

رنا بهجت ياسين رغد وميض فارس اسيل علاء عوض علي قسم الرياضيات – كلية التربية للبنات – جامعة تكريت The relationship between types of identifications

Rana B.t Yaseen

Raghad W. Faris

Assel A. Awad

Dep. of mathematics-College of education for women University of Tikrit.

الذلاصة : في هذا البحث تستخدم تعاريف المجموعات المفتوحة من انماط (α – open, pre – open, b – open, β – open) لتحديد تعاريف جديده لدوال المهوية في الفضاءات التبولوجية، اسميناها α – identification, pre – identification, b – identification , β – identification وناقشنا العلاقة فيما بينهم . وايضا "بعض صفات تلك الدوال دُرست وبُر هنت . الدالة المفتاحية :

 α – identification, pre – identification, b – identification , β – identification

Abstract

In this paper , used the definitions of (α – open , pre – open , $\,b$ –

open , β – open $\)$ sets in order to limit the identifications in topological space namely (α – identification, pre – identification , b – identification , β – identification) functions and we discuss the relationship between them , as well as several properties of these functions are proved.

Keyword :

 α – identification, pre – identification, b – identification

and β – identification

Introduction and Preliminaries:

The concept of continuous (α –continuous, pre –continuous

, b –continuous, β –continuous) function, irresolute($\alpha-$ irresolute , pre – irresolute , b – irresolute , $\beta-$ irresolute)function and

contra – continouous(contra – α – continouous, contra pre – continouous , contra – b – continouous, contra – β – continouous) have been introduced and investigated by Mashhour [12,13],Andrjevic [3],El-Monsef [5],(Maheshwair and Thakur) [10], (Jafaris and Noiri) [7,8] and Calda [4] respectively. By using" semi-, (α – , pre – , β –, b–) open sets " have been introduced and investigated by Levine [9],Njasted [18], Mashhour [12,13], Andrjevic [3], El-Monsef [5] respectively.

AL-kutabi [1] in 1996, introduces and studies some week identifications, the notion of semiidentification, Mazl [14] introduces the notion of b- identification. In this work, we study the concepts of types of identifications and discuss the relation between them. Also, we investigate it's relationship with other types of identifications.

"Throughout this paper \mathcal{H} , \mathcal{M} and \aleph , will denote topological spaces for a subset \mathcal{A} of space $(\mathcal{H}, \mathfrak{F})$, $\operatorname{int}(\mathcal{A})$, $\operatorname{cl}(\mathcal{A})$, denoted the interior and closure of a set \mathcal{A} , respectively ", and we indicate them by the following symbols : gof = \mathcal{W} , $\mathfrak{f}^{-1} = \mathfrak{H}$, $g^{-1} = \mathfrak{H}$, $f(\mathfrak{f}^{-1}) = \mathcal{F}$.

" A subset \mathcal{A} of a space \mathcal{H} is said to be:

- 1. α -open set [18](for short \mathfrak{D} -) if $\mathcal{A} \subseteq int(cl(int(\mathcal{A})))$. So \mathcal{A}^c called α closed (for short \mathfrak{D} =).
- 2. pre open set [12] (for short \mathfrak{p} –) if $\mathcal{A} \subseteq int(cl(\mathcal{A}))$. So \mathcal{A}^c called pre closed (for short $\mathfrak{p} =$).
- 3. β -Open set [5] (for short \mathfrak{B} -) if $\mathcal{A} \subseteq cl(int(cl(\mathcal{A})))$. So \mathcal{A}^c called β closed (for short \mathfrak{B} =).
- 4. b -open set [3] (for short $\mathfrak{b} \mathfrak{b} = (cl(int(\mathcal{A})) \cup int(cl(\mathcal{A})))$. So \mathcal{A}^c called b closed (for short $\mathfrak{b} = \mathfrak{b}$."

The family of all $(\mathfrak{D} -, \mathfrak{p} -, \mathfrak{B} -, \mathfrak{b} -)$ sets is denoted by $\mathfrak{DO}(\mathcal{H}), \mathfrak{pO}(\mathcal{H}), \mathfrak{BO}(\mathcal{H}), \mathfrak{bO}(\mathcal{H})$.

