On The Smarandache Semigroups

حول أشباه زمر سمار اندش

sajda Kadhum Mohammed lecturer Dep.of Math. , College Of Education for Girls, Al-Kufa University

Abstract:

We discusse in this paper a Smarandache semigroups, a Smarandache normal subgroups and a Smarandache lagrange semigroup. We prove some results about it and prove that the Smarandache semigroup Z_{p^n} with multiplication modulo p^n where p is a prime has the subgroup of order p^n - p^{n-1} and we prove that if p is an odd prime then Z_{p^n} is a Smarandache weakly Lagrange semigruop and if p is an even prime then Z_{p^n} is a Smarandache Lagrange semigruop

الخلاصة: ناقشنا في هذا البحث أشباه زمر سمار اندش, زمر سمار اندش الناظمية و أشباه زمر لاكر انج سمار اندش حيث برهنا مجموعة من النتائج المتعلقة بها . كما أثبتنا أن شبه الزمرة Z_{p^n} مع عملية الضرب معيار p^n حيث p عدد أولي تحوي مجموعة جزئية تكون زمرة ذات رتبة p^n - p^n كما أثبتنا انه إذا كانت p عدد أولي فردي فان شبه الزمرة أعلاه تكون شبه زمرة لاكر انج سمار اندش بضعف أما إذا كانت p عدد أولي زوجي فان شبه الزمرة أعلاه تكون شبه زمرة لاكر انج سمار اندش .

1.Introduction:

Padilla Raul introduced the notion of *Smarandache semigroups*[1], in the year 1998 in the paper entitled Smarandache Algebraic Structures .since groups are prefect structures under a single closed associative binary operation ,it has become infeasible to define Smarandache groups . Smarandache semigroups are the analog in the Smarandache ideologies of the groups where Smarandache semigroup is defined to be the semigroup A such that a proper subset of A is a group (with respect to the same binary operation).

In this paper we prove some results in a Smarandache normal subgroups[1],[2], a Smarandache lagrange semigroups[1],[2], a Smarandache direct product semigroups[2], a Smarandache strong internal direct product semigeoups[2], the S-semigroup homomorphism[1],[2] and prove research problems in the references about the semigroup Z_{p^n} we solve then using Mathlab programming to check our results in this open problems .

2.Definitions and Notations:

Definition 2.1: The Smarandache semigroup (S-semigroup) is defined to be a semigroup A such that a proper subset of A is a group (with respect to the same binary operation),[2].

Example 2.1: Let $z_{12} = \{0,1,\ldots,11\}$ be the semigroup under multiplication module 12. Clearly the set $A = \{1,11\} \subset z_{12}$ is a group under multiplication modulo 12, so z_{12} is the Smarandache semigroup, [2].

Definition 2.2: Let S be a S-semigroup.Let A be a proper subset of S which is a group under the operation of S.We say S is *a Smarandache normal subgroup* of the S-semigroup if $xA \subseteq A$ and $Ax \subseteq A$ or $xA = \{0\}$ and $Ax = \{0\}$ and $Ax = \{0\}$, $\{0\}$, $\{0\}$, and $\{0\}$, $\{0\}$, $\{0\}$, $\{0\}$, $\{0\}$, and $\{0\}$,

Definition 2.3: Let S be a S-semigroup we say the proper subset $M \subset S$ is the maximal subgroup of S that is N if a subgroup such that $M \subset N$ then M=N is the only possibility,[2].

Definition 2.4: Let S be a S-semigroup. If S has only one maximal subgroup we call S a Smarandache maximal semigroup, [2].

Example 2.2: Let $z_7 = \{0,1, \ldots, 6\}$ be the S-semigroup under multiplication module 7,the only maximal semigroup of z_7 is $G = \{1,2,\ldots, 6\} \subset z_7$ so z_7 is a Smarandache maximal semigroup, [2].

Definition 2.5: Let S_1, \ldots, S_n be n S-semigroup, $S=S_1\times S_2\times \ldots \times S_n=\{(s_1,s_2,\ldots,s_n):s_i\in S_i \text{ for } i=1,\ldots,n\}$ is called *the Smarandache direct product of the S-semigroups* S_1,\ldots,S_n if S is a Smarandache maximal semigroup, and G is got from the S_1,\ldots,S_n as $G=G_1\times G_2\times \ldots \times G_n$ where each G_i is the maximal subgroup of the S-semigroup S_i for $i=1,\ldots,n,[2]$.

