Um-Salama Science Journal

Vol.5(2)2008

A Fixed Point Theorem for L-Contraction in Generalized D-Metric Spaces

Salwa.S.Al-Bundi*

Date of acceptance 5/3/2008

Abstract

We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces. And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.

Keywords: Fixed point, L-contraction mappings, D-metric spaces.

1. Preliminaries

In [2] Dhage introduced the concept of D- metric spaces as followes

<u>Definition 1.1</u> [2] Let X be a nonempty set . A function D: $X \times X \times X \to \mathfrak{R}^+$ (\mathfrak{R}^+ is the set of all non negative real numbers) is called a **D-metric spaces** on X if

- i. D(x,y,z) = 0 if and only if x = y = z (coincidence)
- ii. $D(x,y,z) = D(p\{x,y,z\})$, where p is a permutation of x, y, z (symmetry)
- iii. $D(x,y,z) \le D(x,y,a) + D(x,a,z) + D(a,y,z)$ for all $x, y, z, a \in X$ (telrahedral inequality).

A nonempty set X, together with D-metric, is called D-metric space and denoted by (X,D). Some specific examples of D-metrics appeared in [3] and [4].

Definition 1.2 [2] A sequence of points of a D-metric space X is said to be **D-convergent** to a point $x \in X$ if for each $\epsilon > 0$ there exists an $n_0 \in N$ such that for all $m, n \ge n_0$, $D(x_m, x_n, x) < \epsilon$.

<u>Definition 1.3</u> [2] A sequence of points of a D-metric space X is said to be **D-cauchy sequence** if for $\in > 0$ there exists an $n_0 \in \mathbb{N}$ such that for all m, n, $p \ge n_0$, $\mathbb{D}(x_m, x_n, x_p) < \in$.

<u>Definition 1.4</u> [5] A D-metric space X is said to be **complete** every D-cauchy sequence $\{x_n\}$ in X converges to a point $x \in X$.

<u>Definition 1.5</u>[1] Let E be a Banach space. A subset K is called **a cone** if it is

closed, convex and $t \in K \subset K$ for $t \in \Re^+$ and $K \subset K$ for $t \in \Re^+$ and $K \subset K$.

Given a cone K in E we define a partial ordinary in E by writing.

$$x \le y$$
 if and only if $y - x \in K$ (1)

<u>Definition 1.6</u> [1] A subset K in a Banach space E is called a **normal** if there exists $\delta > 0$ such that 0 < x < y implies $||x|| \le \delta ||y||$.

2. Main Results

Firstly we define the following

<u>Definition 2.1</u> A set X is said to be a **general D-metric space** if there exists a function $D: X \times X \times X \to K$, where K is a normal cone in a Banach space, such that

- i. $D(x,y,z) = 0 \in K \iff x = y = z$
- ii. $D(x,y,z) = D(p\{x,y,z\})$ for all x,y,z in X, (p is a permutation of x,y,z)
- **iii.** D(x,y,z) < D(x,y,z) + D(x,a,z) + D(a,y,z) for all x,y,z,a in X"<denote the partial ordering induced by K

Remark

If we put $K=\Re^+$ in the definition (2.1) then the general D-metric function will be D-metric function and then the examples (1.8), (1.20) and (1.21) in [4] show that in general D-metric space : (a) D-metric does not always define a topology , (b) even D-metric define a topology , it need not be Hausdorff (therefore the limit need not be unique),

^{*} Department of Mathematics/Ibn-ALheitham College of Education University of Baghdad

and (c) even D-metric define a topology ,the D-metric function need not be continuous even in a single variable .Now for uniqueness limit in general D-metric spaces, we reform the concept of continuity of general D-metric function and then give a result which guarantee the uniqueness limit if exist

Definition 2.2

A general D-metric function is called in three variables if the sequence $\{D(x_n,y_n,z_n)\}$ in K converges toD(x,y,z) whenever $x,y,z\in X$ and $\{x_n\},\{y_n\}$ and $\{z_n\}$ are sequences in X converge to x,y and z, respectively with respect to general D-metric .

Proposition 2.3 Let(X,D)be a general D-metric space and D be continuous in three variables, then every convergent sequence in(X,D)has a unique limit.

Proof It is easy to prove this result since $\{D(x_n.y_n,z_n)\}$ in K and any convergent sequence in Banach space has a unique limit .

Definition 2.4 [1] Let K be a normal cone in a Banach space E, the function $\ell: K \to \mathfrak{R}^+$ is a sublinear positively homogenous functional if for any $u, v \in K$ then $\ell(u + v) \le \ell(u) + \ell(v)$ and $\ell(t u) = t \ell(u)$, for $t \ge 0$ such that $\ell^{-1}(0) = 0$.

Proposition 2.5 Let K be a normal cone in a Banach space E and (X, D) be a general D-metric space.If $D^*: X \times X \times X \rightarrow \mathfrak{R}^+$ is the function defined by

$$D^*(x,y,z) = \ell(D(x,y,z))$$
 (2)

Where ℓ as in the definition(2.2) then (X,D) is D-metric space.