Remark : the diagram below shows the relationship between open sets .

open
$$\rightarrow \mathfrak{D} - \rightarrow \mathfrak{p} - \rightarrow \mathfrak{b} - \rightarrow \mathfrak{B} - \rightarrow \mathfrak{B}$$

figure (1)

" The converse of these implications are not true in general". Example 1 :

Let $\mathcal{H} = \{d, k, p, 0, C\}$ on $\mathfrak{I} = \{\mathcal{H}, \varphi, \{p, 0\}, \{d, k\}, \{d, k, p, 0\}\}$. Then

- A subset $\{d\}$ of \mathcal{H} is \mathfrak{p} but it does not \mathfrak{D} -.
- A subset $\{d, k, C\}$ of \mathcal{H} is \mathfrak{b} but it does not \mathfrak{p} -.
- A subset $\{p, C\}$ of \mathcal{H} is \mathfrak{B} -but it does not \mathfrak{b} .

"The following definitions and results were introduced and studied ".

Definition 2: "Let a function of a space \mathcal{H} into a space \mathcal{M} then:

- 1- \mathfrak{f} is called open (closed) function if the image of each open (closed) set in \mathcal{H} is open(closed) set in \mathcal{M} [6].
- 2- f is called D (D =) function if the image of each α open (D =) set in H is D (D =) set in M [13].
- 3- f is called p (p =) function if the image of each p (p =) set in H is p (p =) set in M [12].
- 4- f is called b (b =) function if the image of each b (b =) set in \mathcal{H} is b (b =) set in \mathcal{M} [3].
- 5- f is called B (B =) function if the image of each B (B =) set in H is B (B =) set in M [5]. "

Remark : the diagram below holds for a functions .

open fun.
$$\rightarrow \mathfrak{D} - \text{fun.} \rightarrow \mathfrak{p} - \text{fun.} \rightarrow \mathfrak{b} - \text{fun.} \rightarrow \mathfrak{B} - \text{fun.}$$

figure (2)

"Now by [3,5,12,13]and the following examples illustrate that The converse of these implication are not true in general".

Definition 3 : A function $f : \mathcal{H} \to \mathcal{M}$ is called:

- **1-** Acontinuous function if \mathfrak{H} of any open set in \mathcal{M} is a open set in \mathcal{H} [6].
- **2-** α -continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{D} -set in \mathcal{H} [13].
- **3-** pre –continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{p} set in \mathcal{H} [12].
- **4-** b –continuous function if \mathfrak{H} of any open set in \mathcal{M} is b in \mathcal{H} [2].
- 5- β -continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{B} -set in \mathcal{H} [5]. Remark : Mubarki in 2013 presented the following diagram that illustrates the relationship between the types of continuous functions . [15]

$$\operatorname{cont.} \to \alpha - \operatorname{cont.} \to \operatorname{pre} - \operatorname{cont.} \to \beta - \operatorname{cont.} \to \beta - \operatorname{cont.}$$

figure (3)

"The converse of these implications are not true in general and the following examples" . Example. 4:

Let $\mathcal{H} = \{d, k, p, 0, C\}$ on $\mathfrak{I} = \{\mathcal{H}, \varphi, \{p, d\}, \{d, k\}, \{d, k, p, d\}\}$ 1-Then, $\mathfrak{f} : \mathcal{H} \to \mathcal{H}$ defined by $\mathfrak{f}(d) = k$, $\mathfrak{f}(k) = d$, $\mathfrak{f}(p) = p$, $\mathfrak{f}(0) = k$, $\mathfrak{f}(C) = C$, is pre –continuous function but it is not α – cont. 2- Then, $\mathfrak{f} : \mathcal{H} \to \mathcal{H}$ defined by $\mathfrak{f}(d) = d$, $\mathfrak{f}(k) = k$, $\mathfrak{f}(p) = p$, $\mathfrak{f}(0) = 0$, $\mathfrak{f}(C) = k$, is b –cont. but it is not pre – cont.