Definition 2.6: Let S be a S-semigroup. If $S=B \cdot A_1 \cdot ... \cdot A_n$ where B is a S-semigroup and $A_1,...,A_n$ are maximal subgroup of S then we say S is a Smarandache strong internal direct product, [2].

Definition 2.7:A homomorphism φ from a semigroup (S,.) to a semigroup (S',*) is a mapping φ from the set S into the set S such that $\varphi(x.y) = \varphi(x)^* \varphi(y)$ for every $x,y \in S$. If φ is also a surjective mapping then φ is called a homomorphism from S onto S. In case the mapping φ above is injective, it is called a one to one homomorphism . An isomorphism from S to S' is a homomorphism which is both surjective and injective, [3].

Definition 2.8: Let S and S be any two S-semigroups .A map φ from S to S is said to be *a S-semigroup homomorphism* if φ restricted to a subgroup $A \subset S \to A \subset S$ is a group homomorphism. The S-semigroup homomorphism is an isomorphism if $\varphi:A \to A$ is one to one and onto . Similarly, one can define S-semigroup automorphism on S,[2].

Definition 2.9: Let S be a finite S-semigroup .We say S is a Smarandache non-Lagrange semigroup if the order of none of the subgroups of S divides the order of the S-semigroup,[2].

Definition 2.10: Let S be a finite S-semigroup. If the order of every subgroups of S divides the order of the S-semigroup S then we say S is a Smarandache Lagrange semigroup, [2].

Definition 2.11: Let S be a finite S-semigroup. If there exist at least one subgroup A that is a proper subset $(A \subset S)$ having the same operation of S whose order divides the order of S then we say that S is a Smarandache weakly Lagrange semigroup, [2].

Definition 2.12: Two integers a and b, not both of which are zero, are said to be *relatively prime* whenever g.c.d.(a,b)=1,[4].

Definition 2.13: For $n \ge 1$, let $\varphi(n)$ denotes the number of positive integer not exceeding n that is relatively prime to n,[4].

Definition 2.14: Let (G,*) be a finite group and p a prime .A subgroup (P,*) of (G,*) is said to be a Sylow p-subgroup if (P,*) is a p-group and is not properly contained in any other p-subgroup of (G,*) for the same prime number p,[5].

Theorem 2.1: If p is a prime and k> 0, then $\varphi(p^k)=p^{k-1}-p^{k-1}$, [4].

Theorem (Euler) 2.2: If n is a positive integer and g.c.d.(a,n)=1 then $a^{\varphi(n)} \equiv 1 \mod n$, [4].

Theorem 2.3: If n is a positive integer then $ax \equiv 1 \mod n$ has a unique solution iff g.c.d.(a,n)=1,[6].

Theorem 2.4: Let a,b,n $\in \mathbb{Z}$, n >0. If g.c.d.(a,n)=1 then the congruence az \equiv b mod n has a unique solution z; moreover, any integer z is a solution iff $z \equiv z \mod n$,[7].

Theorem (Sylow)2.5: Let (G,*) be a finite group of order p^kq , where p is a prime not dividing q Then (G,*) has a Sylow p-subgroup of order p^k , [5].

3.A Smarandache normal subgroups:

Proposition 3.1: Let S be a S-semigroup and A is a proper subgroup of S which is a Smarandache normal subgroup, if B is another subgroup of S have the same identity element as in A then B is not a Smarandache normal subgroup.

Proof: Let A ,B be a Smarandache normal subgroups of S with the identity element e. Let $x \in A \subset S$ so $0 \neq x$ since A is a group and $x = x.e \in B$ since B is a Smarandache normal subgroup so $A \subset B$, by similar way $B \subset A$ so A = B and this contradiction with our hypotheses, so B is not a Smarandache normal

subgroup •

Remark: In particular case if $B \subset A$ clear that those subgroups have the same identity element so all subgroups of S which are subsets from a Smarandache normal subgroup of S will be not a Smarandache normal subgroup.

Proposition 3.2: Let S be S-semigroup with zero element (0) and A is a Smarandache normal subgroup of S such that the identity element in S such as in A then $A=S/\{0\}$ and A is a maximal subgroup of S.

