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Abstract

This paper is concerned with the oscillation of all solutions of the n-th order

delay differential equation x™(t)+P(t) f (x(z(t)))=0, n>2 . The necessary and

sufficient conditions for oscillatory solutions are obtained and other conditions for

nonoscillatory solution to converge to zero are established.

1. Introduction

Consider the nonlinear differential
equation of order n with advanced
argument of the type:-

X (©)+P(®) f(x(z(1)))=0,

n>2 ,t>t, (1.0

Where the continuous function

P:[t,,) > RIS allowed to

oscillate, while the continuous

functions f:R—R, 7:[t,,©)—>R

satisfies the

following conditions :

H1:z(t) iscontinuous nondecreasing
7(t) > t, !im 7(t) = oo.

H2: f is nondecreasing such that
uf(u)>0 for u=0.

By a solution of eq. (1.1) we mean a

function x e C*([t,, ), R) which

satisfies eq. (1.1) for all t>t, where
sup{|x(t)| :t e[t,,0)}>0. A solution

is said to be non-oscillatory if it is
eventually of constant sign otherwise is
said oscillatory , eg. (1.1) is said
oscillatory if all of its solutions are
oscillatory. Many literatures studied
the oscillation of eq.(1.1) of first and
second order , and a few investigated
the higher order. One may see the
monographs due to Berezansky [1]
Stavrovlakis [2] Ladde [3],Rath and
Padhy [4],
Kiguradze,[6].

Kulenovic [5],

2. Mean Results
In this section we give some theorems
describe the oscillatory behavior of the

solutions of equation (1.1).
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Definition:- [see Kiguradze,[6] ]
Let u(t) eC"([0,),R) be of constant
sign and let u™ (t) be also of constant

sign and not equivalent to zero in any

interval

[T,0), T>0andu(t)u™ (t)<0 then
there exists t, >0 such that
u®(@), i=12,..,n-1 are of

constant sign on [t,,o) and there
exists an integer k € {135,...,n—1}
when n is even, or exists an integer
ke{0,24...,n—1}when n is odd

such that
u@)u®) >0

for 0<i<k on [t;,o)

)™ uu@ () >0, k+1<i<n-1t>t,

(2.1)

Such u(t) is said to be of degree k

The following

Lemma 6, Mohamad H. [7]

Lemma 1.Suppose that

S{U™ )+ P(t) f(u(z(t)))}sgn u(t) <0,
(2.2)

Where 6 =+1, P, f, r satisfies H1-H2

Lemma improve

, P(t)>0 and

thP(t)dtz 0 (2.3)

Then the following statements are true:
1- Let 6 =1 ifneven thenevery

possible non-oscillatory solution
of

653

(2.2) are of degree n-1. if n odd
then

every possible non- oscillatory

solution of (2.2) are either of

degree O or degree n-1.

2- Let 6 =-1, if neven then every

possible non oscillatory solution of
(2.2) are either of degree 0 or
degree n. if n odd then every
possible non oscillatory solution
of
(2.2) are of degree n.
Proof : See [7].
Other literatures study the case
when
the coefficient is constant see [8]-[10],
while Olach [11] study eq.(1.1) and
gives some sufficient conditions for
oscillation. Now we give the first result
in this paper.
Theorem (1) :Suppose that P(t)>0,

and

o0

j t"P(t)dt = oo, (2.4)

Then every bounded solution of (1.1) is

oscillatory if n even, and every

bounded solution are either oscillatory

or lim x(t) =0 if nisodd.
t—o0

Proof: Let x(t) is bounded

nonoscillatory solution of eq. (1.1) on

[to,oo) \Without loss of generality let
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X(t)>0 we have

[to , Oo)’

x™ (t) = —P(t) f (x(z(t)))<0

on

Consider the equality

" " n-1 » . (S_t)i—j
0= 2T
—(n(:lj?n_ll)j(u —1)" 1 x (u) du
Where s>t>t,.By using eq. (1.1)
the last equality leads to
- (50!