3- Then, $f: \mathcal{H} \to \mathcal{H}$ defined by f(d) = p, f(k) = C, f(p) = d, f(O) = O, f(C) = k, is β -cont. but it is not b - cont. Definition 5: A mapping $f: \mathcal{H} \to \mathcal{M}$ is called irresolute function [10] (resp. α – irresolute [10], pre – irresolute [13], b – irresolute [3] β – irresolute [5]) if \mathfrak{H} (u) is open $(\mathfrak{D} -, \mathfrak{p} -, \mathfrak{b} -, \mathfrak{B} -)$ in \mathcal{H} for each open $(\mathfrak{D} -, \mathfrak{p} -, \mathfrak{b} -, \mathfrak{B} -)$ in \mathcal{M} . "Diagram (4)" : irresol. $\rightarrow \alpha$ – irresol. \rightarrow pre – irresol. \rightarrow b – irresol. \rightarrow β – irresol. generally speaking the opposite of the implication s is not necessarily true, as follows instance. Example 6 : Let $\mathcal{H} = \{d, k, p, 0, C\}$ on $\mathfrak{I} = \{\mathcal{H}, \varphi, \{p, 0\}, \{d, k\}, \{d, k, p, 0\}\}$ 1- Then, the $f: \mathcal{H} \to \mathcal{H}$ defined by f(d) = d, f(k) = p, f(p) = k, f(0) = 0, f(C) = C, is pre – irresol.and not α – irresol. 2- Then, the $f: \mathcal{H} \to \mathcal{H}$ defined by $f(\mathcal{A}) = \mathcal{A}, f(\mathcal{R}) = \mathcal{R}, f(\mathcal{P}) = \mathcal{C}, f(\mathcal{O}) = \mathcal{O}, f(\mathcal{C}) = \mathcal{P}$, is b - irresol. and not pre - irresol. 3- Then the $f: \mathcal{H} \to \mathcal{H}$ defined by f(d) = p, f(k) = k, f(p) = d, f(0) = C, f(C) = 0, is β – irresol. and not b – irresol. Definition 7 : A function $f: \mathcal{H} \to \mathcal{M}$ is called contra – continouous (resp.contra α – continouous , contra pre – continouous [6,7], contra b – continouous [2] contra β - continouous [4]), if $\mathfrak{H}(\mathfrak{u})$ is closed ($\mathfrak{D} = \mathfrak{p} = \mathfrak{g} = \mathfrak{g} = \mathfrak{g}$ in \mathcal{H} , for each open set u of \mathcal{M} . ."Diagram (5)" : contra – cont. \rightarrow contra α – cont. \rightarrow contra pre – cont. \rightarrow contra b – cot. \rightarrow contra β – cot. The examples show that the reversal of the chart is incorrect. Example 8: Let $\mathcal{H} = \{d, k, p, 0, C\}$ on $\mathfrak{T} = \{\mathcal{H}, \varphi, \{p, 0\}, \{d, b\}, \{d, k, p, 0\}\}$ 1-Then, $f: \mathcal{H} \to \mathcal{H}$ defined by $f(\mathcal{A}) = \mathcal{C}, f(\mathcal{R}) = \mathcal{R}, f(\mathcal{P}) = \mathcal{A}, f(\mathcal{O}) = \mathcal{O}, f(\mathcal{C}) = \mathcal{P}$. Iscontra pre – cont.but it is not contra α – cont. 2- Then, $f: \mathcal{H} \to \mathcal{H}$ defined by f(d) = p, f(k) = 0, f(p) = d, f(0) = k, f(C) = C. Is contra b - cont. but not contra pre - cont. 3-Then, $f: \mathcal{H} \to \mathcal{H}$ defined by $f(d) = d_1 f(k) = \mathcal{O}_1 f(p) = p_1 f(\mathcal{O}) = k_1 f(\mathcal{C}) = \mathcal{C}$. Is contra β – cont.but not contra b – cont. A Study of some new types of identifications: In this section, we introduce new definitions of $(\alpha - identification, pre - identification,$ b – identification, β – identification) functions by using $(\mathfrak{D} -, \mathfrak{p} -, \mathfrak{b} -, \mathfrak{B} -)$ sets and study the relations between them. Definition 9 : " A function $f : \mathcal{H} \to \mathcal{M}$ is called α – identification Iff f is onto and one of the following condition satisfies " --- U is $\mathfrak{D} - \operatorname{in} \mathcal{M}$ iff $\mathfrak{H}(\mathfrak{u})$ is $\mathfrak{D} - \operatorname{in} \mathcal{H}$. --- U is $\mathfrak{D} = \operatorname{in} \mathcal{M}$ iff $\mathfrak{H}(u)$ is $\mathfrak{D} = \operatorname{in} \mathcal{H}$. For example : Let $\mathcal{H} = \{d, k, p, 0\}$ and $\mathcal{M} = \{1, 2, 3\}$ be equipped with the topologies $\mathfrak{I}_{\mathcal{H}} =$ $\{\mathcal{H}, \varphi, \{k, p\}, \{d, k\}, \{k\}\}, \mathfrak{I}_{\mathcal{M}} = \{\varphi, \mathcal{M}, \{1, 2\}, \{2, 3\}, \{2\}\}$

If $f: \mathcal{H} \to \mathcal{M}$ defined by f(d) = 1, f(k) = 2, f(p) = 3, f(0) = 3.

