with the softening mechanism in some polymeric materials 

in which the yield strength is decreased with the increased plastic strain due to a morphological change 

in molecular chains and entanglement of amorphous parts [16]. Then, the greatest softening is caused 

by a plastic strain with greatest Euclidian norm which is corresponding to a greatest morphological 

change in molecular chains and entanglement of amorphous parts.  

 Similarly, every component of Pd  must produce a corresponding softening and hence Pd  

must be normal to the yield surface. 

 

3.2      A Theoretical Basis for the Classical Associated Flow Rule 

 

In the present analysis, two independent approaches are introduced for deducing the associated flow 

rule based on the proposed hardening rule presented in this paper. In the first one, the shape of the yield 

surface “after” the application of an incremental stress is considered. While in the second one, the 

behavior of the yield surface “during” the application of an incremental stress is considered. 

 

 

3.2.1   First Approach 

 

The yield criteria are empirical relationships proposed for predicting the plastic yielding of a material 

subjected to a combination of stresses. One of the fundamental experimental observations is that the 

plastic yielding depends on the stress deviators and is not influenced by the hydrostatic stress. 

Therefore, the yield criterion could be represented by the following general form: 

    )()( ζff                                    (6) 

where )(f  is a function of the stress state which causes plastic yielding and )(ζf  represents the 

distance of the yield surface from the hydrostatic line, which  is a function of a set of internal variables 

ζ . According to the distortion-energy criterion [17], the function )(f  can be expressed as: 

   2/1

133221

2

3

2

2

2

1
3

2
)(  σf  (7)  

while:     )(3/2)( ζζ Yf       (8) 

where 1 , 2  and 3  are the principal stresses, while )(ζY  is the yield stress of the material in 

uniaxial tension. 

 If the material is strain-hardening one such that it obeys the hardening rule proposed in this 

paper, then the maximum hardening induced due to plastic strain increment 
Pd  will be directed along  

Pd  itself because the maximum projection of a vector is the vector itself. On the other hand, the 
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greatest hardening is corresponding to the farthermost point a way from the hydrostatic line. 

Consequently, a local maximum is obtained in the direction of  Pd  as shown in Fig. (1). For this local 

maximum, the function )(f  in (7) has its maximum value, and as a consequence: 

    0
)()(











s

f

s

f ζ
    (9) 

where ds is an incremental distance on the yield surface. Therefore: 

   03

3

2

2

1

1
















ds

df

ds

df

ds

df 










   (10) 

The left hand side of (10) can be thought of as the dot product of two vectors as follows: 

 0321

321

. 
































321321 eeeeee

ds

d

ds

d

ds

dfff 


 (11) 

where
1e , 2e  and 3e  represent the unit vectors along the direction of the principal stresses 

21, and 3  respectively. Hence that the unit vector in the direction tangent to the yield surface can 

be written as:   321t eeee
ds

d

ds

d

ds

d 321 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Then (11) can be rewritten as: 

    0



te.



f
   (12) 

Moreover, the plastic strain increment 
Pd  must be normal to the yield surface at the point of 

local maximum, otherwise there will be a component of 
Pd  that doesn’t produce a hardening, leading 

to a violation of the proposed hardening rule in which every component of 
Pd  must produce an 

extension of the yield surface in the deviatoric plane. Therefore: 

       0te.Pd    (13) 

and hence that  


f
must be directed along 

Pd  yielding the associated flow rule (2).  

If the material is strain-softening one such that it obeys the softening rule proposed in this 

paper, then the maximum softening induced due to plastic strain increment 
Pd  will be directed along  

Fig. (1). Representation of local maximum yield strength. 

2  1  

3  

P

ijd  Pd
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Pd  itself. Moreover, the greatest softening is corresponding to the nearest point from the hydrostatic 

line. As a consequence, a local minimum is obtained in the direction of  
Pd  as shown in Fig. (2). 

Then, at the point of local minimum yield strength, the function )(f  in (7) has its minimum 

value, and in a similar manner for the case of strain-hardening, the following can be obtained: 

     0



te.



f
   and 0te.Pd  

yielding the associated flow rule. 

  

3.2.2    Second Approach 

 

During the plastic yielding, and according to (6), the stress function )(f  takes the value of  )(ζf  

which represents a measure of the yield strength, so that the hardening induced during the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

application of an incremental stress d  can be represented by the directional derivative fD
iu , i.e. the 

hardening induced in a direction of a unit vector iu  can be expressed as: 

   Juu  iffD ii
.    (14) 

Then, the hardening rule proposed in this paper, can be rewritten as: 

ljl

P

j

P ff
dd uuuu ....












