

لخااِصة :

في هذا البحث تستخدم تعاريف المجموعات المفتوحة من انماط lpha – open , pre – open , b – open , eta – open , b – open , b – open , eta – open , b – open , o

 α – identification, pre – identification, b – identification , β – identification

Abstract

In this paper , used the definitions of ($\alpha-$ open , pre - open , b- open , $\beta-$ open) sets in order to limit the identifications in topological space namely ($\alpha-$ identification, pre - identification , b- identification) functions and we discuss the relationship between them , as well as several properties of these functions are proved.

Keyword:

 α – identification, pre – identification, b – identification

and β – identification

Introduction and Preliminaries:

The concept of continuous (α –continuous, pre –continuous

, b —continuous, β —continuous) function, irresolute(α — irresolute, pre — irresolute, b — irresolute) function and contra — continuous(contra — α — continuous, contra pre — continuous

, contra - b - continouous , contra - β - continouous) have been introduced and investigated by Mashhour [12 ,13], Andrjevic [3] ,El-Monsef [5], (Maheshwair and Thakur) [10], (Jafaris and Noiri) [7, 8] and Calda [4] respectively. By using "semi-, (α -, pre -, β -, b-) open sets "have been introduced and investigated by Levine [9],Njasted [18], Mashhour [12,13], Andrjevic [3], El-Monsef [5] respectively.

AL-kutabi [1] in 1996, introduces and studies some week identifications, the notion of semi-identification, Mazl [14] introduces the notion of b-identification. In this work, we study the concepts of types of identifications and discuss the relation between them. Also, we investigate it's relationship with other types of identifications.

" Throughout this paper $\mathcal H$, $\mathcal M$ and $\mathcal R$, will denote topological spaces for a subset $\mathcal A$ of space $(\mathcal H, \mathfrak F)$, $\operatorname{int}(\mathcal A)$, $\operatorname{cl}(\mathcal A)$, denoted the interior and closure of a set $\mathcal A$, respectively ", and we indicate them by the following symbols: $\operatorname{gof} = \mathcal W$, $\mathfrak f^{-1} = \mathfrak F$, $\mathfrak g^{-1} = \mathfrak f$, $\mathfrak f(\mathfrak f^{-1}) = \mathcal F$.

" A subset \mathcal{A} of a space \mathcal{H} is said to be:

- 1. α -open set [18](for short \mathfrak{D} -) if $\mathcal{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathcal{A})))$. So \mathcal{A}^c called α closed (for short \mathfrak{D} =).
- 2. pre –open set [12] (for short \mathfrak{p} –) if $\mathcal{A} \subseteq \operatorname{int}(\operatorname{cl}(\mathcal{A}))$. So \mathcal{A}^c called pre closed (for short \mathfrak{p} =).
- 3. β –Open set [5] (for short \mathfrak{B} –) if $\mathcal{A} \subseteq \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}(\mathcal{A})\right)\right)$. So \mathcal{A}^c called β closed (for short \mathfrak{B} =).
- 4. b open set [3] (for short b) if $\mathcal{A} \subseteq (cl(int(\mathcal{A})) \cup int(cl(\mathcal{A})))$. So \mathcal{A}^c called b closed (for short b =)."

The family of all $(\mathfrak{D} -, \mathfrak{p} -, \mathfrak{B} -, \mathfrak{b} -)$ sets is denoted by $\mathfrak{D}O(\mathcal{H})$, $\mathfrak{p}O(\mathcal{H})$, $\mathfrak{B}O(\mathcal{H})$, $\mathfrak{b}O(\mathcal{H})$.

Remark: the diagram below shows the relationship between open sets.

open
$$\longrightarrow \mathfrak{D}-\longrightarrow \mathfrak{p}-\longrightarrow \mathfrak{b}-\longrightarrow \mathfrak{B}-$$

figure (1)

" The converse of these implications are not true in general".

Example 1:

Let $\mathcal{H} = \{d, k, p, 0, \mathcal{C}\}\$ on $\mathfrak{I} = \{\mathcal{H}, \varphi, \{p, 0\}, \{d, k\}, \{d, k, p, 0\}\}\$.

Then

- A subset $\{d\}$ of \mathcal{H} is \mathfrak{p} but it does not \mathfrak{D} -.
- A subset $\{d, k, C\}$ of \mathcal{H} is \mathfrak{b} but it does not \mathfrak{p} -.
- A subset $\{p, C\}$ of \mathcal{H} is \mathfrak{B} -but it does not \mathfrak{b} .