we get f is α – identification. Proposition 10: Every α – irresolute and \mathfrak{D} –(\mathfrak{D} =) onto functions is α – identification. Proof : A f : $\mathcal{H} \to \mathcal{M}$, f(U) is \mathfrak{D} - since f is onto and \mathfrak{D} -, so $(\mathcal{F}(U)) = U$ is $\mathfrak{D} - .$ and $U \subseteq \mathcal{M}$. f is α – irresolute hanc $\mathfrak{H}(U)$ is \mathfrak{D} – in \mathcal{H} , so f is α – identification. While if : If $f: \mathcal{H} \to \mathcal{M}$ is onto, $\mathfrak{D} =$ and $\alpha -$ irresolute, Hence \mathfrak{H} (U) is \mathfrak{D} - , implies $(\mathfrak{H}(U))^c = \mathfrak{H}(U^c)$ is \mathfrak{D} = , which $(\mathcal{F}(U^c)) = (U^c)$ is \mathfrak{D} = , Since f is α – irresolute by def. so f is α – identification. p –in \mathcal{H} ". Definition11 : "A function $f : \mathcal{H} \to \mathcal{M}$ is called pre – identification if f is onto and U is \mathfrak{p} – in \mathcal{M} iff $f^{-1}(u)$ is $p - in \mathcal{H}$ ". Remark : from figure (1) we get every α – identification is pre – identification but the opposite is not true. As follows instance. $\mathcal{H} = \{d, k, p, 0, C\}$, $\mathcal{M} = \{d, k, p, 0\}$ be equipped with topologies $\mathfrak{I}_{x} = \{\mathcal{H}, \varphi, \{p, 0\}, \{d, k\}, \{d, k, p, 0\}\} \text{ and } \mathfrak{I}_{\mathcal{M}} = \{\varphi, Y, \{d, k\}, \{k, p\}, \{k\}\}.$ If $f: \mathcal{H} \to \mathcal{M}$ defined by f(d) = d, f(k) = k, f(p) = p, $f(\mathcal{O}) = \mathcal{O}$, $f(\mathcal{C}) = p$, we get f is pre – identification. Lemma 12 : A onto function $f: \mathcal{H} \to \mathcal{M}$ is called pre – identification, U is $\mathfrak{p} = \operatorname{in} \mathcal{M}$ iff $\mathfrak{H}(\mathbf{U})$ is $\mathfrak{p} = \operatorname{in} \mathcal{H}$. Proposition 13: Every pre – irresolute and p - (p =) ontofunctions is pre – identification Proof : from "figure (1,4)" every \mathfrak{D} – function is \mathfrak{p} –function and α – irresolute is pre – irresolute , by Proposition 10, we get every $\int \alpha$ – irresolute is pre – irresolute. Definition 14: " A function $f: \mathcal{H} \to \mathcal{M}$ is called b – identification if f is onto and one of the following condition satisfies " 1) U is $b - in \mathcal{M}$ iff $\mathfrak{H}(u)$ is $b - in \mathcal{H}$. 2) U is $b = in \mathcal{M}$ iff $\mathfrak{H}(u)$ is $b = in \mathcal{H}$. [3] "from figure (1) every p - is b - then for each pre - identification is b - identification." We note from an example 1: A $f: \mathcal{H} \to \mathcal{H}$ be defined by f(d) = d, f(k) = k, $f(p) = \mathcal{C}$, $f(\mathcal{O}) = \mathcal{O}$, $f(\mathcal{C}) = p$, then f is b – identification but not pre – identification, since $\mathfrak{H}{d, k, p} = \{d, k, C\} \notin$ $PO(\mathcal{H}).$ Proposition 15: If $f: \mathcal{H} \to \mathcal{M}$ is onto, b - (b =) and b -irresolute then f is b -identification. [3]. Proposition 16 : The composition of two, α –identification(pre – identification, b – identification) functions is α – identification(pre – identification, b – identification). Proof: Suppose that $f : \mathcal{H} \to \mathcal{M}$, $G : \mathcal{M} \to \aleph$ are α – identifications

"Whenever The compo. of two onto functions is onto ".

