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Abstract 
Regression analyses have two major purposes, explanation and the prediction. The 

explanation concept of the regression model can be capture by introducing the more 

interpretable model via variable selection procedure, while the prediction ability of the 

regression model can be capture by balancing between the bias and the variance of the 

interest parameter estimates. This paper explores the Bayesian adaptive lasso method, 

a shrinkage method that provides estimation and variable selection procedure, also this 

method yields more interpretable model with more prediction accuracy. The reciprocal 

lasso has favorable properties comparing with lasso and for that we utilize two scale 

mixture formulation, the first one is the scale mixture of normals and the scale mixture 

of uniforms. New hierarchical prior model and full conditional posterior distribution 

with the Gibbs sampler algorithm have developed. Two simulation scenarios conducted 

to test the performance of the proposed Bayesian methods in quantile regression. The 

results explained that the proposed models are comparable with some methods. 

Keywords: Reciprocal adaptive lasso, Gibbs sampler, Simulation, full conditional 

posterior distribution. 
 

Introduction 
           In recent years, quantile regression analysis has been very common used in the 
field of statistics, because it serve as a general linear regression model for the 
relationship between the response variable and predictor variables, Chatterjee and 
Hadi (2013). Also, quantile regression model can be viewed as method that detect 
more precise relationships (models) between response variable and predictor 
variables and assign for possibility hetrogenity. Consequently, quantile regression is a 
robust method. just like the median regression , that is mean the coefficients 
regression estimates is not very much affected by the outliers unlike the estimates of 
the ordinary least squares method . However; in same data analysis, the researchers 
are not interested in the mean estimate of relationship of the response variable ( y ) 
and the predictor variables ( x ) which is named mean regression, or the assumptions 
of the mean regression do not hold; such as the distribution of the error term. So, if 
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the error term distribution is not specified or the there are violation of mean 
regression assumptions, the modeling of other quantities ( quantiles ) might be more 
reality in specifying the correct model . In section 1.1 we will review the most 
important studies related to the quantile regression same regularization method with 
a focus on Bayesian estimation. Koenker and Bassett in 1978 introduced the 
regression quantiles. Marasinghe (2014) stated that the quantile regression 
estimators are robust and does not require the condition that imposes on the 
distribution of the error term. In 1987 Koenker and  Dorey  modified and developed 
an efficient computing algorithm for estimating the quantile regression parameter 
estimates. Tibshirani (1996) introduced the lasso method as variable selection 
procedure with frequents estimation methods. In 1999 Koenker and Machado 
developed a goodness of fit test for quantile regression model by using the coefficient 
of determination. In 2001 Yu and Moyeed discussed using of asymmetric Laplace 
distribution as likelihood function in Bayesian quantile regression model. In 2006 Zou 
proposed new penalized function that adds to the residual sum of squares and named 
adaptive lasso. In 2007 Yu and Stander discussed the Bayesian reference for Tobit 
quantile regression. In 2008 Li and Zhu studied the variable selection in lasso quantile 
regression. In 2010 Leng introduced the Bayesian adaptive lasso assuming that tuning 
parameter takes different values. Kozumi and Kobayashi (2011) proposed new Gibbs 
sampler algorithm in Bayesian quantile regression assuming tht the asymmetric 
Laplace distribution can be represents as scale mixture of normal-  exponential 
density. In 2017 Alhusseini introduced the variable selection in Bayesian lasso quantile 
regression by assuming that scale mixture unifroms. In 2020 Almusaedi and Flaih 
studied the Bayesian parameter estimation of the quantile regression based on 
asymmetric Laplace distribution. In 2021 Almusaedi and Flaih Studied the Penalized 
Bayesian Elastic Net Quantile Regression. In 2020, mallick et al. proposed two 
reciprocal lasso regression models based on the scale mixture of normal and the scale 
mixture of uniform. In 2021, Alhamzawi and mallick introduced the reciprocal lasso 
quantile regression in Bayesian estimation. This paper have new simple and efficient 
Gibbs sampler algorithm to generate the samples from the target posterior 
distributions. The simulation results showed that the proposed methods are 
comparable with other methods. 
 

Bayesian Reciprocal Adaptive Lasso Quantile Regression  
 

In this section, we proposed a new Gibbs Sampler algorithms based on new 

hierarchical model for Bayesian reciprocal adaptive lasso quantile regression (BrALqr). 