"The following definitions and results were introduced and studied ".

Definition 2: "Let a function of a space \mathcal{H} into a space \mathcal{M} then:

- **1-** \mathfrak{f} is called open (closed) function if the image of each open (closed) set in \mathcal{H} is open(closed) set in \mathcal{M} [6].
- **2-** \mathfrak{f} is called $\mathfrak{D}-(\mathfrak{D}=)$ function if the image of each α open $(\mathfrak{D}=)$ set in \mathcal{H} is $\mathfrak{D}-(\mathfrak{D}=)$ set in \mathcal{M} [13].
- **3-** \mathfrak{f} is called $\mathfrak{p} (\mathfrak{p} =)$ function if the image of each $\mathfrak{p} (\mathfrak{p} =)$ set in \mathcal{H} is $\mathfrak{p} (\mathfrak{p} =)$ set in \mathcal{M} [12].
- **4-** \mathfrak{f} is called $\mathfrak{b} (\mathfrak{b} =)$ function if the image of each $\mathfrak{b} (\mathfrak{b} =)$ set in \mathcal{H} is $\mathfrak{b} (\mathfrak{b} =)$ set in \mathcal{M} [3].
- 5- \mathfrak{f} is called $\mathfrak{B} (\mathfrak{B} =)$ function if the image of each $\mathfrak{B} (\mathfrak{B} =)$ set in \mathfrak{H} is $\mathfrak{B} (\mathfrak{B} =)$ set in \mathfrak{M} [5]. "

Remark: the diagram below holds for a functions.

open fun.
$$\to \mathfrak{D}$$
 – fun. $\to \mathfrak{p}$ – fun. $\to \mathfrak{b}$ – fun. $\to \mathfrak{B}$ – fun. figure (2)

"Now by [3,5,12,13]and the following examples illustrate that The converse of these implication are not true in general".

Definition 3: A function $f: \mathcal{H} \to \mathcal{M}$ is called:

- **1-** Acontinuous function if \mathfrak{H} of any open set in \mathcal{M} is a open set in \mathcal{H} [6].
- **2-** α -continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{D} -set in \mathcal{H} [13].
- **3-** pre –continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{p} set in \mathcal{H} [12].
- **4-** b –continuous function if \mathfrak{H} of any open set in \mathcal{M} is b in \mathcal{H} [2].
- 5- β -continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{B} -set in \mathcal{H} [5].

Remark: Mubarki in 2013 presented the following diagram that illustrates the relationship between the types of continuous functions. [15]

cont.
$$\rightarrow \alpha$$
 - cont. \rightarrow pre - cont. \rightarrow b - cont. \rightarrow β - cont. figure (3)

"The converse of these implications are not true in general and the following examples" . Example. 4:

Let
$$\mathcal{H} = \{d, k, p, O, C\}$$
 on $\mathfrak{I} = \{\mathcal{H}, \varphi, \{p, d\}, \{d, k\}, \{d, k, p, d\}\}$

1-Then,
$$f: \mathcal{H} \to \mathcal{H}$$
 defined by $f(d) = k$, $f(k) = d$, $f(p) = p$, $f(0) = k$, $f(C) = C$,

is pre —continuous function but it is not α — cont.

2- Then , f: $\mathcal{H} \to \mathcal{H}$ defined by f(d) = d, f(k) = k, f(p) = p, f(O) = O, f(C) = k, is b—cont. but it is not pre—cont.

3- Then, $f:\mathcal{H}\to\mathcal{H}$ defined by f(d)=p, $f(k)=\mathcal{C}$, f(p)=d, $f(\mathcal{O})=\mathcal{O}$, $f(\mathcal{C})=k$, is β —cont. but it is not b — cont.

Definition 5:

A mapping $f: \mathcal{H} \to \mathcal{M}$ is called irresolute function[10] (resp. α – irresolute [10], pre – irresolute [13], b – irresolute [3] β – irresolute [5]) if \mathfrak{H} (u) is open(\mathfrak{D} –, \mathfrak{p} –, \mathfrak{b} – , \mathfrak{B} –) in \mathcal{H} for each open (\mathfrak{D} –, \mathfrak{p} –, \mathfrak{b} –, \mathfrak{B} –) in \mathcal{M} .

"Diagram (4)":

irresol. $\rightarrow \alpha - irresol. \rightarrow pre - irresol. \rightarrow b - irresol. \rightarrow \beta - irresol.$

generally speaking ,the opposite of the implication s is not necessarily true , as follows instance .