Proof: By conditions i ,ii and iii of definition (1.1) and definition (2.2) ,one can prove $\ell(u) = ||u||$ Naidu[4], show that the metric function D is not continuous even in one variable, therefore, through this paper the D-metric is assumed to be continuous in three variables. Note that, if D is continuous in three variables then the limit is unique in exists [4]. **Theorem 2.6** Let X be a generalized D-metric

space which is complete in the metric defined by(2)with D iscontinuous in three variables and ,if $T:X \to X$ satisfies $D(Tx,Ty,Tz) \le L(D(x,y,z) + D(Tx,Ty,Tz))$

 $D(Tx, Ty, Tz) \le L(D(x,y,z) + D(Tx, Ty, Tz))$ Where L is bounded positive linear operator in E with spectral radius less than 1/2, then there is a unique fixed point, $\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} Tx_n$. proof:

$$\begin{aligned} & let x_0 \in X, \ put \ x = T^2 x_0, \ y = T x_0, \ z = x_0 \\ & D(T^3 x_0, T^2 x_0, T x_0) \subseteq LD(T^3 x_0, T^2 x_0, T x_0) + \\ & LD(T^2 x_0, T x_0, x_0) \Longrightarrow (I - L)D(T^3 x_0, T^2 x_0, T x_0) \subseteq LD(T^2 x_0, T x_0, x_0) \\ & \sin ce \ r(L) \subset \frac{1}{2} \subset 1, then(1 - L) is invertable [6, pp795] \\ & D(T^3 x_0, T^2 x_0, T x_0) \subseteq (I - L)^{-1} \\ & L(D(T^2 x_0, T x_0, x_0)) \end{aligned}$$

To prove that

$$D(T^{n+1}x_0, T^nx_0, T^{n-1}x_0) \subseteq (I-L)^{-(n+1)}L^{n+1}$$

$$[D(T^2x_0, Tx_0, x_0)] \quad n \supseteq 2...3$$

Assume that (3) is true for n = 2 then $D(T^{n+1}x_0, T^nx_0, T^{n-1}x_0) \subset LD(T^{n+1}x_0, T^nx_0, T^{n-1}x_0) +$

$$LD(T^{n}x_{0}, T^{n-1}x_{0}, T^{n-2}x_{0}) \Rightarrow (I - L) D(T^{n+1}x_{0}, T^{n}x_{0}, T^{n-1}x_{0}) < L$$

$$D(T^{n}x_{0}, T^{n-1}x_{0}, T^{n-2}x_{0})$$

$$\Rightarrow$$
D(Tⁿ⁺¹x₀, Tⁿx₀, Tⁿ⁻¹x₀) \leq (I - L)⁻¹ L

$$D(T^{n}x_{0}, T^{n-1}x_{0}, T^{n-2}x_{0})$$

$$< (I - L)^{-1} L (I - L)^{-n} L^{n} D(T^{2}x_{0}, Tx_{0}, x_{0})$$
 (4)

Since
$$L(I - L)^{-n} = (I - L)^{-n} L$$
 (4) will be $D(T^{n+1}x_0, T^nx_0, T^{n-1}x_0) \le (I - L)^{-(n+1)} L^{n+1}$

 $D(T^2x_0, Tx_0, x_0)$ and (3) is proved.

Furthermore, by condition (3) of D-metric, we have:

$$D(T^{n+m+1}x_0, T^{n+m}x_0, T^nx_0) <$$

$$D(T^{n+m+1}x_0, T^{n+m}x_0, T^{m+n-1}x_0) +$$

$$D(T^{n+m+1}x_0, T^{m+n-1}x_0, T^nx_0) +$$

$$D(T^{m+n-1}x_0, T^{n+m}x_0, T^nx_0)$$

$$< (I-L)^{-(m+n+1)} L^{(m+n+1)} D(T^2x_0, Tx_0, x_0) +$$

$$D(T^{m+n+1}x_0, T^{m+n-1}x_0, T^nx_0) +$$

$$D(T^{m+n-1}x_0, T^{m+n}x_0, T^nx_0)$$

$$< (I - L)^{-(m+n+1)} L^{m+n+1} D(T^2x_0, Tx_0, x_0) +$$

$$D(T^{m+n+1}x_0, T^{m+n-1}x_0, T^{m+n}x_0) +$$

$$D(T^{m+n+1}x_0, T^{m+n}x_0, T^nx_0)+$$

$$D(T^{m+n}x_0, T^{m+n-1}x_0, T^nx_0) +$$

$$D(T^{m+n}x_0, T^{m+n-1}x_0, T^nx_0).$$

$$\Rightarrow$$
 2 D(T^{m+n+1} x_0 , T^{n+m} x_0 , Tⁿ x_0) \leq (I – L)^{-(m+1)}

$$^{n+1)}$$
 L ^{$m+n+1$} D(T^2x_0 , Tx_0 , x_0) +

$$(I-L)^{-(m+n+1)}L^{m+n+1}D(T^2x_0,Tx_0,x_0)+2$$

$$D(T^{m+n}x_0, T^{m+n-1}x_0, x_0)$$

$$\Rightarrow D(T^{m+n-1}x_0, T^{m+n}x_0, T^nx_0) < (I-L)^{-(m+n)}$$
⁺¹⁾ $L^{m+n+1}D(T^2x_0, Tx_0, x_0)$

