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    الخلاصة :

من انماط تعاريف المجموعات المفتوحةفي هذا البحث تستخدم    

 ( α − open , pre − open , b − open , β − open   ) 
 لتحديد تعاريف جديده لدوال الهوية في الفضاءات التبولوجية,  اسميناها 

  α − identification, pre − identification, b −   identification  , β − identification  
ل دُرست وبُرهنت . وناقشنا العلاقة فيما بينهم . وايضا "بعض صفات تلك الدوا  

 الدالة المفتاحية :

  𝛂 − 𝐢𝐝𝐞𝐧𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧, 𝐩𝐫𝐞 − 𝐢𝐝𝐞𝐧𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧, 𝐛 −   𝐢𝐝𝐞𝐧𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧  , 𝛃 − 𝐢𝐝𝐞𝐧𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 

 

Abstract  

 In this paper , used the definitions of ( α − open , pre − open , b −
open , β − open   )  sets  in order to limit the identifications in topological space namely 

( α − identification,   pre − identification , b − identification   , β − identification )  

functions and  we discuss the relationship between  them , as well as several properties of 

these functions are proved. 

Keyword :  

α − identification,   pre − identification, b − identification      
   and  β − identification  
Introduction  and  Preliminaries: 

The concept of continuous(α −continuous, pre −continuous   

, b −continuous, β −continuous ) function, irresolute( α −  irresolute , pre − irresolute , b −
 irresoljute , β −  irresolute )function and 

contra − continouous(contra −  α −  continouous,    contra pre −  continouous 

, contra − b − continouous , contra − β −  continouous)  have been introduced and  investigated 

by Mashhour [12 ,13 ],Andrjevic [ 3 ]  ,El-Monsef  [ 5],( Maheshwair and Thakur) [10  ], (Jafaris 

and Noiri) [ 7, 8]  and Calda  [ 4] respectively. By using" semi-, (α − , pre −  , β−, b− )   open sets 

" have been introduced and investigated by Levine [9],Njasted [18 ],  Mashhour [12,13  ], Andrjevic 

[ 3], El-Monsef [5 ] respectively. 

  AL-kutabi [ 1 ] in 1996  , introduces and studies  some week identifications , the notion of semi-

identification, Mazl [14] introduces  the notion of  b- identification.   In this work ,  we study the 

concepts of  types of  identifications and  discuss the relation between them .Also, we investigate it's 

relationship with other types of  identifications.  

"   Throughout this paper  ℋ  , ℳ 𝑎𝑛𝑑  ℵ ,will denote topological spaces for a subset 𝒜 of space 

(ℋ ,ℑ ), int(𝒜) , cl(𝒜)  , denoted the interior and closure of a set 𝒜 , respectively ", and  we indicate 

them by the following symbols ∶  gof = 𝒲 , 𝔣−1 = ℌ , 𝑔−1=𝔥 , 𝑓(𝔣−1) = ℱ. 

" A subset  𝒜 of a space  ℋ  is said to be: 

1. α −open set [18 ](for short 𝔇−)  if 𝒜 ⊆ int (cl(int(𝒜))). So 𝒜𝑐 called α − closed  (for 

short 𝔇 =). 

2. pre −open set [ 12 ] (for short 𝔭−) if 𝒜 ⊆ int(cl(𝒜)). So 𝒜𝑐 called pre − closed  (for short 

𝔭 =). 

3. β −Open set [ 5] (for short 𝔅−) if 𝒜 ⊆ cl (int(cl(𝒜))). So 𝒜𝑐 called β − closed  (for short  

𝔅 =). 

4. b −open set [ 3] (for short 𝔟 − ) if 𝒜 ⊆ (cl(int(𝒜)) ∪ int(cl(𝒜)) . So 𝒜𝑐 called b −

closed  (for short   𝔟 =)." 
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The family of all ( 𝔇 − , 𝔭 − , 𝔅 −, 𝔟 − )sets is  denoted 

by 𝔇𝑂(ℋ) , 𝔭O(ℋ) , 𝔅O(ℋ), 𝔟O(ℋ)  . 

Remark : the diagram below shows the relationship between open sets . 
open ⟶  𝔇−  ⟶  𝔭− ⟶   𝔟− ⟶ 𝔅 − 

figure (1) 

 " The converse of these implications are not true in general". 

Example 1 : 

  Let  ℋ = {𝒹, 𝓀, 𝓅, 𝒪, 𝒞} on  ℑ = {ℋ, φ, {𝓅, 𝒪}, {𝒹, 𝓀}, {𝒹, 𝓀, 𝓅, 𝒪} }. 