(i) t 1 i
X0 (1) = ;< T

(51 D _+1)|f (U= P(u) f (x(r(u)))du

X (s) +

xV(s) +

(2.5)
let n be even, since X(t) is positive
bounded and x™(t)<0 then x(t)

must be of degree 1, let j=1 then the

last equality reduce to :

X(t)= 2),

Integrate the last inequality from t, to

t where t>t, >t, we obtain

x(t) = 1)| _[(u t,)" " P(u) f (x(z(u))) du
(2.6)

Since X(t) is non-decreasing and

bounded, then

!imx(t):c>0, X(t)<c so we can
—©

find t, large enough such that.
% <x(z(t) <c and
f (x(z(1)) > f(%) —c, t>t, >t

j(u )" 2 P(u) f (x(z(u)))du =0

654

, Where ¢, is positive constant, as

t —oo we get from inequality (2.6)

j( u—t,)"TP(u)du ,

( —1)'
which is a contradiction with (2.4).
Now let n be odd, since x™(t)<0
then x(t) must be of degree 0 which
implies that Xx(t) is non-increasing,

from eq.(2.5) with j =0, we get :

)2 :jl(u ~)"™ P f (x(r(W))du,

t>t >t

Since x/(t) <0, and x(t) is bounded,

then lim x(t)=c>0, x(t)>c.
t—o0

if c20 then C>0, we can find

t,>t, large enough such that
X(z(t)) >c, and
f(x(z(t) = f(c)=¢ for
t >1,then

Cy
X =2 J(u ~t,)"'P(u) du

as t—oo we get a contradiction , so

either ¢ =0 or x(t) is oscillatory.

Theorem (2) :

and

Suppose that P(t) <0,

jt”‘llP(t)ldtzoo

(24)
If n even then every bounded solution

of (1.1) are either oscillatory or
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lim x(t) =0, and if n odd then every

t—o0

bounded solution of (1.1) are
oscillatory.
Proof: Let x(t) is non oscillatory

bounded solution of eq. (1.1) , t > t,
Without loss of generality let X(t)>0
on [t,,0), then

x™ (t) =—P(t) f (x(z(t)))=0
Let n be even , since X(t) is bounded
and x™ (t) >0, then X(t) must be of
degree 0, which implies that X(t) is

non-increasing and bounded hence
(2.5) reduce to

1 S
1)'.f(u

.[(U )" [P(u) | (x(z(u))) du

x(t) 2

X(t) > 1),

>0,
Let

t>t, (2.7)
lim x(t)=c>0, x(t)>c, Iif
t—o0
c#0 then ¢ >0, we can find t, >t,
large

enough such that Xx(z(t)) >c, and

f (x(z(t)))=> f(c)=c, >0 for
t>t, then (2.7) implies to
X(t,) > 1),1( u—t,)"" | P(u)|du

as t—oco we get a contradiction , so
either c=0 or X(t) is oscillatory.

Let n be odd, since X™(t) >0 then
X(t) must be of degree 1 which

implies that X(t) is non decreasing and

)" | P()| f (x(z(u)))du=>0

655

bounded, from eq.(2.5) with j =1, we
get:

X'(t) =

2),J.(u —0)"* [P)| f (x(z(u)))du

Integrate the last inequality from t, to

t where tx>=t >t, we obtain
x(t) 2 1),I( u—t)"" [P f(x(z(u)) du
>0, t>t, (2.8)

limx(t)=c>0, x(t)<c so we can
t—owo

find t, large enough such that.
C
> <x(zr(t))<c and
f (x(z(1)) > f(%) —c, t>t, >t

, Where c, is positive constant, and as

t —oo we get from inequality (2.8) a
contradiction.

Theorem (3)

Suppose that P(t)>0, and (2.3)
holds then if n is even every solutions
of (1.1) are oscillatory and if n is odd
every solutions of (1.1) are either

oscillatory or |im x(t) = 0.
t—o0

Proof: Let x(t) be non oscillatory
solution of (L1

X(t) >0, t>t,
x®(t) =—P(t) f (x(z(1)))<0,
x® (t)

If neven, then by Lemma 1 every non

and  say

then

are monotone i=01,...,n-1

oscillatory solution of (1.1) are of
degree n—1 , integrate eq.(1.1) from

stot s<t weget
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XD (1) = x"V(s) = j P(&) f(x(z(£)))ds, s<t

t
x("V(s) = [P(&) T (x(z(&))) d&,

(2.9)

consider the integral equality

t

[€ X&) dg =XV O -5 x" I 1) -t (t)

to

XD () + X" (O X" (1)

f (x(r(to)))]g“ P(£) d& <tg x"(t,) -t X" () +tx"2 ()

-t X2 (t) - X9 O+ X9 (t)

as t — oo and apply (2.3) it follows
that

im{tx2 @) -t2 x D) - x"D (1) }=0
t—oo

there is t; =2ty such  that

xR - X" ) -x"T®)=0, t=t

which implies that
M2y >tx" D), t=t,

j'{s XD (5) — 8% X" (5) - x I (s) s = t2 x" D (t,) -2 xA (1)