Proof: For every $0 \neq x \in S$, $x=x.e \in A$ since A is a Smarandache normal subgroup of S and $x.e \neq 0$ where x.e=0 iff x=0 since e is the identity element of S and A, so $S/\{0\} \subset A$ and since A is a group of S so $A \subset S/\{0\}$ therefore

 $A=S/\{0\}$ and by the definition of a maximal subgroup of S then A is a maximal subgroup of S

Proposition 3.3: Let S be a S-semigroup without zero element then every proper subgroup of S have the same identity element as in S is not a Smarandache normal subgroup of S.

Proof: Suppose that A is a Smarandache normal subgroup of S and e is the identity element of S and A.

Let $x \in S$, $x=x.e \in A$ since A is a Smarandache normal subgroup of S,

where $x.e \neq 0$ since $0 \notin S$ and e is the identity element of S,

so $S \subset A$ therefore A=S and this is contradiction,

so A is not a Smarandache normal subgroup of S

proposition 3.4: Let $S=S_1\times S_2\times ...\times S_n$ is a Smarandache direct product of the S-semigroup S_1 , ..., S_n where no one of S_i has zero element and let $G=G_1\times G_2\times ...\times G_n$ is the maximal subgroup of S where each G_i is a maximal subgroup of S_i and a Smarandache normal subgroup of S_i with identity element different from the identity element of S_i then G is a Smarandache normal subgroup of S_i , i=1,...,n.

proof: Let $S = S_1 \times S_2 \times ... \times S_n$ is Smarandache direct product of the S- semigroup $S_1, ..., S_n$, $G = G_1 \times G_2 \times ... \times G_n$ is a maximal subgroup of S where each G_i is a maximal subgroup of S_i and a Smarandache normal subgroup of S_i with identity elements different from the identity element of S_i , i = 1, ..., n.

Let $x \in S$, $y \in G$

 $xy=(x_1,\ldots,x_n)(g_1,\ldots,g_n)$ where $g_i \in G_i$ and $x_i \in S_i, i=1,\ldots,n$.

```
So xy=(x_1g_1,\ldots,x_ng_n)\in G_1\times G_2\times\ldots\times G_n=G since G_i is a Smarandache normal subgroup of S_i and no one of x_ig_i=0 because that S_i has no zero element , i=1,\ldots,n , so xG\subseteq G,
```

by similar way $Gx \subseteq G$ so G is a Smarandache normal subgroup of S \square

Remark: It is important to know that the condition in above proposition where S_i dosn't have the same identity elements of G_i where if S_i has the same identity element of G_i we have $G_i = S_i$ by proposition 3.3 and this contradiction ,also it is important to note that each S_i must not have zero element since ,for example if S_2 has zero element so $x=(x_1,0,\ldots,x_n)\in S$ let $y=(g_1,\ldots,g_n)\in G$ where $g_i\in G_i$ and $x_i\in S_i, i=1,\ldots,n$. but $xy==(x_1g_1,0,\ldots,x_ng_n)\not\in G_1\times G_2\times\ldots\times G_n=G$, since $0\not\in G_2$ where G_2 is a group .

proposition 3.5: Let S and S' be the S-semigroups and let $f:S \to S'$ be a homomorphism from S onto S', if f is a Smarandache onto homomorphism from A to A' where $A \subset S$ is a group $A \subset S'$ is a group and A is a Smarandache normal subgroup of S then A' is a Smarandache normal subgroup of S'.

proof: Let $f:S \to S$ is a Smarandache onto homomorphism from A to A so f(A)=A. Let $f:S \to S$ is the onto homomorphism on the semigroup S, let $y \in S$ and $a \in f(A)$, so $\exists x \in S$ such that f(x)=y, since f is a Smarandache onto homomorphism from A to A $\exists a \in A$ such that f(a)=a, y. a=f(x).f(a)=f(x.a), now since A is a Smarandache normal subgroup of S then either $x.a \in A$ so $f(x.a) \in f(A)$ so y. $a \in f(A)$ and by similar way a. $y \in f(A)$ or x.a=0 if S has zero element (0) so y. a = f(x.a)=f(0)=0 where f(0)=0 is the zero element of S if S has 0 as a zero element . Since for all $y \in S$ $\exists x \in S$ such that f(x)=y so if S has (0) then f(x).f(0)=f(x.0)=f(0)=f(0).f(x) $\forall y \in S$, so f(A)=A is a Smarandache normal subgroup of S \blacksquare