   (15) 

Since the function which maps the set of  plastic strain components to the set of the corresponding 

hardening is a bijective function, therefore:  

            
imim

P h
f

sd maxmax 



 uu ..


     (16) 

But: 

2  1  

3  

Pd  

Fig. (2). Representation of local minimum yield strength. 
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           





















f

f
f

h
d

d
ds

iP

P

P

i
.. max,max        

Then: 
















f

f

d

d
P

P

m
u    (17) 

i.e. the gradient vector 


f
must be directed along  Pd , leading to the associated flow rule. 

 Similarly, for strain softening materials: 

       i
mim

P h
f

sd maxmax 



 uu ..


  (18)    

So that: 
















f

f

d

d
P

P

m
u  

 

 

3.3     Extension of the Flow Theory in Classical Plasticity   

 

Experimental evidence [5] shows that in applications at micron and submicron scales the hardening 

evolution is increased with the decreased size due to the presence of plastic strain gradients. To 

combine the effect of the plastic strain to the effect of its gradient, various proposals have been 

introduced, leading to the formulation of strain gradient plasticity theories (SGP) ([5-11]).    

Since the work concept, which is independent of the strain gradient, is the basis of Drucker’s 

postulate, the effect of strain gradient cannot be embodied in the mathematical formulation of the 

associated flow rule, leading to a main difficulty in extending the flow theory in classical plasticity to 

the fields of strain gradient plasticity.   

In contrast, based on the present approach, the effect of the plastic strain gradients can be 

conveniently incorporated to the effect of the plastic strain to produce a generalized associated flow 

rule applicable to micron and submicron plasticity where the strain gradients play a significant role in 

hardening evolution.  

 

3.3.1 General Formulation 

 

Let P  denotes the generalized plastic strain vector, which can be expressed in the general incremental 

form: 

   



n

k

kkP dld
1

)()(     (19) 

where )(kd  is an incremental vector which represents the response of the material - which may be 

increment of the plastic strain, its gradients or others- to the applied incremental stress d , such that 

this response contributes to the generalized-strain hardening of the material, n is the total number of 
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response vectors which contribute to the hardening, and )( kl  is the length parameter which characterizes 

the size-dependence of )(k  in its  contribution to the hardening. The hardening caused by )(k  is 

assumed to obey the hardening rule proposed in this paper. If )( k

i
  is assumed to denote the projection 

of )(k  in the direction of a unite vector iu , then )( kS  is the set of all possible elements of )(k

i
  where 

Ji , while )( k

i
h  is a measure of the hardening in the direction of 

i
u  due to )( k

i
 , and )(kH  is the set of 

all possible elements of )(k

ih . Accordingly: 

 )()()()()()()( |: k

l

k

j

k

l

k

j

kkk hhg  HS   (20) 

where )( kg  is a bijective function which maps )( kS  to )(kH .  

Then, the maximum hardening induced due to incremental stress d  must be directed along 
Pd . The generalized normality can be represented as in Fig. (3), while the generalized associated 

flow rule can be expressed as: 

  










f
ddld

n

k

kkP
λ

1

)()(
   (21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameter d  expressed by: 
2/1

)/(.)/(

.
















ff

dd
λd

T

PTP

  (22)  

can be determined conveniently depending on the specific application as established in the next section 

where the application of strain gradient plasticity is considered.   

It is clear that, for the case of size-independence, the following condition is satisfied: 

    1)( kl  

 

3.3.2    Application to Strain Gradient Plasticity 

 

The condition expressed by (20) agrees with the mechanism of hardening due to strain gradient, where 

the hardening evolution is believed to be attributed to the geometrically necessary dislocations (GNDs) 

which are associated with the non-uniform straining in polycrystalline aggregate [18]. Then, the 

2

 

Fig. (3). Representation of the generalized normality. 

1

 

3

 

Pd  



Journal of Kerbala University , Vol. 8 No.3 Scientific . 2010 
    

 260 

greatest plastic strain gradient is corresponding to the greatest density of geometrically necessary 

dislocations leading to a greatest hardening.  

 Therefore, (19) can be applied with two material responses; Pd  and Pd , where P  is the 

gradient of plastic strain, i.e.: 

     PP       (23)  

Then, the generalized normality can be represented as in Fig. (4), while the associated flow rule 

can be written as: 









f
ddldd pPP
λ

)2(    (24) 

where:   PP ddddln   )2()1()1( and,1,2 ,  

while )2(l  depends on the size of the specific application. 