This Bayesian model has developed through using the proposed scale mixtures of 

Mallick et al. (2020) that represents the prior distribution of interested parameters as 

the inverse Laplace distribution. The inverse Laplace distribution takes the following 

prior form,  
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Mallick et al (2020) proved that the Bayesian reciprocal lasso method is more efficient 

in computation algorithms that provides efficient convergence in implementing to 

generates samples from the posterior distribution of the interested parameters, for 

more details check out Song (2014) and Song and Liang (2015). We will employ the 

Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of uniforms 

referred to as (BRALQRU) and Bayesian reciprocal adaptive Lasso quantile regression 

using scale mixture of normals referred to as (BRALQRN), Alhamzawi and  Mallick  

(2020). We can write the Bayesian minimization problem of the reciprocal lasso 

quantile regression as follows: 

𝑚𝑖𝑛
𝛽

 ∑  

𝑛

𝑖=1

𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽) + ∑  

𝑝

𝑗=1

𝜆𝑗

|𝛽𝑗|
𝐼{𝛽𝑗 ≠ 0}. … (2)           

Next subsections discuss the hierarchical prior models and the full conditional 

posterior distributions for implementing the Gibbs sampling algorithms. 

Hierarchical Priors models based on the scale mixture of Uniform 

Alhamzawi and Mallick (2020) introduced the parameter estimation in Bayesian 

reciprocal adaptive Lasso quantile regression by using the scale mixture of uniforms 

as representation for the prior distribution (1), 
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2

𝛤(2)
𝑢𝑗

2−1𝑒−𝜆𝑗𝑢𝑗𝑑𝑢𝑗 , 𝜆𝑗 > 0    …     (3) 

The hierarchical model of BRALQRU based on (1) and (2) can be defined as follows, 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽𝜏 + 𝜃𝜏𝑣𝑖 + 𝛼𝜏√𝜎𝑣𝑖𝑧𝑖, 

𝑦𝑖|𝑥, 𝛽, 𝜎, 𝑣 ~ ∏  𝑛
𝑖=1 𝑁(𝑥𝑖

𝑇𝛽𝜏 + 𝜃𝜏𝑣𝑖  , 𝛼𝜏
2𝜎𝑣𝑖), 

𝑣𝑛×1 ∣ 𝜎 ∼ ∏  

𝑛

𝑖=1

 𝐸𝑥𝑝 (𝜎), 
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𝛽𝑝×1 ∣ 𝑢 ∼ ∏  

𝑝

𝑗=1

 
1

 Uniform (−𝑢𝑗 , 𝑢𝑗)
   , … (4) 

𝑢𝑝×1 ∣ 𝜆𝑗 ∼ ∏  

𝑝

𝑗=1

 𝐺𝑎𝑚𝑚𝑎(2, 𝜆𝑗), 

𝜎 ∼ 𝜎−𝑎−1ex p (−
𝑏

𝜎
), 

𝜆𝑗 ∼ 𝜆𝑗
𝑐−1 exp(−𝑑𝜆𝑗). 

Now we can employ the above hierarchical prior model to write down the full 

conditional posterior distribution. 

 Full conditional posterior distributions of BRALQRU  

The hierarchical model (4) can be employed with a Gibbs sampler algorithm. Gibbs 

sampling algorithm is a Markov Chain Monte Carlo (MCMC) tool that draws iteratively 

samples from the conditional posterior distribution of a specific variable conditioned 

on all other variables. The hierarchical model (4) utilized in such a way that we can 

formulate the full conditional posterior distributions that easy to simulate from. The full 

joint distribution defined as follows: 

𝑓(𝑦| β, 𝜎, 𝑣) 𝜋(𝜎) ∏ 𝜋(𝛽𝑗|𝑢𝑗 , 𝜆𝑗)𝑝
𝑗=1  𝜋(𝑣𝑗) 𝜋(𝑢𝑗)𝜋(𝜆𝑗)  

The conditional distribution of 𝑦 is defined by: 

𝑦𝑖|𝑥, 𝛽, 𝜎, 𝑣 ~ ∏  𝑛
𝑖=1 𝑁(𝑥𝑖

𝑇𝛽𝜏 + 𝜃𝜏𝑣𝑖  , 𝛼𝜏
2𝜎𝑣𝑖). 