proposition 3.6: Let S and S be the S-semigroups.Let $f:S \to S$ be an isomorphism from S to S , if f is a Smarandache onto homomorphism from A to A where $A \subset S$ is a group ,A $\subset S$ is a group and A is a Smarandache normal subgroup of S then $f^{-1}(A)$ is a Smarandache normal subgroup of S.

```
proof: Let f:S \to S' is an isomorphism so f:A \to A' is a one to one . let f is a Smarandache onto homomorphism from A to A', so f(A)=A' and f^{-1}(f(A))=A. Let a\in A and x\in S, since A' is a Smarandache normal subgroup of S' then either f(x).f(a)\in A' so f(x.a)\in A' therefore x.a\in A, by similar way a.x\in A, or f(x).f(a)=f(0)=0' if S has zero element (0), so f(x.a)=f(0) then x.a=0 where f(0)=0' is the zero element of S' if S has S as a zero element, by similar way S and S and S has S and S and S because S if S has zero element (0) therefore S if S has zero element of S if S has S as a zero element S if S has zero element
```

proposition 3.7: Let S be a Smarandache strong internal direct product semigroup where S=B $\bullet A_1 \bullet \dots \bullet A_n$ such that A_1, \dots, A_n are the maximal subgroups of S and B is the S-semigroup, if $1-A_i$, $i=1,\dots,n$; is a Smarandache normal subgroup of S commutative with each other.

- 2- If S has identity element it must be different from the identity elements of A_i which is also different from one to another i=1,...,n.
- 3- S has zero

Then $G = A_1 \cdot ... \cdot A_n = S/\{0\}$ and G is a Smarandache normal subgroup of S.

Proof: Since A_1, \ldots, A_n are the maximal subgroup of S which are commutative with each other so $G = A_1 \cdot \ldots \cdot A_n$ is a group.

Let $0 \neq x \in S$, $x=b \cdot x_1 \dots \cdot x_n$ where $x_i \in A_i$ and $b \in B$ such that B is the S-semigroup, $i=1,\dots,n$, so $x \in G$ since A_i is a Smarandache normal subgroup of S, $i=1,\dots,n$, where if $b \cdot x_i = 0$ for some i, then x=0 contradiction.

So $\forall 0 \neq x \in S$ we have $x \in G$ therefore $S/\{0\} \subset G$ so $S/\{0\} = G$.

To prove G is a Smarandache normal subgroup of S.

Let $x \in S$ and $y \in G$ such that $x = b \cdot x_1 \dots \cdot x_n$ and $y = x_1 \cdot \dots \cdot x_n$, where $x_i, x_i \in A_i$ and $b \in B$.

since $A_1, ..., A_n$ are commutative with each other

so $x \bullet y = b \bullet x_1 \ldots \bullet x_n \bullet x_1 \ldots \bullet x_n = b \bullet x_1 \bullet \ldots \bullet x_n$,where $x_i = x_i \bullet x_i$, $i = 1, \ldots, n$.

Now since A_i a Smarandache normal subgroup of S so either

 $x \cdot y \in G$ if $b \cdot x_i \in A_i$ for some i or $x \cdot y = 0$ if $b \cdot x_i = 0$ for some I, also $x \cdot 0 = 0 \cdot x = 0 \ \forall \ x \in S$.

So G is a Smarandache normal subgroup of S

Remark: It is important to know that the condition in above proposition where A_i does not have the same identity because in such case we will have contradiction by proposition 3.1, also it is important the condition that S must have not the same identity as in A_i and S has zero element since if S has the same identity as in A_i and does not have zero element we have contradiction with proposition 3.3.

4-The S-semigroup (Z_{p^n}, p^n)

Proposition 4.1: Let Z_{p^n} be the semigruop (p is a prime ,n >1) under multiplication modulo p^n , then Z_{p^n} has subset of order p^n - p^{n-1} which is a subgroup under multiplication modulo p^n .

Proof: Let (Z_{p^n}, p^n) be the semigroup under multiplication modulo p^n , p is a prim, n > 1.