Example 6:

Let $\mathcal{H} = \{d, k, p, 0, \mathcal{C}\}$ on $\mathfrak{I} = \{\mathcal{H}, \varphi, \{p, 0\}, \{d, k\}, \{d, k, p, 0\}\}$

- **1-** Then, the $f: \mathcal{H} \to \mathcal{H}$ defined by f(d) = d, f(k) = p, f(p) = k, f(0) = 0, f(C) = C, is pre irresol.and not α irresol.
- **2-** Then, the $\mathfrak{f}:\mathcal{H}\to\mathcal{H}$ defined by $\mathfrak{f}(d)=d$, $\mathfrak{f}(k)=k$, $\mathfrak{f}(p)=\mathcal{C}$, $\mathfrak{f}(\mathcal{O})=\mathcal{O}$, $\mathfrak{f}(\mathcal{C})=p$, is birresol. and not pre-irresol.
- **3-** Then the $f: \mathcal{H} \to \mathcal{H}$ defined by f(d) = p, f(k) = k, f(p) = d, f(0) = C, f(C) = 0, is β irresol. and not b irresol.

Definition 7:

A function $\mathfrak{f}:\mathcal{H}\to\mathcal{M}$ is called contra — continouous (resp.contra α — continouous , contra pre — continouous [6,7], contra b — continouous [2]contra β — continouous [4]) , if \mathfrak{H} (u) is closed ($\mathfrak{D}=\mathfrak{p}=\mathfrak{h}=\mathfrak{h}=\mathfrak{h}=\mathfrak{h}=\mathfrak{h}$) in \mathcal{H} , for each open set u of \mathcal{M} . "Diagram (5)" :

contra – cont. \rightarrow contra α – cont. \rightarrow contra pre – cont. \rightarrow contra β – cot.

The examples show that the reversal of the chart is incorrect.

Example 8:

Let $\mathcal{H} = \{d, k, p, O, C\}$ on $\Im = \{\mathcal{H}, \phi, \{p, O\}, \{d, b\}, \{d, k, p, O\}\}$

1-Then, $f: \mathcal{H} \to \mathcal{H}$ defined by $f(d) = \mathcal{C}, f(k) = k, f(p) = d, f(0) = 0, f(\mathcal{C}) = p$.

Iscontra pre – cont.but it is not contra α – cont.

2- Then , $f:\mathcal{H}\to\mathcal{H}$ defined by f(d)=p, f(k)=0, f(p)=d, f(0)=k, $f(\mathcal{C})=\mathcal{C}$. Is contra b — cont .but not contra pre — cont.

3-Then, $f: \mathcal{H} \to \mathcal{H}$ defined by f(d) = d, f(k) = 0, f(p) = p, f(0) = k, f(C) = C.

Is contra β – cont.but not contra b – cont.

A Study of some new types of identifications:

In this section, we introduce new definitions of $(\alpha-identification, pre-identification, b-identification) functions by using <math>(\mathfrak{D}-,\mathfrak{p}-,b-)$ sets and study the relations between them .

Definition 9 : " A function $f: \mathcal{H} \to \mathcal{M}$ is called α – identification Iff f is onto and one of the following condition satisfies "

--- U is $\mathfrak{D}-$ in \mathcal{M} iff $\mathfrak{H}(u)$ is $\mathfrak{D}-$ in $\mathcal{H}.$

--- U is $\mathfrak{D} = \operatorname{in} \mathcal{M}$ iff $\mathfrak{H}(u)$ is $\mathfrak{D} = \operatorname{in} \mathcal{H}$.

For example: Let $\mathcal{H} = \{d, k, p, 0\}$ and $\mathcal{M} = \{1,2,3\}$ be equipped with the topologies $\mathfrak{I}_{\mathcal{H}} = \{\mathcal{H}, \phi, \{k, p\}, \{d, k\}, \{k\}\}, \mathfrak{I}_{\mathcal{M}} = \{\phi, \mathcal{M}, \{1,2\}, \{2,3\}, \{2\}\}$

If $f: \mathcal{H} \to \mathcal{M}$ defined by f(d) = 1, f(k) = 2, f(p) = 3, f(O) = 3. we get f is α – identification.

Proposition 10:

Every α – irresolute and \mathfrak{D} –(\mathfrak{D} =) onto functions is α – identification.