Now , if U be any \mathfrak{D} - in \mathfrak{R} , by hypo. \mathcal{G} , f are α - identifications then $\mathfrak{h}(U)$ is \mathfrak{D} - in \mathcal{M} and we have $\mathfrak{H}(\mathfrak{h}(U)) = (\mathcal{W})^{-1}(U)$ is $\mathfrak{D} - \operatorname{in} \mathcal{H}$. implies U is $\mathfrak{D} - \operatorname{in} \mathcal{H}$, thus \mathcal{W} is α – identification. Similarly ,to prove \mathcal{W} is (pre – identification, b – identification). Proposition 17 : A $f: \mathcal{H} \to \mathcal{M}$ and $\mathcal{G}: \mathcal{M} \to \aleph$ are functions and f is α – identification (pre – identification, b - identification) then the following statement are valid : 1- If \mathcal{W} is $\alpha - \text{cont.}$ (pre - cont., b - cont.) then G is $\alpha - \text{cont.}$ (pre - cont., b cont.). 2- If \mathcal{W} is α - irresolute (pre - irresolute, b - irresolute.) then \mathcal{G} is α irresolute . (pre - irresolute , b - irresolute). 3- If \mathcal{W} is contra α – cont. (contra pre – cont., contra b – cont.) then G is contra α – cont. (contra pre – cont., contra b – cont.). Proof : 1) Let $\mathcal{W} : \mathcal{H} \to \mathfrak{K}$ is $\alpha - \text{cont.}$, Assume that k any an open set in \mathfrak{K} , Let V = $\mathfrak{h}(k)$ and $U = \mathfrak{H}(V)$, whenever $\mathcal{W}^{-1}(k) = \mathfrak{H}(\mathfrak{h}(k)) = U$ is $\mathfrak{D} - \operatorname{in} \mathcal{H}$, then $\mathcal{W}^{-1}(\mathbf{k}) \quad \mathfrak{D} - \operatorname{in} \mathcal{H}$, but f is α – identif. then V is $\mathfrak{D} - \operatorname{in} \mathcal{M}$. So $\mathfrak{h}(k) \mathfrak{D} - \operatorname{in} \mathcal{M}$, so \mathcal{G} is $\alpha - \operatorname{cont}$. 2) Assume that k any an \mathfrak{D} - set in \aleph , Let $V = \mathfrak{h}(k)$ and $U = \mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(\mathbf{k}) = \mathfrak{H}(\mathfrak{h}(\mathbf{k})) = U$, that is, U is $\mathfrak{D} - in \mathcal{H}$, we get $\mathcal{W}^{-1}(\mathbf{k}) = \mathfrak{D} - in \mathcal{H}$, but f is α – identif. , then V is $\mathfrak{D} - \operatorname{in} \mathcal{M}$. whenever $\mathfrak{h}(k) \mathfrak{D} - \operatorname{in} \mathcal{M}$. So *G* is α – irresolute. 3) Assume that k any an \mathfrak{D} - set in Z, Let V = $\mathfrak{h}(k)$ and U = $\mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(\mathbf{k}) = \mathfrak{H}(\mathfrak{h}(\mathbf{k})) = U$ is $\mathfrak{D} - \operatorname{in} \mathcal{H}$, then $\mathcal{W}^{-1}(\mathbf{k}) = \mathfrak{D} - \operatorname{in} \mathcal{H}$, but \mathfrak{f} is $\alpha - \mathfrak{I}$ identif., then $V = \mathfrak{h}(k)$ is $\mathfrak{D} = \operatorname{in} \mathcal{M}$, thus \mathcal{G} is contra α - cont. Definition 18 : "A function $f: \mathcal{H} \to \mathcal{M}$ is called β – identification if f is onto and U is \mathfrak{B} – in \mathcal{M} iff $\mathfrak{H}(\mathbf{u})$ is $\mathfrak{B} - \operatorname{in} \mathcal{H}''$. " from figure (1) we get every b – identification is β – identification but the converse is not true". From instance 1: let $f : \mathcal{H} \to \mathcal{H}$ be defined by $\mathfrak{f}(d) = d, \ \mathfrak{f}(k) = k, \ \mathfrak{f}(p) = \mathcal{C}, \ \mathfrak{f}(\mathcal{O}) = \mathcal{O}, \ \mathfrak{f}(\mathcal{C}) = p$ then f is b – identification but not pre – identification, since $\mathfrak{H} \{d, k, p\} = \{d, k, C\} \notin \mathbb{R}$ $\mathfrak{pO}(\mathcal{H}).$ **Proposition 19:** A onto function $f: \mathcal{H} \to \mathcal{M}$ is called β - identification if U is $\mathfrak{B} = \operatorname{in} \mathcal{M}$ iff $\mathfrak{H} (U)$ is $\mathfrak{B} = \operatorname{in}$ \mathcal{H} . Proof : If U subset of \mathcal{M} , \mathfrak{B} = then U^c is \mathfrak{B} – in \mathcal{M} , since \mathfrak{f} is β – identification, so \mathfrak{H} (U) is $\mathfrak{B} = \operatorname{in} \mathcal{H}$, (by def. f is onto, $(\mathfrak{H}(U))^{c} = \mathfrak{H}(U^{c})$ is $\mathfrak{B} - \operatorname{in} \mathcal{H}$. Similarly , if $\mathfrak{H}(U)$ is $\mathfrak{B} = \mathfrak{H}$, we get $\mathfrak{H}(U)^c = \mathfrak{H}(U^c)$ is $\mathfrak{B} - \mathfrak{H}$ and \mathfrak{f} is β - identif., we get U is $\mathfrak{B} = \operatorname{in} \mathcal{M}.$ Assume that U be $\mathfrak{B} - in Y$ then U^c is $\mathfrak{B} = in \mathcal{M}$, whenever $(\mathfrak{H}(U))^{c} = \mathfrak{H}(U^{c})$ is $\mathfrak{B} = in \mathcal{H}$, so $\mathfrak{H}(U)$ is \mathfrak{B} – in \mathcal{H} . Similarly, if $\mathfrak{H}(U)$ is $\mathfrak{B} = \operatorname{in} \mathcal{H}$, we get $(\mathfrak{H}(U))^{c} = \mathfrak{H}(U^{c})$ is $\mathfrak{B} = \operatorname{in} \mathcal{H}$, مجلت الجامعت العراقيت ، العدد ۲/٤٢