The order of Z_{p^n} is p^n , now ,to compose a subset of Z_{p^n} without zero element in it we must cancel zero element because that $0.x=x.0=0 \ \forall \ x \in Z_{p^n}$,[6],

and all elements give us zero element if multiplication modulo p^n with each other. Since among the first positive integer ,those which are divisible by p are

P,2p,3p, ...,kp, where k is the largest integer such that $kp \le p^n$, if $k=p^{n-1}$ then

 $kp = p^{n-1}p = p^n = 0$ since we multiplication modulo p^n so the number of those elements is p^{n-1} . We must cancel all those elements of Z_{p^n} since

tp
$$p^{n-1} = 0$$
 where $t \le k$, $1 \le t$ and $t \in Z_{p^n}$,

$$tp^2~p^{n\text{-}2} = \!\! 0$$
 where $t \! \leq \! k$, $1 \! \leq \! t$ and $t \! \in Z_{p^n}$,

and so on,

$$tp^n p = 0$$
 where $t \le k$, $1 \le t$. and $t \in \mathbb{Z}_{p^n}$,

therefore p^n - p^{n-1} is the number of the reminder element of Z_{p^n} , which are relatively prime with p^n where p^n - p^{n-1} = $\varphi(p^n)$,[3].

Now let H is the set of those elements, i.e,

 $H{=}\{1,\ldots,p{-}1,p{+}1,\ldots,2p{-}1,2p{+}1,\ldots,kp{-}1\}$ so H is a group of order $p^n{-}p^{n{-}1}$,to prove this ,

if $x, y \in H \subset Z_{p^n}$ then $xy \in Z_{p^n}$

and since xy didn't divisible by p because that x,y didn't divisible by p,since H contains each element of Z_{n^a} which didn't divisible by p so $xy \in H$,

it is clear that H is associative under multiplication modulo p^n and the identity element of H is 1,now to prove that all $x \in H$ has inverse element,

let x, $y \in H$ then $yx=xy \equiv 1 \mod p^n$ has a unique solution modulo p^n

iff g.c.d(x, p^n)=1,[5], so x has y as inverse. In fact y may be obtained direct from

$$y \equiv x^{\varphi(p^n)-1} \mod p^n$$
.

Since an application of Euler's theorem leads immediately to

$$xy \equiv x^{\varphi(p^n)} \equiv 1 \bmod p^n.$$

so (H, .pⁿ) is a group

One can check that by using Mathlap programming after determine the value of n and p so we can present all examples about this subject .

Proposition 4.2: Let Z_{p^n} be the semigruop (p is a prime ,n >1) under multiplication modulo p^n ,p is an odd prime then Z_{p^n} is a Smarandache weakly Lagrange semigroup.

Proof: Let (Z_{n^n}, p^n) be the semigroup under multiplication modulo p^n , p is an odd prime, n > 1.

By proposition 4.1 , Z_{p^n} has the subgroup H of order p^n - p^{n-1} , $O(Z_{p^n}) = p^n$ and $o(H) = p^n$ - $p^{n-1} = p^{n-1}(p-1)$

1), O(
$$Z_{p^n}$$
)didn't divisible by o(H) since $\frac{p^n}{p^n - p^{n-1}} = \frac{p}{p-1}$,

also Z_{p^n} has a subgroup of order 2 which is $\{1, p^{n-1}\}$ and $O(Z_{p^n})$ didn't divisible by 2 since p is an odd prime ,but by Sylow theorem in group theory,[5], H has K as a p- Sylow subgroup of order p^{n-1} where p-1 didn't divisible by p, since K is a subgroup of $H \subset Z_{p^n}$ so K is a subgroup of Z_{p^n} and

 $\frac{o(Z_{p^n})}{o(K)} = \frac{p^n}{p^{n-1}} = p \text{,so by definition 2.11, } Z_{p^n} \text{ is a Smarandache Weakly Lagrange semigroup } \blacksquare$

Example 4.1: Let $Z_{3^3} = \{0,1,\ldots,26\}$ be a S- semigroup under multiplication modulo 27, it is clear that the order of Z_{3^3} is 27.

Now by proposition 4.1 it has H_1 as a subgroup of order $3^3-3^2=18$ where $H_1=\{1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26\}$ and the table of H_1 is given by