The full conditional posterior distribution of 𝛽 is defined by: 

𝛽 ∣ 𝑦, 𝑋, 𝑣, 𝑢, 𝜆, 𝜎 ∼ 𝑁𝑝(𝛽̂, 2𝜎(𝑋′𝑉−1𝑋)−1) ∏  

𝑝

𝑗=1

 𝐼 {|𝛽𝑗| >
1

𝑢𝑗
}. 

Where   𝛽̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1(𝑦 − 𝜃𝑣), and 𝑉 = 𝑑𝑖𝑎𝑔(𝑣1, … , 𝑣𝑛). 

The full conditional posterior distribution of 𝑣𝑖 is defined by: 
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𝑣𝑖 ∣ 𝑦, 𝑋, 𝛽, 𝜎, 𝑢, 𝜆 ∼  GIG (
1

2
,
(𝑦𝑖 − 𝑥𝑖

′𝛽)2

2𝜎
,

1

2𝜎
)

 

Where, GIG is generalized inverse Gaussian.  

The full conditional posterior distribution of 𝜎 is defined by: 

𝜎 ∣ 𝑦, 𝑋, 𝛽, 𝑣, 𝑢, 𝜆 ∼ IG (𝑎 +
3𝑛

2
, 𝑏 +

1

2
(𝑦 − 𝑋𝛽 − 𝜃𝑣)′𝑉−1(𝑦 − 𝑋𝛽 − 𝜃𝑣)).  

Where, IG is inverse gamma.  

The full conditional posterior distribution of 𝑢 is defined by: 

𝑢 ∣ 𝑦, 𝑋, 𝛽, 𝑣, 𝜆, 𝜎 ∼ ∏  

𝑝

𝑗=1

Exp(𝜆) 𝐼 {𝑢𝑗 >
1

|𝛽𝑗|
}. 

The full conditional posterior distribution of 𝜆 is defined by: 

𝜆 ∣ 𝑦, 𝑋, 𝛽, 𝑣, 𝑢, 𝜎 ∼ Gamma (𝑐 + 2𝑝, 𝑑 + ∑  

𝑝

𝑗=1

1

|𝛽𝑗|
). 

Hierarchical Priors models based on the scale mixture of Normal 

Mallick et al. (2020), Alhamzawi and Mallick (2020) introduced the following 

proposition based on the work of Armagan et al. (2013): 

β~N(0, γ)I{|β| > η}, γ~ exp(ζ2 2⁄ ),  ζ~ exp(η), and η~Inverse Gamma (2, λ), then 

β distributed according to inverse Laplace distribution with parameter λ. 

From this proposition, the inverse Laplace distribution can be represents as scale 

mixture of truncated normal. Now based on the above proposition, minimization 

problem (2), and the quantile regression model , the hierarchical prior model defines 

as follows: 

𝑦𝑖|𝑥, 𝛽, 𝜎, 𝑣 ~ ∏  𝑛
𝑖=1 𝑁(𝑥𝑖

𝑇𝛽𝜏 + 𝜃𝜏𝑣𝑖  , 𝛼𝜏
2𝜎𝑣𝑖). 

𝛽𝑝×1 ∣ 𝛾, 𝑢 ∼ ∏  

𝑝

𝑗=1

𝑁(0, 𝛾𝑗
2)𝐼 {|𝛽𝑗| >

1

𝑢𝑗
} 
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𝛾𝑝×1 ∣ 𝜁 ∼ ∏  

𝑝

𝑗=1

Ex p(𝜁𝑗
2) 

𝜁𝑝×1 ∣ 𝑢 ∼ ∏  𝑝
𝑗=1 Ex p (

1

𝑢𝑗
) , Where 𝑢 =

1

𝜂
 

𝑢𝑝×1 ∣ 𝜆 ∼ ∏  𝑝
𝑘=1 Gamma (2, 𝜆)          … (5) 

𝜎 ∼ 𝜎−𝑎−1ex p (−
𝑏

𝜎
) 

𝜆 ∼ 𝜆𝑐−1exp (−𝑑𝜆) 

 BRALQRN computation: 

Calculation of MCMC iterations for drawing randomly samples from the full 

conditional posterior distributions can be done by the following algorithm steps: 

1- Sampling  𝑦𝑖: this can be done by drawing samples from truncated normal 

with mean 𝑥𝑖
𝑇𝛽𝜏 + 𝜃𝜏𝑣𝑖   and variance 𝛼𝜏

2𝜎𝑣𝑖. 