Continue, we get:

$$\begin{split} & D(T^{m+n-1}x_0, T^{m+n}x_0, T^nx_0) \leq [(I-L)^{-(m+n+1)}L^{m+n+1} + (I-L)^{-(m+n)}L^{m+n} + \cdots + \\ & (I-L)^{-(n+2)}L^{n+2}] D(T^2x_0, Tx_0, x_0) + \\ & D(T^{n+1}x_0, T^nx_0, T^{n-1}x_0) \leq [(I-L)^{-(m+n+1)}L^{m+n+1} + \cdots + (I-L)^{-(n+2)}L^{n+2}] \\ & D(T^2x_0, Tx_0, x_0) + (I-L)^{-(n+1)}L^{n+1} \end{split}$$

$$D(T^2x_0, Tx_0, x_0)$$

$$<$$
 (I – L)⁻⁽ⁿ⁺¹⁾ Lⁿ⁺¹(\sum (I – L)^{-m} L^m
D(T^2x_0 , Tx_0 , x_0))= ((I – L)⁻¹)ⁿ⁺¹ x^1
where x^1 is the unique solution of the x =(I–L)⁻¹
L x + D(T^2x_0 , Tx_0 , x_0).

By spectral mapping theorem [6,pp 798] $(I - L)^{-1} L$ is such that $r((I - L)^{-1} L) < 1$

$$D(T^{m+n+1}x_0, T^{m+n}x_0, T^nx_0) \le ((I-L)^{-1})x^1$$

Being K is normal we have:

$$||D(\mathbf{T}^{m+n+1}x_0, \mathbf{T}^{m+n}x_0, \mathbf{T}^nx_0)|| \le \delta ||((\mathbf{I} - L)^{-1}L)x^1||(5)$$

Since the right-hand side of (5) going to zero when $n \to \infty$, we obtain that $\{T^{n+1}x_0\}$ is

Cauchy with respect to the metric D. Being (X,D) complete, we denote by y the limit of $\{T^{n+1}x_0\}$. The following inequalities hold:

$$(T^{n+1}x_0, T^nx_0, Ty) \le L D(T^{n+1}x_0, T^nx_0, Ty) + L D(T^nx_0, T^{n-1}x_0, y)$$

$$\Rightarrow$$
D(Tⁿ⁺¹ x_0 , Tⁿ x_0 , Ty) $<$ (I-L)⁻¹

D($T^n x_0, T^{n-1} x_0, y$)Finally using the normality of K:

$$\|D(\mathsf{T}^{n+1}x_0,\mathsf{T}^nx_0,\mathsf{T}y)\| \le \delta \|(\mathsf{I}-L)^{-1}L\| \|D(\mathsf{T}^nx_0,\mathsf{T}^{n-1}x_0,y)\|$$

Letting $n \to \infty$ in (6) we obtain $D(y, y, Ty) \le 0$, mean Ty = y, and this complete the proof.

A consequence of theorem (2.6) one can prove the following result

<u>Corollary (2.7)</u> Let (X,D), ℓ and L as in theorem (2.10). If the mapping $T: X \to X$ satisfies the condition

 $D(Tx,Ty,Tz) \le L(D(x,y,z)$ for all $x, y, z \in X$ Then T has a unique fixed point in X.

References

- 1- Krasnosel, Skii M.A., Vainkko G.M., Zabreiko P.P.Rutitskii Ya.B, Stetsenko V.Ya., 1972, "Approximate Solution of Operator Equations", Wlter-Nordhoff Publishing, Groningen.
- 2-Dhage B.C.1984, "A Study of Some Fixed Point theorems", Ph.D. thesis, Marathwada University, Aurangabad.
- 3- Dhage B.C.,1992, "Generalized Metric Spaces and Mappings with Fixed Point", Bull Calcutta Math.Soc. 84 (4): 329-336.
- 4-Naidu S.R.,K.P.Rao and N.S.Rao,2004, "On The Topology of D-Metric Spaces and Generation of D-metric Spaces From Metric Spaces",Int.J.Math.Sci.51:2719-274 0.
- 5-Dhage B.C., A.M.Pathan and B.E. Rhoades,, 2000, "Ageneral Existence Principle for Fixed Point Theorms in D-Metric Spaces ", Internat. J. Math & Math. Sci. 7: 441-448
- 6-Zidler E.,"Non linear Functional Analysis and its Applications, I:Fixed Point Theorems, 1986, Springer-Verlag, NewYork.

* قسم الرياضيات/كلية التربية/ابن الهيثم/جامعة بغداد

الخلاصة

بأسلوب مشابه لما ورد في [1] من تعريف لتطبيق L- الأنكماشي في الفضاءات المترية الأعتيادية سنعرف تطبيق L-الأنكماشية في فضاءات D-المترية وكذلك نعطي تعريفاً لفضاءات D-المترية المعممة ثم نبر هن وجود نقطة صامدة لنمط من التطبيقات الأكثر عمومية في فضاءات D-المترية المعممة.