.27	1	2	4	5	7	8	10	11	13	14	16	17	19	20	22	23	25	26
1	1	2	4	5	7	8	10	11	13	14	16	17	19	20	22	23	25	26
2	2	4	8	10	14	16	20	22	26	1	5	7	11	13	17	19	23	25
4	4	8	16	20	1	5	13	17	25	2	10	14	22	26	7	11	19	23
5	5	10	20	25	8	13	23	1	11	16	26	4	14	19	2	7	17	22
7	7	14	1	8	22	2	16	23	10	17	4	11	25	5	19	26	13	20
8	8	16	5	13	2	10	26	7	23	4	20	1	17	25	14	22	11	19
10	10	20	13	23	16	26	19	2	22	5	25	8	1	11	4	14	7	17
11	11	22	17	1	23	7	2	13	8	19	14	25	20	4	26	10	5	16
13	13	26	25	11	10	23	22	8	7	20	19	5	4	17	16	2	1	14
14	14	1	2	16	17	4	5	19	20	7	8	22	23	10	11	25	26	13
16	16	5	10	26	4	20	25	14	19	8	13	2	7	23	1	17	22	11
17	17	7	14	4	11	1	8	25	5	22	2	19	26	16	23	13	20	10
19	19	11	22	14	25	17	1	20	4	23	7	26	10	2	13	5	16	8
20	20	13	26	19	5	25	11	4	17	10	23	16	2	22	8	1	14	7
22	22	17	7	2	19	14	4	26	16	11	1	23	13	8	25	20	10	5
23	23	19	11	7	26	22	14	10	2	25	17	13	5	1	20	16	8	4
25	25	23	19	17	13	11	7	5	1	26	22	20	16	14	10	8	4	2
26	26	25	23	22	20	19	17	16	14	13	11	10	8	7	5	4	2	1

and 27 didn't divisible by 18 , Z_{3^3} has H_2 as a subgroup of order 2 where H_2 ={1,26} and the table of H_2 is given by

.27	1	26
1	1	26
26	26	1

and 27 didn't divisible by 2 but Z_{3^3} has H_3 as a subgroup of order 9 where H_3 is a subset of Z_{27} and satisfy the definition of the group and 27 divisible by 9 where H_3 ={1,4,7,10,13,16,19,22,25} and the table of H_3 is given by

.27	1	4	7	10	13	16	19	22	25
1	1	4	7	10	13	16	19	22	25
4	4	16	1	13	25	10	22	7	19
7	7	1	22	16	10	4	25	19	13
10	10	13	16	19	22	25	1	4	7
13	13	25	10	22	7	19	4	16	1
16	16	10	4	25	19	13	7	1	22
19	19	22	25	1	4	7	10	13	16
22	22	7	19	4	16	1	13	25	10
25	25	19	13	7	1	22	16	10	4

So $Z_{\mathfrak{z}^3}$ is Smarandache weakly Lagrange semigroup ${}^{\scriptscriptstyle{\blacksquare}}$

Proposition 4.3: Let Z_{p^n} be the semigruop (p is a prime ,n >1) under multiplication modulo p^n ,p is an even prime then Z_{p^n} is a Smarandache Lagrange semigroup.

Proof: Let (Z_{p^n}, p^n) be the semigroup under multiplication modulo p^n , p is an even prime, n > 1. By proposition 4.1, Z_{p^n} has the subgroup H of order $p^n - p^{n-1}$,

O(
$$Z_{p^n}$$
)= p^n , since p is an even so p=2 and $\frac{p^n}{p^n - p^{n-1}} = \frac{p}{p-1} = p$.

So Z_{p^n} divisible by o(H),also every other subgroups of Z_{p^n} must be a subgroup of H since as we see in proposition 4.1 H contains all elements which are not zero and the multiplication of one with each other not zero so any other subgroup of Z_{p^n} must be subset of H, by Lagrange theorem in the group theory,[8][9], the order of H divisible by the order of those subgroups. So p^n divisible by the order of all subgroups of Z_{p^n} so and by definition of a Smarandache

Lagrange semigroup Z_{p^n} is a Smarandache Lagrange semigroup, where $p=2^{\blacksquare}$

Example 4.2: Let $Z_{2^5} = Z_{32} = \{0,1,\ldots,31\}$ be the S-semigroup of order 32 under multiplication modulo 32, Z_{32} have the following subgroups:

Three subgroup of order 2 which are $\{1,15\},\{1,17\},\{1,31\}$ and the table of those subgroups as following:

.32	1	15
1	1	15
15	15	1

.32	1	17
1	1	17
17	17	1

.32	1	31
1	1	31
31	31	1

It is clear that each one of them is a subset of Z_{32} and satisfy the definition of the group so it is a subgroup of Z_{32} .