Proof : A $\mathfrak{f}: \mathcal{H} \to \mathcal{M}$, $\mathfrak{f}(U)$ is \mathfrak{D} – since \mathfrak{f} is onto and \mathfrak{D} –,

so $(\mathcal{F}(U)) = U$ is $\mathfrak{D} - .$ and $U \subseteq \mathcal{M}$.

is α – irresolute hanc $\mathfrak{H}(U)$ is \mathfrak{D} – in \mathcal{H} , so \mathfrak{f} is α – identification. \mathfrak{f}

While if:

If $f: \mathcal{H} \to \mathcal{M}$ is onto, $\mathfrak{D} = \text{and } \alpha - \text{irresolute}$,

Hence \mathfrak{H} (U) is \mathfrak{D} – , implies $(\mathfrak{H}(U))^c = \mathfrak{H}(U^c)$ is \mathfrak{D} = , which $(\mathcal{F}(U^c)) = (U^c)$ is \mathfrak{D} =,

Since \mathfrak{f} is α – irresolute by def. so \mathfrak{f} is α – identification. \mathfrak{p} –in \mathcal{H} ".

Definition11:

" A function $f: \mathcal{H} \to \mathcal{M}$ is called pre – identification if f is onto and U is \mathfrak{p} – in \mathcal{M} iff $f^{-1}(u)$ is \mathfrak{p} – in \mathcal{H} ".

Remark : from figure (1) we get every α — identification is pre – identification but the opposite is not true .

As follows instance.

 $\mathcal{H} = \{d, k, p, 0, C\}$, $\mathcal{M} = \{d, k, p, 0\}$ be equipped with topologies $\mathfrak{I}_x = \{d, k, p, 0, C\}$

 $\{\mathcal{H}, \varphi, \{p, 0\}, \{d, k\}, \{d, k, p, 0\}\}\$ and $\mathfrak{I}_{\mathcal{M}} = \{\varphi, Y, \{d, k\}, \{k, p\}, \{k\}\}.$

If $f: \mathcal{H} \to \mathcal{M}$ defined by f(d) = d, f(k) = k, f(p) = p,

 $f(\mathcal{O}) = \mathcal{O}$, $f(\mathcal{C}) = \mathcal{P}$, we get f is pre – identification.

Lemma 12 : A onto function $f: \mathcal{H} \to \mathcal{M}$ is called pre – identification , U is $\mathfrak{p} = \text{in } \mathcal{M}$ iff \mathfrak{H} (U) is $\mathfrak{p} = \text{in } \mathcal{H}$.

Proposition 13:

Every pre – irresolute and $\mathfrak{p}-(\mathfrak{p}=)$ ontofunctions is pre – identification Proof :

from " figure (1 ,4)" every $\mathfrak{D}-$ function is $\mathfrak{p}-$ function and $\alpha-$ irresolute is pre-irresolute , by Proposition 10 , we get every $\mathfrak{f} \alpha-$ irresolute is pre-irresolute. Definition 14:

" A function $f: \mathcal{H} \to \mathcal{M}$ is called b – identification if f is onto and one of the following condition satisfies "

- 1) U is $\mathfrak{b} \operatorname{in} \mathcal{M}$ iff \mathfrak{H} (u) is $\mathfrak{b} \operatorname{in} \mathcal{H}$.
- 2) U is $\mathfrak{b} = \operatorname{in} \mathcal{M}$ iff \mathfrak{H} (u) is $\mathfrak{b} = \operatorname{in} \mathcal{H}$. [3]

"from figure (1) every $\mathfrak{p}-$ is $\mathfrak{b}-$ then for each pre-identification is $\mathfrak{b}-$ identification." We note from an example 1:

be defined by f(d) = d, f(k) = k, f(p) = C, f(O) = O, f(C) = p, A $f: \mathcal{H} \to \mathcal{H}$ then f is b – identification but not pre – identification, since $\mathfrak{H}\{d,k,p\} = \{d,k,C\} \notin PO(\mathcal{H})$.

Proposition 15:

If $f: \mathcal{H} \to \mathcal{M}$ is onto , $\mathfrak{b} - (\mathfrak{b} =)$ and b-irresolute then f is b-identification. [3]. Proposition 16:

The composition of two, α –identification(pre – identification, b – identification) functions is α – identification(pre – identification, b – identification).

Proof:

Suppose that $\mathfrak{f}:\mathcal{H}\to\mathcal{M}$, $\mathcal{G}{:}\,\mathcal{M}\to\aleph$ are $\alpha-identifications$

"Whenever The compo. of two onto functions is onto ".