+3tX (1) - 3t, X (1) —4xI (1) + 4x"I (t,)

as t — oo we get

lim[3t X" () —t2 x" P (1) - 4x" () ] = 0

there is t, >t; such that

3t x("? (t) —12 (D (t) - 4x("9) t)=>0,t>t,
which implies that

M2 t) 2 tx" D), t=t,, follow

in this procures we get there is

t,_o >t,_3 such that

656

(2n=3)tx(t) —t*X'(t) - (n-1)° jx(s) ds>0,

t>t

which implies that

@n—-3)x() 2 tX'(t), t=ty o,

tn—1
then x(t) > P —

[12i-1)
i=1

x("D ¢y,

from the last inequality and (2.9) we

obtain

n—1

X(8) = — x" D (s)

1

(2i —1)
i=1
Sn—l

[P f(x(z(£)))d¢,

i=1

ICIGO))

I

POt ) | anapzy a
ﬁ(Zi—l) toea

as T — oo and according to (2.3) we

[&mrPe) de,
_1) s

X(t, 5) =

get a contradiction

Let n be odd, by Lemma 1 every non-
oscillatory solution of (1.1) are either
of degree 0 or of degree n-1.

Suppose X(t) is of degree 0, then
X(t) is positive decreasing and so it is
bounded and by Theorem 1 either

X(t) oscillatory or lim x(t) =0.
t—o0

Suppose X(t) is of degree n-1, in this

case the proof is similar when n even.
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Theorem (4)

Assume that P(t) <0, and

m>M >0
Lz

th | P(t) |dt = oo (2.3)

limsup

t—o0

== j( —5)" | P(s)|ds>1,
()

(2.10)
If n is even then every solution of (1.1)

are either oscillatory or lim x(t) =0,
t—o0

If n is odd then every solution of (1.1)
are oscillatory.
Proof : Let x(t) be non-oscillatory

solution of (1.1) and assume that

X(t) >0, t>t, hence

x™ () =—P(t) f (x(z(t)))<0,  then

X (t) are monotone i=01...,n—1
Let n be even, eq.(1.1) can be written

as

xP @)~ PE)| f (x(z(t)))=0,
so by Lemma 1 the only possible non-
oscillatory solution of (1.1) are either
of degree 0 or of degree n. Let x(t) be
of degree 0 ,then x(t) is positive non-
increasing so it is bounded then by

Theorem 1 x(t) is either oscillatory or

lim x(t) =0.
t—>o
Let x(t) be of degree n, using the

equality where &<t

657

X(t) = Z( ) x®(£) + 1)|-[(t )" XM (s)ds |

(n

x(t) = " 1), j( =) P(s)| T (x(z(s)) ds,

Let z(&)>t, t>&>t, |, hence

t

x(z(£) = I( =)' P(s)| f (x(z(s)) ds

(n 1)'
J( —8)" | P(s)| f (x(z(s))) ds

F(X(())) 4.
X((s))

12—
(n—- 1)'X(T(§))

L[ 9Pl

= |
(n=1)! N

M n-1
>(n]yj(—$ |P(s)lds

This contradicts (2.10).
Let n be odd, by Lemma 1 x(t) must

be of degree n, the prove is similar to
the case when n is even.

3. Remarks and Examples :

In this section we give some remarks
and examples to illustrate the obtained
results given in section 2

Remarkl. If we use the condition

sz >0 then
u

the

nondecreasing property of f(u)
needed not be necessary as we can see
in Theorem 4.

Remark2. We can use the condition

(2.10)  with %zm >0 to

excluded the non-decreasing property
of f(u) in Theorem 1-Theorem 3.

Remark3. The conclusion of Theorem
4 remains true if we replace (2,10) by

the condition
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L0 (2(8) —h(s)" 1
Ilrtrlionf { (n_1)! |q(s)|ds>€

where h(t) is continuous function
such that z(t) > h(t) >t.
Examplel. Consider the delay
differential equation:

6

O @y

f(x(z(t)=0, t>1

(E.1) with

6 8t?
p(t) T @aron? Fx(O)=1- 2t2 -1

satisfies H1,H2 and all the

conditions of Theorem 1, so all the

solutions of
equation (E.1) are either oscillatory or

tends to zero as t—oo for instance
2t-1. . .

X(t) = In(——) is such solution.
2t+1

Example 2.  Consider the delay
differential equation:

X"(t) + (a—sint) f (x(z(t)))=0, t >,

E.2

with

ax=1 P(t)=1-sint, f(x(z(t)))=-e"
it is easy to see that all conditions of
Theorem 1 or Theorem 3 are hold so
all solutions of equation (E.2) are

either oscillatory or lim x(t) =0, for
t—o0

. sint—cost
instance x(t)=-e"'(a+ T)

such oscillatory solution of (E.2).
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