Then 

- A subset {𝒹}  of ℋ is   𝔭 − but it does not 𝔇 −. 
- A subset {𝒹, 𝓀, 𝒞}  of ℋ  is   𝔟 −   but it does not 𝔭 −. 
- A subset {𝓅, 𝒞}  of ℋ is 𝔅 −but it does not 𝔟 −   . 

The following definitions and results were introduced and studied "." 

Definition  2: "Let a function of a space ℋ into a space ℳ then: 

1- 𝔣  is called open (closed ) function if the  image of each open (closed )  set in ℋ is open(closed ) 

set in ℳ  [ 6].  

2- 𝔣  is called 𝔇 −  (𝔇 =) function if the  image of each α − open (𝔇 =)  set in ℋ is 𝔇 −  (𝔇 =) set 

in ℳ  [13 ].  

3- 𝔣  is called 𝔭 − ( 𝔭 =) function if the  image of each 𝔭 −  ( 𝔭 =)  set in ℋ is 𝔭 − ( 𝔭 =) set in ℳ  

[12 ].  

4- 𝔣  is called 𝔟 −  (𝔟 =) function if the  image of each 𝔟 −  (𝔟 = )  set in ℋ is 𝔟 – (𝔟 =) set in ℳ  [ 3].  

5- 𝔣  is called 𝔅 − (𝔅 =) function if the  image of each 𝔅 − (𝔅 =)  set in ℋ is 𝔅 −(𝔅 =  ) set in ℳ  

[ 5]. "  

Remark : the diagram  below holds for a functions . 
open fun. ⟶  𝔇 − fun. ⟶ 𝔭 − fun. ⟶   𝔟 −  fun. ⟶ 𝔅 −  fun. 

 ( 2  ) figure 

"Now by [ 3,5,12,13 ]and the following examples illustrate that The converse of these implication are 

not true in general" .  

Definition 3  : A function  𝔣 ∶ ℋ ⟶ ℳ is called: 

1- Acontinuous function if  ℌ of any  open set in ℳ is a open set in  ℋ [6 ].  

2- α −continuous function if ℌ of any open set in ℳ  is 𝔇 −set in ℋ [13]. 

3-  pre −continuous function if ℌ of any open set in ℳ is 𝔭 − set in  ℋ [12].  

4- b −continuous function if ℌ of any open set in ℳ is 𝔟 − in ℋ [2].   

5- β −continuous function if ℌ of any open set in ℳ is 𝔅 −set in ℋ [ 5]. 

Remark :  Mubarki in 2013  presented the following diagram that illustrates the  relationship 

between the  types of continuous functions . [ 15] 

cont. ⟶  α − cont. ⟶  pre − cont. ⟶   b − cont. ⟶ β − cont. 
figure (3) 

"The converse of these implications are not true in general and the following examples" . 

Example.  4:  

 Let  ℋ = {𝒹, 𝓀, 𝓅, 𝒪, 𝒞}     on  ℑ = {ℋ, φ, {𝓅, d}, {𝒹, 𝓀}, {𝒹, 𝓀, 𝓅, d} } 

1-Then ,  𝔣 ∶ ℋ ⟶ ℋ defined by 𝔣 (𝒹) = 𝓀, 𝔣(𝓀) = 𝒹, 𝔣 (𝓅) = 𝓅, 𝔣(𝒪) = 𝓀, 𝔣 (𝒞) =  𝒞 , 

is pre −continuous function but it is not α − cont.  
2- Then ,  f: ℋ ⟶ ℋ defined by𝔣 (𝒹) = 𝒹, 𝔣 (𝓀) = 𝓀, 𝔣(𝓅) = 𝓅, 𝔣 (𝒪) = 𝒪 , 𝔣 (𝒞) = 𝓀 , is b −cont. 

but it is not pre − cont.  
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3- Then, 𝔣 ∶ ℋ ⟶ ℋ defined by 𝔣 (𝒹) = 𝓅, 𝔣(𝓀) = 𝒞, 𝔣(𝓅) = 𝒹 , 𝔣(𝒪) = 𝒪 , 𝔣 (𝒞) = 𝓀 , is β −cont. 

but it is not b − cont.  
Definition  5 : 

 A mapping    𝔣 ∶ ℋ ⟶ ℳ is called irresolute function[ 10] (resp.α −  irresolute [ 10], pre −
irresolute[ 13], b − irresolute [ 3 ]β −  irresolute[ 5]) if ℌ (u)  is  open(𝔇 −, 𝔭 − ,𝔟−  , 𝔅−)in  ℋ 

for each open (𝔇 − , 𝔭 − ,𝔟−, 𝔅−) in  ℳ . 