If the distortion-energy criterion expressed by: 

  22

13

2

32

2

21

3

1
)()()(

6

1
Y    (25) 

is considered, then (24) can be expressed as : 

   





































)(
2

1

)(
2

1

)(
2

1

3

2

213

132

321







dd Pψ    (26) 

Then, the parameter d  can be explicitly calculated by the equation: 

     





2

3
P

d
d       (27) 

where   is the effective stress and 
P

d  is defined in a similar manner for defining the classical 

effective strain, i.e.: 

     2/12

13

2

32

2

21
)()()(

3

2 PPPPPP
P

ddddddd         (28) 
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 Fig. (4). Representation of normality in SGP. 
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Hence the parameter d  can be evaluated from a ( -
P

 ) curve for an increment of the 

generalized plastic strain 
P

d , in a similar manner for evaluating the proportionality constant in Levy-

Mises equation in classical plasticity [19], as shown in Fig. (5), where: 

 cotd
2

3
     (29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Simulation 
 

The modified associated flow rule developed in this paper based on a newly proposed hardening rule is 

demonstrated in this section throughout a case study. In this case study, we consider uniaxial tensile 

loading of a given material for several micro-scale diameters. Then we investigate the plastic behavior 

of these cases based on the modified flow rule developed in this paper, and compare this behavior with 

a published result available in the literature to show the validity of the proposed flow rule.  

 Consider a material whose simple tensile test gives the following stress-strain relation 

      2/121710
tp

Y    (30) 

where 
t

Y  is the material's yield stress in tension. We assume MPaY
t

80 . 

 Furthermore, assume that yield occurs after an elastic strain 01.0
0
 . Such a material can be 

described by the stress-strain curve shown in Fig. (6). 

    

 

 

 

 

 

 

 

 

 

 

P

d  

P

  

  

  

 Fig. (5). Method of evaluating d  in Eq.(27).   

  

Fig.(6). Material's stress-strain curve. 

 

 MPa 
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According to Von-Mises yield criterion, we have 
22

13

2

32

2

21
2)()()(

t
YF     (31) 

Based on this criterion, we can obtain the relation (30) from the proposed flow rule expressed in 

(24) as follows. For simplicity, we employ the notation )2(ll  . For uniaxial tensile loading, we have 

1
   and 0

32
 . Then 22 22

t
YF    and 


4



f
. Letting  dd 18105  , then based on 

(24), combined with the fact that 0l  for macro scale case, we have 

    
p

dd   17102    (32) 

Integrating (32), we get 

   

p

p

t

dd
Y






0

17102   

Which yields the relation expressed in (30). Hence for micro scale cases we have 0l  and therefore 

pp
ddld   17102   (33) 

The value of the size parameter l can be calculated experimentally. We assume values of l for different 

diameters in Table.1. Hence the value of l increases with the decreased values of the size represented 

by specimen diameter D.    
D l 

m200  0.3 

m150  0.6 

m90  1 

m30  1.5 

 

We further assume that 2/1)(
pp

  , and so that we have 
p

p

p
dd 




5.0
 , and (33) becomes 

p

p

dld 
















  1

5.0
102 17    (34) 

Integration of (34) gives 

 

   2/1
21710

tpp
Yl      (35) 

Simulation of relation (35) is shown in Fig. (7) for the different specimen diameters listed in Table.1. 

 

 

 

 

 

 

 

 

 

 

  

 

 

Table.1. Values of l for different sizes. 

 

MPa  

  

Fig. (7). Effect of size on stress-strain curve at the 

micron scale. 

mD 30  
mD 90  
mD 150  
mD 200  
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The effect of size on material's hardening is shown clearly in this figure, where material's 

strength increases with the decreased diameter. This observation agrees with the general plastic 

behavior for micro-scale applications as shown, for example, in [8]. This agreement shows the validity 

of the proposed flow rule and its ability to describe plastic behavior of materials at the micron scale. 

 

 

6  Conclusions 
 

The difficulty of extending the classical associated flow rule to strain gradient plasticity can be 

ascribed to a fundamental restriction in Drucker’s postulate. Moreover, this postulate is not applicable 

to strain-softening materials. In this paper, a new strain-hardening/softening rule is proposed based on 

some facts from dislocations theory, and this proposed hardening rule is employed to develop a 

modified associated flow rule applicable to micro-scale plasticity, which is one of the most important 

fields in micro-scale industries. This extension of the classical flow theory to micro-scale plasticity is 

of independent interest, where it provides a unifying framework for a plasticity theory applicable to 

macro and micro-scale applications. Moreover, the simple stress-strain relations obtained from this 

extension can be easily numerically solved with less efforts compared with the complicated relations 

available in the literature of mechanism-based strain gradient plasticity.  
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