and then U^{c} is $\mathfrak{B} = \mathbf{0}$, so U is $\mathfrak{B} - \mathbf{0}$.

proposition 20 :

```
If f : \mathcal{H} \to \mathcal{M} is onto \mathfrak{B} - (\mathfrak{B} =) and \beta – irresolute then f is \beta – identification.
```

Proof:

Assume that U is $\mathfrak{B} = \operatorname{in} \mathcal{H}$, U $\subseteq \mathcal{M}$, such that $\mathfrak{H}(U)$ is $\mathfrak{B} = \operatorname{in} \mathcal{H}$.whenever $(\mathcal{F}(U)) = U$, we get U is $\mathfrak{B} = \operatorname{in} \mathcal{H}$ (Since $\mathfrak{H}(U)$ is $\mathfrak{B} = \operatorname{in} \mathcal{H}$, and \mathfrak{f} is $\mathfrak{B} = \operatorname{in} \mathcal{H}$). , so U^c is $\mathfrak{B} - \operatorname{in} \mathcal{H}$, and since f is β - irresolute then $\mathfrak{H}(U)$ is $\mathfrak{B} - \operatorname{in} \mathcal{H}$, whenever f is onto $(\mathfrak{H}(U))^{c} = \mathfrak{H}(U^{c})$ imples $\mathfrak{H}(U)$ is $\mathfrak{B} - \operatorname{in} \mathcal{H}$, thus , by Proposition 19, then \mathfrak{f} is β – identification. Theorem 21 : The below stated expressions are hold. 1- every identification is α – identification. 2- every α – identification is pre – identification. 3- every pre – identification is b – identification. 4- every b – identification is β – identification. Proof : obvious. Remark : " the above examples show that the inverse theorem is not necessarily true ." Proposition 22 : "The composition of two β – identification functions is β – identification". Proof: Let $f: \mathcal{H} \to \mathcal{M}, \mathcal{G}: \mathcal{M} \to \aleph$ are β – identifications "Whenever The compo. of two onto functions is onto". , If U be any $\mathfrak{B} - \operatorname{in} \mathfrak{R}$, by hypo. G, f are β - identifications then $\mathfrak{h}(U)$ is $\mathfrak{B} - \operatorname{in} \mathcal{M}$ and we have $\mathfrak{H}(\mathfrak{h}(U)) = (\mathcal{W})^{-1}(U)$ is $\mathfrak{B} - \operatorname{in} \mathcal{H}$, implies U is $\mathfrak{B} - \operatorname{in} \mathcal{H}$, thus \mathcal{W} is β – identification. Proposition23 : $f: \mathcal{H} \to \mathcal{M}, \quad \mathcal{G}: \mathcal{M} \to \aleph$ be functions and f is β – identification the following statement are valid : 1- If \mathcal{W} is β – cont. then G is β – cont. 2- If \mathcal{W} is β – irresolute then G is β – irresolute. 3- If \mathcal{W} is contra β – cont. then G is contra β – cont. Proof: 1) Let $\mathcal{W} f: \mathcal{H} \longrightarrow \aleph$ is β – cont. , Assume that k any an open set in \aleph , Let V = $\mathfrak{h}(k)$ and $U = \mathfrak{H}(V)$, we have $W^{-1}(k) = \mathfrak{H}(\mathfrak{h}(k)) = U$ is $\mathfrak{B} - \operatorname{in} \mathcal{H}$, then $\mathcal{W}^{-1}(k) \quad \mathfrak{B} - \text{ in } \mathcal{H}, \text{but } \mathfrak{f} \text{ is} \beta - \text{ identification }, \text{ then } V \text{ is } \mathfrak{B} - \text{ in } \mathcal{M} \text{ .So } \mathfrak{h}(k)$ $\mathfrak{B} - \operatorname{in} \mathcal{M}$, thus \mathcal{G} is $\beta - \operatorname{cont}$. 2) Assume that k any an \mathfrak{B} – set in \aleph , Let $V = \mathfrak{h}(k)$ and $U = \mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(\mathbf{k}) = \mathfrak{H}(\mathfrak{h}(\mathbf{k})) = \mathbf{U}$, that is, $\mathbf{U}\mathfrak{B} - \mathrm{in}\mathcal{H}$, we get $\mathcal{W}^{-1}(\mathbf{k})$ $\mathfrak{B} - \mathrm{in}\mathcal{H}$, but f is β – identif. then V is \mathfrak{B} – in \mathcal{M} , thus \mathcal{G} is β – irresolute. 3) Assume that k any an \mathfrak{B} - set in \aleph , Let $V = \mathfrak{h}(k)$ and $U = \mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(\mathbf{k}) = \mathfrak{H}(\mathfrak{h}(\mathbf{k})) = \mathbf{U}$ is $\mathfrak{B} - \mathrm{in} \mathcal{H}$. So $\mathcal{W}^{-1}(\mathbf{k}) = \mathfrak{B} - \mathrm{in} \mathcal{H}$, but \mathfrak{f} is β – identifi.,