Now ,if U be any \mathfrak{D} –in \mathfrak{K} , by hypo. \mathcal{G} , \mathfrak{f} are α – identifications then \mathfrak{h} (U) is \mathfrak{D} – in \mathcal{M} and we have \mathfrak{H} (\mathfrak{h} (U)) = $(\mathcal{W})^{-1}$ (U) is \mathfrak{D} – in \mathcal{H} . implies U is \mathfrak{D} – in \mathcal{H} , thus \mathcal{W} is α – identification.

Similarly ,to prove W is (pre – identification, b – identification).

Proposition 17:

A $f: \mathcal{H} \to \mathcal{M}$ and $G: \mathcal{M} \to \aleph$ are functions and f is α – identification (pre – identification, b – identification)

then the following statement are valid:

- 1- If \mathcal{W} is α cont. (pre cont., b cont.)then \mathcal{G} is α cont. (pre cont., b cont.).
- 2- If \mathcal{W} is α irresolute (pre irresolute , b irresolute .) then \mathcal{G} is α irresolute . (pre irresolute , b irresolute).
- 3- If \mathcal{W} is contra α cont. (contra pre cont., contra b cont.) then \mathcal{G} is contra α cont. (contra pre cont., contra b cont.). Proof:
 - 1) Let $\mathcal{W}:\mathcal{H} \to \aleph$ is $\alpha-\text{cont.}$, Assume that k any an open set in \aleph , Let $V=\mathfrak{h}(k)$ and $U=\mathfrak{H}(V)$, whenever $\mathcal{W}^{-1}(k)=\mathfrak{H}(\mathfrak{h}(k))=U$ is $\mathfrak{D}-\text{in }\mathcal{H}$, then $\mathcal{W}^{-1}(k)=\mathfrak{D}-\text{in }\mathcal{H}$, but \mathfrak{f} is $\alpha-\text{identif.}$ then V is $\mathfrak{D}-\text{in }\mathcal{M}$. So $\mathfrak{h}(k)$ $\mathfrak{D}-\text{in }\mathcal{M}$, so \mathcal{G} is $\alpha-\text{cont.}$
 - 2) Assume that k any an $\mathfrak{D}-$ set in \aleph , Let $V=\mathfrak{h}(k)$ and $U=\mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(k)=\mathfrak{H}(k)=\mathfrak{H}(k)=U$, that is, U is $\mathfrak{D}-$ in \mathcal{H} , we get $\mathcal{W}^{-1}(k)=\mathfrak{D}-$ in \mathcal{H} , but \mathfrak{f} is $\alpha-$ identif. , then V is $\mathfrak{D}-$ in \mathcal{M} . whenever $\mathfrak{h}(k)$ $\mathfrak{D}-$ in \mathcal{M} . So \mathcal{G} is $\alpha-$ irresolute.
 - 3) Assume that k any an \mathfrak{D} set in Z, Let $V=\mathfrak{h}(k)$ and $U=\mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(k)=\mathfrak{H}(\mathfrak{h}(k))=U$ is $\mathfrak{D}-in\,\mathcal{H}$, then $\mathcal{W}^{-1}(k)=\mathfrak{D}-in\,\mathcal{H}$, but \mathfrak{f} is $\alpha-identif.$, then $V=\mathfrak{h}(k)$ is $\mathfrak{D}=in\,\mathcal{M}$, thus \mathcal{G} is contra $\alpha-cont$.

Definition 18:

" A function $f: \mathcal{H} \to \mathcal{M}$ is called β – identification if f is onto and U is \mathfrak{B} – in \mathcal{M} iff \mathfrak{H} (u) is \mathfrak{B} – in \mathcal{H} ".

"from figure (1) we get every b – identification is β – identification but the converse is not true". From instance 1: let $\mathfrak{f}:\mathcal{H}\to\mathcal{H}$ be defined by $\mathfrak{f}(d)=d$, $\mathfrak{f}(k)=k$, $\mathfrak{f}(p)=\mathcal{C}$, $\mathfrak{f}(\mathcal{O})=\mathcal{O}$,, $\mathfrak{f}(\mathcal{C})=p$

then \mathfrak{f} is b – identification but not pre – identification, since $\mathfrak{H}\{d, k, p\} = \{d, k, C\} \notin \mathfrak{P}(\mathcal{H})$.

Proposition 19:

A onto function $f: \mathcal{H} \to \mathcal{M}$ is called β – identification if U is $\mathfrak{B} = \operatorname{in} \mathcal{M}$ iff \mathfrak{H} (U) is $\mathfrak{B} = \operatorname{in} \mathcal{H}$.