Two subgroups of order 4 which are $\{1,7,17,23\},\{1,9,17,25\},\{1,15,17,31\}$ and the table of those subgroups as following:

.32	1	7	17	23
1	1	7	17	23
7	7	17	23	1
17	17	23	1	7
23	23	1	7	17

.32	1	9	17	25
1	1	9	17	25
9	9	17	25	1
17	17	25	1	9
25	25	1	9	17

.32	1	15	17	31
1	1	15	17	31
15	15	1	31	17
17	17	31	1	15
31	31	17	15	1

Two subgroups of order 8 which are {1,3,9,11,17,19,25,27}, {1,5, 9,13,17,21,25,29} and the table of those subgroups as following:

.32	1	5	9	13	17	21	25	29
1	1	5	9	13	17	21	25	29
5	5	25	13	1	21	9	29	17
9	9	13	17	21	25	29	1	5
13	13	1	21	9	29	17	5	25
17	17	21	25	29	1	5	9	13
21	21	9	29	17	5	25	13	1
25	25	29	1	5	9	13	17	21
29	29	17	5	25	13	1	21	9

.32	1	3	9	11	17	19	25	27
1	1	3	9	11	17	19	25	27
3	3	9	27	1	19	25	11	17
9	9	27	17	3	25	11	1	19
11	11	1	3	25	27	17	19	9
17	17	19	25	27	1	3	9	11
19	19	25	11	17	3	9	27	1
25	25	11	1	19	9	27	17	3
27	27	17	19	9	11	1	3	25

It is clear that each one of them is a subset of $\,Z_{32}$ and satisfy the definition of the group so it is a subgroup of $\,Z_{32}$.

Also by proposition 4.1 has H as the subgroup of order 16 where $H=\{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31\}$ and the table of H is given by the following table :

.32	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
1	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
3	3	9	15	21	27	1	7	13	19	25	31	5	11	17	23	29
5	5	15	25	3	13	23	1	11	21	31	9	19	29	7	17	27
7	7	21	3	17	31	13	27	9	23	5	19	1	15	29	11	25
9	9	27	13	31	17	3	21	7	25	11	29	15	1	19	5	23
11	11	1	23	13	3	25	15	5	27	17	7	29	19	9	31	21
13	13	7	1	27	21	15	9	3	29	23	17	11	5	31	25	19
15	15	13	11	9	7	5	3	1	31	29	27	25	23	21	19	17
17	17	19	21	23	25	27	29	31	1	3	5	7	9	11	13	15
19	19	25	31	5	11	17	23	29	3	9	15	21	27	1	7	13
21	21	31	9	19	29	7	17	27	5	15	25	3	13	23	1	11
23	23	5	19	1	15	29	11	25	7	21	3	17	31	13	27	9
25	25	11	29	15	1	19	5	23	9	27	13	31	17	3	21	7
27	27	17	7	29	19	9	31	21	11	1	23	13	3	25	15	5
29	29	23	17	11	5	31	25	19	13	7	1	27	21	15	9	3
31	31	29	27	25	23	21	19	17	15	13	11	9	7	5	3	1

We note that the order of all those subgroups of $\,Z_{32}\,$ divides the order of $\,Z_{32}\,$ so it is Lagrange semigroup .

References:

- [1]. Raul, Padilla, "Smarandache Algebraic Structures ",Bull of Pure and Applied Sciences, Delhi, vol. 17E, No. 1,119-121,1998.
- [2]. Vasantha ,W.B., Kandasamy, "Smarandache Semigroups"
- ,American Research Press Rehoboth,NM 87322,USA,internet address http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm, 2003.
- [3]. Gerard ,Lallement ,"Semigroup and Combinatorial Applications" ,John Wiley And Sons,New York ,U.S.A.,1979 .
- [4]. David M.Burton ,"Elementary Number Theory", WM.Brown Publishers Dubque, Iowa.
- [5]. David M.Burton ,"Introduction To Modern Abstract Algebra" ,Addison-Wesley Publishing Company ,U.S.A., 1967.
- [6]. Shoup ,V., "A Computational Introduction to Number Theory and Algebra " ,Cambridge University Press, internet address
- www. Cambridge. org.sa/9780521851541, 2005.
- [7]. Baker,A. ,"Algebra and Number Theory ",University of Glasgow, internet address http://www.maths.gla.ac.uk/~ajb,2003.
- [8]. Herstein, I.N., "Topics in Algebra", John Wiley and Sons, 1976.
- [9]. John ,B.Fraleigh, "A First course in Abstract Algebra", Addison Wesley ,1967.