, then $V = \mathfrak{h}$.

Remark : from the above discussion and known results we have the following implications. identification $\rightarrow \alpha$ – identification \rightarrow pre – identification \rightarrow b – identification $\rightarrow \beta$ – identification figure (6)Definition 24 : " A space ($\mathcal{H}, \mathfrak{F}$) is said to be $\alpha - \mathfrak{F}_1$ (pre- $\mathfrak{F}_1, b - \mathfrak{F}_1, \beta - \mathfrak{F}_1$) [8,11,16, 18] iff for each a pair of distinct points $x, y \in \mathcal{H}$, each belongs to an $\mathfrak{D} - (\mathfrak{p} - \mathfrak{b} - \mathfrak{B} - \mathfrak{b})$ sets which does not contain the other. Theorem 25 : A function $f: \mathcal{H} \to \mathcal{M}$ is α – identification and \mathcal{M} is $\alpha - \mathfrak{I}_1$, then \mathcal{H} is $\alpha - \mathfrak{I}_1$. $Proof: let x, y \in \mathcal{H}, x \neq y \text{ ,since } \mathcal{M} \text{ is } \alpha - \mathfrak{I}_1 \text{,there exist } \mathfrak{D} - s \text{ ets } M_1 \text{ and } M_2 \text{ ,Of } \mathcal{M} \text{ such}$ that $f(x) \in M_1$ and $f(y) \in M_2$, $f(y) \notin M_1$ and $f(x) \notin M_2$. Since function $f: \mathcal{H} \to \mathcal{M}$ is α – identification , we have $x \in \mathfrak{H}(M_1), y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2), y \notin \mathfrak{H}(M_1)$ hence then \mathcal{H} is $\alpha - \mathfrak{I}_1$. Theorem 26 : A function $f: \mathcal{H} \to \mathcal{M}$ is pre – identification and \mathcal{M} is pre - \mathfrak{F}_1 , then \mathcal{H} is pre $-\mathfrak{I}_1$. Proof : let x, y $\in \mathcal{H}$, x \neq y,since \mathcal{M} is pre $-\mathfrak{I}_1$,there exist \mathfrak{p} - sets M_1 and M_2 , 0f \mathcal{M} such that $\mathfrak{f}(x) \in M_1$ and $\mathfrak{f}(y) \in M_2$, $\mathfrak{f}(y) \notin M_1$ and $\mathfrak{f}(x) \notin M_2$. Since function $\mathfrak{f}: \mathcal{H} \to \mathcal{M}$ is pre – identification, we have $x \in \mathfrak{H}(M_1)$, $y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2)$, $y \notin \mathfrak{H}(M_1)$ hence then \mathcal{H} is pre $-\mathfrak{I}_1$. Theorem 27: A function $f: \mathcal{H} \to \mathcal{M}$ is b – identification and \mathcal{M} is b – \mathfrak{I}_1 , then \mathcal{H} is $b - \Im_1$. Proof : letx, $y \in \mathcal{H}$, $x \neq y$, since \mathcal{M} is $b - \mathfrak{I}_1$, there exist $b - \text{sets } M_1$ and M_2 , of \mathcal{M} such that $f(x) \in M_1$ and $f(y) \in M_2$, $f(y) \notin M_1$ and $f(x) \notin M_2$. Since function $f: \mathcal{H} \to \mathcal{M}$ is b – identification, we have $x \in \mathfrak{H}(M_1)$, $y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2)$, $y \notin \mathfrak{H}(M_1)$ hence then \mathcal{H} is b – \mathfrak{I}_1 . Theorem 28 : A function $f: \mathcal{H} \to \mathcal{M}$ is β – identification and \mathcal{M} is $\beta - \mathfrak{I}_1$ then \mathcal{H} is $\beta - \mathfrak{I}_1$. Proof : let x, y $\in \mathcal{H}$, x \neq y, since \mathcal{M} is $\beta - \mathfrak{I}_1$, there exist \mathfrak{B} – sets M_1 and M_2 , of \mathcal{M} such that $f(x) \in M_1$ and $f(y) \in M_2$, $f(y) \notin M_1$ and $f(x) \notin M_2$. Since function $f: \mathcal{H} \to \mathcal{M}$ is $\beta - \beta$ identification, we have $x \in \mathfrak{H}(M_1)$, $y \in \mathfrak{H}(M_2)$ and $x \notin \mathfrak{H}(M_2)$, $y \notin \mathfrak{H}(M_1)$ hence then \mathcal{H} is $\beta - \mathfrak{I}_1$. **References:** [1] Al-kutaibi,S.H.,"on some types of identification"Dep. Of mathematics university of tikreet .Tikreet univ.J.Sci. Vol 4.No.3. pp.49-59.(1998). [2] Al-omari, A. and Norrani, M.S., "some properties of contra - b –continuous and almost contra - b --continuous functions" Men.iac.sci.Kochi. univ. 22pp. 19-28 (2001). [3] Andrijevic, D. "On b- open sets ", Mat. Bech., 48, pp.59-64 (1996). [4] Caldas, M., Jafari, S. "some properties of contra - β -continuous functions "Men.iac.sci.Kochi. univ. 22,pp. 19-28 (2001). [5] El-Monsef, M.E. and elat " β – open sets and β – Continuous mappings "Bull. Fac. Sci. Assiut. univ. Vol. 12, pp. 77-90,(1983). [6] Jafari, S., Noiri, T. " contra - Continuous functions between topological spaces " Iranian-Int., J.Sci., Volume 2, pp. 153-167, (2001). [7] Jafari, S., Noiri, T. " on contra -pre Continuous functions " Bull. Malaysian.Math.Sci.Soc. Volume 25, pp. 115-128,(2002). مجلت الجامعت العراقيت - العدد ٣/٤٢