Proof: If U subset of \mathcal{M} , $\mathfrak{B}=$ then U^c is $\mathfrak{B}-$ in \mathcal{M} , since \mathfrak{f} is $\beta-$ identification, so \mathfrak{H} (U) is $\mathfrak{B}=$ in \mathcal{H} , (by def. \mathfrak{f} is onto, $\big(\mathfrak{H}(U)\big)^c=\mathfrak{H}(U^c)$ is $\mathfrak{B}-$ in \mathcal{H} . Similarly

,if \mathfrak{H} (U) is $\mathfrak{B} =$, in \mathcal{H} , we get \mathfrak{H} (U) $\mathfrak{L} = \mathfrak{H}$ (U) is $\mathfrak{B} -$ in \mathcal{H} and \mathfrak{L} is $\mathfrak{L} = \mathfrak{L}$ in \mathcal{H} .

Assume that U be $\mathfrak{B} - in Y$ then U^c is $\mathfrak{B} = in \mathcal{M}$, whenever $(\mathfrak{H}(U))^c = \mathfrak{H}(U^c)$ is $\mathfrak{B} = in \mathcal{H}$, so $\mathfrak{H}(U)$ is $\mathfrak{B} - in \mathcal{H}$. Similarly,

if \mathfrak{H} (U) is $\mathfrak{B}=\operatorname{in}\mathcal{H}$, we get $\left(\mathfrak{H}\left(U\right)\right)^{c}=\mathfrak{H}\left(U^{c}\right)$ is $\mathfrak{B}=\operatorname{in}\mathcal{H}$, and then U^{c} is $\mathfrak{B}=$, so U is $\mathfrak{B}-$.

proposition 20:

If $\mathfrak{f}:\mathcal{H}\to\mathcal{M}$ is onto $\mathfrak{B}-(\mathfrak{B}=)$ and β – irresolute then \mathfrak{f} is β – identification.

Proof:

Assume that U is $\mathfrak{B} = \operatorname{in} \mathcal{H}$, $U \subseteq \mathcal{M}$, such that $\mathfrak{H}(U)$ is $\mathfrak{B} = \operatorname{in} \mathcal{H}$. whenever $(\mathcal{F}(U)) = U$, we get U is $\mathfrak{B} = \operatorname{in} \mathcal{H}$ (Since $\mathfrak{H}(U)$ is $\mathfrak{B} = \operatorname{in} \mathcal{H}$), and $\mathfrak{H}(U)$ is $\mathfrak{B} = \operatorname{in} \mathcal{H}(U)$, so U^c is $\mathfrak{B} - \operatorname{in} \mathcal{H}(U)$, and since $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$, thus by Proposition 19, then $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$ is $\mathfrak{H}(U)$.

Theorem 21: The below stated expressions are hold.

- 1- every identification is α identification.
- 2- every α identification is pre identification.
- 3- every pre identification is b identification.
- 4- every b identification is β identification.

Proof: obvious.

Remark: "the above examples show that the inverse theorem is not necessarily true."

Proposition 22:

"The composition of two β – identification functions is β – identification".

Proof:

Let $f: \mathcal{H} \to \mathcal{M}$, $\mathcal{G}: \mathcal{M} \to \aleph$ are β – identifications

"Whenever The compo. of two onto functions is onto".

,If U be any $\mathfrak{B}-\operatorname{in}\mathfrak{K}$, by hypo. \mathcal{G} , \mathfrak{f} are $\beta-$ identifications then \mathfrak{h} (U) is $\mathfrak{B}-\operatorname{in}\mathcal{M}$ and we have $\mathfrak{H}\left(\mathfrak{h}\left(U\right)\right)=(\mathcal{W})^{-1}(U)$ is $\mathfrak{B}-\operatorname{in}\mathcal{H}$, implies U is $\mathfrak{B}-\operatorname{in}\mathcal{H}$, thus \mathcal{W} is $\beta-$ identification.