2- Sampling 𝑣−1: this can be done by drawing samples from inverse Gaussian: 

  𝑣−1\ . ∼ ∏  𝑛
𝑖=1 Inverse − Gaussian (

1

2
,

1

|yi−xi
′β|

,
1

2σ
) 

3- Sampling 𝑢𝑖: this can be done by drawing samples from  

   𝑢\. ∼ ∏  𝑝
𝑘=1 Exponential(𝜆)𝐼 {𝑢𝑘 >

1

|𝛽𝑘|
} 

4- Sampling 𝜏−1: this can be done by drawing samples from inverse Gaussian  

𝜏−1\ . ∼ ∏  𝑝
𝑘=1 Inverse − Gaussian (

1

2
, √

𝜁𝑘
2

𝛽𝑘
2 , 𝜁𝑘

2). 

5- Sampling 𝜁: this can be done by drawing samples from gamma distribution 

𝜁\ . ∼ ∏  𝑝
𝑘=1 Gamma (2, (|𝛽𝑘| +

1

𝑢𝑘
)). 

6- Sampling 𝛽: this can be done by drawing samples from truncated multivariate 

normal distribution: 

𝑁𝑃((𝑋′𝛺−1𝑋 + 𝑇−1)−1𝑋′𝛺−1(y − θv), (𝑋′𝛺−1𝑋 + 𝑇−1)−1) ∏  𝑝
𝑘=1 𝐼 {|𝛽𝑘| >

1

𝑢𝑘
}. 
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7- Sampling 𝜎: this can be done by drawing samples from inverse gamma 

distribution 

 Inverse − Gamma (a +
3𝑛

2
, 𝑏,

1

4
(𝑦 − 𝑋𝛽 − 𝜃𝑣)′𝑉−1(𝑦 − 𝑋𝛽 − 𝜃𝑣))   

8- Sampling 𝜆: this can be done by drawing samples from gamma distribution 

Gamm a (𝑐 + 2𝑝, 𝑑 + ∑  𝑝
𝑘=1

1

|𝛽𝑘|
). 

 

 

Simulation Study Analysis 

We carry out simulation studies and real data analysis to demonstrate the 

performance of the proposed approaches (Bayesian reciprocal adaptive Lasso quantile 

regression using scale mixture of uniforms referred to as 'BrALqr.U' and Bayesian 

reciprocal adaptive Lasso quantile regression using scale mixture of normals referred 

to as 'BrALqr.N' ). The proposed approaches are compared with some existing Bayesian 

and non-Bayesian approaches. The approaches in this comparison include: 

 

• Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of 

uniforms (BrALqr.U). 

• Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of 

uniforms (BrALqr.N). 

• Bayesian reciprocal Lasso quantile regression using scale mixture of uniforms 

(BrLqr.N). 

•  Bayesian Lasso quantile regression (BLqr). 

• Bayesian bridge quantile regression (BBqr). 

• Lasso regression (lasso). 

• Quantile regression (qr). 

• Quantile regression with L1 penalty (qrL1). 

 

We consider four simulation studies:  

• Simulation study 1 (sparse case): 𝛽 = (2,2,0,0,2,0,0,0,0,0). 

• Simulation study 2 (dense case): 𝛽 = (1,1,1,1,1,1,1,1,1,1). 

The data in the simulation examples were generated by 

𝑦𝑖 = 𝑋𝑖
′𝛽 + 𝑒𝑖 , 𝑖 = 1,2, … , 𝑛 
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We setup the error distribution ei  so that the q-th quantile equal to 0. Following Li, et. 

al (2010), we consider four error distributions:   

•  𝑁(𝜇, 9), we setup 𝜇 so that the qth quantile equal to zero. 

• 0.1𝑁(𝜇, 1) + 0.9 𝑁(𝜇, 5), ,  we setup 𝜇 so that the qth quantile equal to zero. 

• Laplace distribution, Laplace (𝜇; b = 3), we setup 𝜇  so that the qth quantile 

equal to zero. 

• Mixture of two Laplace distribution, 0.1 Laplace (𝜇; b = 1) + 0:9 Laplace (𝜇; b 

=√5), we setup 𝜇 so that the qth quantile equal to zero. (Li et al. ,2010).  