[8] Kar,A., and Bhattacharyya,P., " Some weak separation axioms", Bull. Calcutta Math. Soc.Vol. 82,PP. 415-422, (1990).

[9]Levine, N. "Semi-open sets and semi - continuity in topological spaces", Amer. Math. Monthly, vol. 70, Pp.36-41,(1963).

[10] Maheshwair,S.N.,and Thakur ,S.S., "α-irresolute Mapping "Tamkang J. Math. Vol. 11, pp.209 -214,(1980).

[11] Mahmoud , R.A ., and El-Monsef M.E.," β -irresolute and β -topological invariant" Proc. Pakistan Acad. Sci., Vol. 27 ,pp. 285–296 (1990).

[12] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., "On precontinuous and weak precontinuous mappings "Pros.Math.

Science Egypt, Vol.53, pp.47-53, (1982).

[13] Mashhour, A.S., Hasonein, I.A., and El-Deeb, S.N., " α -Continuous and α -open Mapping)Acta. Math. Hunger Vol. 41, pp.213-218, (1983).

[14] Mez'l, A.K. ,"On b-identification" Journal of Kufa for Mathematics and Computer vol. 1,NO.3,pp.76-80,(2011).

[15] Mubarki ,A.M.,Al-rshudi ,M.,Al-juhani, M.A., "some properties of contra - β^* – open sets and β^* –continuity in topological spaces " Journal of Tabiah unive. For sci. Vol.8 ,pp. 142-148 (2014).

[16] Mustafa J.M., "Some separation axioms by b- open sets", Mu'tah Lil- Buhuth wad-Dirasat, (20) (3), 57-63 (2005).

[17] Njastad,O. "On some classes of nearly open sets"Pacific.J.Math.,15, pp. 961-970(1965). [18] Raman,T.C.,Vidyottama K., K. Sharma," α - Generalized & α - Separation Axioms for Topological Spaces" IOSR Journal of Math. Vol. 10, Issue 3 Ver. VI., PP 32-36 (2014).