Proposition23:

 $f: \mathcal{H} \to \mathcal{M}$, $g: \mathcal{M} \to \aleph$ be functions and f is β – identification then the following statement are valid:

- 1- If W is β cont. then G is β cont.
- 2- If W is β irresolute then G is β irresolute.
- 3- If $\mathcal W$ is contra β cont. then $\mathcal G$ is contra β cont. Proof :
 - 1) Let $\mathcal{W} \ f: \mathcal{H} \longrightarrow \aleph$ is $\beta-\text{cont.}$, Assume that k any an open set in \aleph , Let $V=\mathfrak{h}(k)$ and $U=\mathfrak{H}(V)$, we have $W^{-1}(k)=\mathfrak{H}(\mathfrak{h}(k))=U$ is $\mathfrak{B}-\text{in }\mathcal{H}$, then $\mathcal{W}^{-1}(k)=\mathfrak{B}-\text{in }\mathcal{H}$, but \mathfrak{f} is $\beta-\text{identification}$, then V is $\mathfrak{B}-\text{in }\mathcal{M}$. So $\mathfrak{h}(k)=\mathbb{B}-\text{in }\mathcal{M}$, thus \mathcal{G} is $\beta-\text{cont.}$
 - 2) Assume that k any an \mathfrak{B} set in \mathfrak{K} , Let $V = \mathfrak{h}(k)$ and $U = \mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(k) = \mathfrak{H}(k) = \mathfrak{H}(k) = \mathfrak{H}(k) = \mathfrak{H}(k)$, we get $\mathcal{W}^{-1}(k) = \mathfrak{H}(k) = \mathfrak{H}(k)$, but $\mathfrak{h}(k) = \mathfrak{h}(k) = \mathfrak{h}(k)$ and $\mathfrak{h}(k) = \mathfrak{h}(k)$, we have is $\mathfrak{h}(k) = \mathfrak{h}(k)$.

then V is \mathfrak{B} – in \mathcal{M} , thus \mathcal{G} is β – irresolute.

3) Assume that k any an $\mathfrak{B}-$ set in \aleph , Let $V=\mathfrak{h}(k)$ and $U=\mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(k)=\mathfrak{H}(\mathfrak{h}(k))=U$ is $\mathfrak{B}-$ in \mathcal{H} . So $\mathcal{W}^{-1}(k)=\mathfrak{H}$, but \mathfrak{f} is $\beta-$ identifi.,

, then $V = \mathfrak{h}$.

Remark : from the above discussion and known results we have the following implications .

identification \to α – identification \to pre – identification \to β – identification

figure (6)

Theorem 25: A function $f: \mathcal{H} \to \mathcal{M}$ is α – identification and \mathcal{M} is $\alpha - \mathfrak{I}_1$, then \mathcal{H} is $\alpha - \mathfrak{I}_1$. Proof: let $x, y \in \mathcal{H}$, $x \neq y$, since \mathcal{M} is $\alpha - \mathfrak{I}_1$, there exist $\mathfrak{D} - s$ ets M_1 and M_2 , Of \mathcal{M} such that $f(x) \in M_1$ and $f(y) \in M_2$, $f(y) \notin M_1$ and $f(x) \notin M_2$.

Since function $f: \mathcal{H} \to \mathcal{M}$ is α – identification , we have

 $x \in \mathfrak{H}(M_1), y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2), y \notin \mathfrak{H}(M_1)$

hence then \mathcal{H} is $\alpha - \Im_1$.

Theorem 26: A function $\mathfrak{f}:\mathcal{H}\to\mathcal{M}$ is pre – identification and \mathcal{M} is pre – \mathfrak{I}_1 , then \mathcal{H} is pre – \mathfrak{I}_1 .

Proof: let $x,y \in \mathcal{H}$, $x \neq y$, since \mathcal{M} is $pre - \mathfrak{T}_1$, there exist $\mathfrak{p} - \text{sets } M_1$ and M_2 , 0f \mathcal{M} such that $\mathfrak{f}(x) \in M_1$ and $\mathfrak{f}(y) \in M_2$, $\mathfrak{f}(y) \notin M_1$ and $\mathfrak{f}(x) \notin M_2$. Since function $\mathfrak{f}: \mathcal{H} \to \mathcal{M}$ is pre - identification, we have $x \in \mathfrak{H}(M_1)$, $y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2)$, $y \notin \mathfrak{H}(M_1)$ hence then \mathcal{H} is $pre - \mathfrak{T}_1$.

Theorem 27: A function $f: \mathcal{H} \to \mathcal{M}$ is b – identification and \mathcal{M} is b – \mathfrak{I}_1 , then \mathcal{H} is b – \mathfrak{I}_1 .

Proof: letx, $y \in \mathcal{H}$, $x \neq y$, since \mathcal{M} is $b - \mathfrak{I}_1$, there exist $b - \text{sets } M_1$ and M_2 , of \mathcal{M} such that $f(x) \in M_1$ and $f(y) \in M_2$, $f(y) \notin M_1$ and $f(x) \notin M_2$. Since function $f: \mathcal{H} \to \mathcal{M}$ is b - identification,

we have $x \in \mathfrak{H}(M_1)$, $y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2)$, $y \notin \mathfrak{H}(M_1)$ hence then \mathcal{H} is $b - \mathfrak{I}_1$.