For the first three simulations (Simulation study 1, Simulation study 2 and Simulation 

study 3), the rows of the design matrix X were generated from N(0, ∑) ,where ∑ has 

an autoregressive correlated matrix, where ∑ij = 0.5|i−j| for all 1 ≤  i ≤  j ≤  p. The 

data for Simulation 4 is following the setup of Zou (2006), where the cor(xi, xj) =

−0.39  for i < j < 4 and  cor(x1, x4) = 0.23 , i < 4 . In each simulation study, we run 

100 replications. For each replication, we simulate 20 observations as a training set 

and 200 observations as a testing set. We run the Bayesian algorithms for 13000 

iterations discarding the first 1000 iteration as a burn-in. Approaches are compared 

using median of mean absolute deviation (MMAD): 

MMAE = Median (mean |𝑥𝑖
𝑇𝛽𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑥𝑖

𝑇𝛽𝑡𝑟𝑢𝑒  |) 

where me is the median which is taken over 100 simulations. The results of the 

simulations are listed in Tables 1 and 2. We can see that our proposed approaches 

(BrALqr.U and BrALqr.N) perform well compared with the other existing approaches. 

For all the simulated cases, convergence of the corresponding MCMC Gibbs sampler 

was evaluated by trace plots and histograms of the simulated samples. Trace plot is a 

convergence diagnoses technique, commonly is using to indicate if the generated 

samples from MCMC for the posterior distribution of parameters convergence to 

stationary distribution. Moreover, the histograms are used for checking the 

distribution class of the interested variable.  

Table 1: MMADs and SD for Simulation study 1. In the parentheses are standard 

deviations of the MMADs. 
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In Table 1, we can see that the proposed method Bayesian reciprocal adaptive Lasso 
quantile regression using scale mixture of uniforms (BrALqr.U) performs better than 
the other approaches in 6 out 12 cases. 
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Figure 1: Trace plots based on posterior samples for Simulation 1 when the error is 
normal and q = 0.1 using BrALqr.U and BrALqr.N methods. 

 

The above  figure (1) shows that the trace plots explains no flat bits and that MCMC 
algorithm suffer no slow mixing which indicates that the proposed methods have good 
mixing properties. Figure (2) illustrated the distributions of the parameter estimates 
β1 − β10 through the histograms and it is clearly that the distribution of the 
parameters follows the normal distribution. 
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Figure 2: Histograms based on posterior samples for Simulation 1 when 
the error is normal and q = 0.1 using BrALqr.U and BrALqr.N methods. 
 

Table 2: MMADs and SD for Simulation study 2. In the parentheses are 
standard deviations of the MMADs. 
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In Table 2, we can see that the proposed method Bayesian reciprocal 
adaptive Lasso quantile regression using scale mixture of normals 
(BrALqr.N) performs better than the other approaches in 5 out 12 cases 
and the proposed method BrALqr.U performs 2 better than the other 
approaches in 4 out 12 cases. 
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Figure 3: Trace plots based on posterior samples for Simulation 1 when the error is 
normal and q = 0.5 using BrALqr.U and BrALqr.N methods. 

 

 
The above  figure (3) shows that the trace plots explains no flat bits and that MCMC 

algorithm suffer no slow mixing which indicates that the proposed methods have good 
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mixing properties. Figure (4) illustrated the distributions of the parameter estimates 

β1 − β10 through the histograms and it is clearly that the distribution of the 

parameters follows the normal distribution. 

 

 
 

 
Figure 4: Histograms based on posterior samples for Simulation 1 when 
the error is normal and q = 0.5 using BrALqr.U and BrALqr.N methods. 
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Conclusions: 
The lacks in the least squares methods motivates the authors to create 
more reliable estimation methods that are known as the regularization 
methods (Ridge and lasso, …etc.). The reciprocal adaptive lasso is the 
latest version of the regularization methods, we introduced Bayesian 
reciprocal adaptive lasso in quantile regression and this work is the first 
as application study that discussed the employing of this type of 
regularization methods in quantile regression. New hierarchical prior 
models have discussed based on two scale mixture representation for the 
prior distribution of the interested parameter; the first scale mixture is of 
normls and the second one is the scale mixture of uniforms. Furthermore, 
new full conditional posterior densities have developed based on the 
proposed hierarchical prior models, as well as the fast implement Gibbs 
sampler algorithm have used for the computations. We focused on the 
comparison idea between the two proposed models and few estimation 
methods to check the quality of the parameter estimates through 
conducted four simulation scenarios and in one real data analysis. The 
criterion that is named median mean absolute deviation and its standard 
deviation has used to assess the quality of the parameter estimation 
methods in simulation results. Results of the simulation scenarios show 
that the proposed methods are comparable to the other methods. 
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