Theorem 28 : A function $f: \mathcal{H} \to \mathcal{M}$ is β – identification and \mathcal{M} is $\beta - \mathfrak{I}_1$ then \mathcal{H} is $\beta - \mathfrak{I}_1$.

Proof: let $x,y \in \mathcal{H}$, $x \neq y$, since \mathcal{M} is $\beta - \mathfrak{T}_1$, there exist \mathfrak{B} – sets M_1 and M_2 , of \mathcal{M} such that $\mathfrak{f}(x) \in M_1$ and $\mathfrak{f}(y) \in M_2$, $\mathfrak{f}(y) \notin M_1$ and $\mathfrak{f}(x) \notin M_2$. Since function $\mathfrak{f}: \mathcal{H} \to \mathcal{M}$ is β – identification, we have $x \in \mathfrak{H}(M_1)$, $y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2)$, $y \notin \mathfrak{H}(M_1)$ hence then \mathcal{H} is $\beta - \mathfrak{T}_1$.

References:

- [1] Al-kutaibi,S.H.,"on some types of identification"Dep. Of mathematics university of tikreet .Tikreet univ.J.Sci. Vol 4.No.3. pp.49-59.(1998).
- [2] Al-omari,A. and Norrani,M.S., "some properties of contra b –continuous and almost contra b –continuous functions" Men.iac.sci.Kochi. univ. 22pp. 19-28 (2001).
- [3] Andrijevic, D. "On b- open sets", Mat. Bech., 48, pp.59-64 (1996).
- [4] Caldas, M., Jafari, S. "some properties of contra β -continuous functions "Men.iac.sci.Kochi. univ. 22, pp. 19-28 (2001).
- [5] El-Monsef, M.E. and elat " β open sets and β Continuous mappings " Bull. Fac. Sci. Assiut. univ. Vol. 12, pp. 77-90 ,(1983).
- [6] Jafari, S., Noiri, T. " contra Continuous functions between topological spaces " Iranian-Int., J.Sci., Volume 2, pp. 153-167, (2001).
- [7] Jafari,.S., Noiri,T. " on contra -pre Continuous functions " Bull.

Malaysian.Math.Sci.Soc. Volume 25, pp. 115-128,(2002).

- [8] Kar, A., and Bhattacharyya, P., "Some weak separation axioms", Bull. Calcutta Math. Soc. Vol. 82, PP. 415-422, (1990).
- [9]Levine, N. "Semi-open sets and semi continuity in topological spaces", Amer. Math. Monthly, vol. 70, Pp.36-41,(1963).

- [10] Maheshwair,S.N.,and Thakur ,S.S., "α-irresolute Mapping " Tamkang J. Math. Vol. 11, pp.209 -214,(1980).
- [11] Mahmoud , R.A .,and El-Monsef M.E.," β -irresolute and β -topological invariant" Proc. Pakistan Acad. Sci., Vol. 27 ,pp. 285–296 (1990).
- [12] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., "On precontinuous and weak precontinuous mappings "Pros. Math.
- Science Egypt, Vol.53,pp.47-53,(1982).
- [13] Mashhour, A.S., Hasonein, I.A., and El-Deeb, S.N., "α-Continuous and α-open Mapping) Acta. Math. Hunger Vol. 41, pp.213-218, (1983).
- [14] Mez'l, A.K., "On b-identification" Journal of Kufa for Mathematics and Computer vol. 1,NO.3,pp.76-80,(2011).
- [15] Mubarki ,A.M.,Al-rshudi ,M.,Al-juhani, M.A., "some properties of contra β^* open sets and β^* –continuity in topological spaces " Journal of Tabiah unive. For sci. Vol.8 ,pp. 142-148 (2014).
- [16] Mustafa J.M., "Some separation axioms by b- open sets", Mu'tah Lil- Buhuth wad-Dirasat, (20) (3), 57-63 (2005).
- [17] Njastad,O. "On some classes of nearly open sets" Pacific.J.Math.,15, pp. 961-970(1965).
- [18] Raman, T.C., Vidyottama K., K. Sharma, "α-Generalized & α-Separation Axioms for Topological Spaces" IOSR Journal of Math. Vol. 10, Issue 3 Ver. VI., PP 32-36 (2014).