"Diagram (4)"  :  

irresol.  →   α − irresol.→  pre − irresol. →  b − irresol. →  β − irresol.  
generally speaking ,the opposite of the implication s is not  

necessarily true , as follows instance .  

Example 6  : 

Let   ℋ = {𝒹, 𝓀, 𝓅, 𝒪, 𝒞}   on ℑ = {ℋ, φ, {𝓅, 𝒪}, {𝒹, 𝓀}, {𝒹, 𝓀, 𝓅, 𝒪} } 

1-  Then , the 𝔣 ∶ ℋ ⟶ ℋ defined by 𝔣(𝒹) = 𝒹, 𝔣 (𝓀 ) =  𝓅, 𝔣 (𝓅) = 𝓀 , 𝔣 (𝒪) = 𝒪, 𝔣 (𝒞) = 𝒞 

,is pre − irresol.and  not α − irresol . 
2- Then , the  𝔣: ℋ ⟶ ℋ defined by 𝔣(𝒹) = 𝒹, 𝔣 (𝓀 ) =  𝓀, 𝔣 (𝓅) = 𝒞 , 𝔣 (𝒪) = 𝒪, 𝔣 (𝒞) = 𝓅  , 

is b − irresol. and  not pre − irresol . 
3- Then  the  𝔣 ∶ ℋ ⟶ ℋ defined by 𝔣(𝒹) = 𝓅 , 𝔣(𝓀) = 𝓀,  𝔣 (𝓅) = 𝒹 , 𝔣 (𝒪) = 𝒞, 𝔣 (𝒞) = 𝒪  , 

is β − irresol.  and  not b − irresol . 
Definition  7  : 

 A function  𝔣 ∶ ℋ ⟶ ℳ is called contra − continouous    

(resp.contra α −  continouous , contra pre −   continouous [ 6,7 ], contra b −
continouous [ 2]contra β −  continouous[ 4]) , if  ℌ (u)  is  closed (𝔇 =  , 𝔭 = ,𝔟 =  , 𝔅 =) in ℋ 

,for each  open set u of ℳ . 

Diagram (5)"  :" . 

contra − cont. ⟶  contra α −  cont. ⟶ contra pre –  cont. ⟶   contra b − cot.
⟶ contra β − cot.   

The examples show that the reversal of the chart  is incorrect .    

Example  8 : 

  Let ℋ = {𝒹, 𝓀, 𝓅, 𝒪, 𝒞} on   ℑ = {ℋ, φ, {𝓅, 𝒪}, {𝒹, b}, {𝒹, 𝓀, 𝓅, 𝒪} } 

 1-Then ,  𝔣 ∶ ℋ ⟶ ℋdefined by  𝔣(𝒹) = 𝒞, 𝔣 (𝓀) = 𝓀, 𝔣 (𝓅) = 𝒹, 𝔣 (𝒪) = 𝒪, 𝔣 (𝒞) = 𝓅 . 

Iscontra pre –  cont.but it is not contra α −  cont. 
2- Then ,  𝔣 ∶ ℋ ⟶ ℋ defined by 𝔣 (𝒹) = 𝓅, 𝔣 (𝓀) = 𝒪, 𝔣 (𝓅 ) = 𝒹, 𝔣 (𝒪) = 𝓀, 𝔣 (𝒞) = 𝒞  . 

Is  contra b − cont .but not contra pre –  cont. 
3-Then ,  𝔣 ∶ ℋ ⟶ ℋ defined by 𝔣(𝒹) = 𝒹, 𝔣 (𝓀) = 𝒪, 𝔣 (𝓅) = 𝓅, 𝔣 (𝒪) = 𝓀, 𝔣 (𝒞) = 𝒞  . 

Is contra β − cont.but  not  contra b − cont. 
   A Study of some new types of identifications: 

In this section,  we  introduce new definitions of (α − identification, pre –  identification, 

b − identification, β − identification)  functions by using (𝔇 −, 𝔭 −,𝔟−   , 𝔅−) sets and study 

the relations between them .  

Definition 9 : " A function   𝔣 ∶ ℋ ⟶ ℳ is called α − identification Iff 𝔣  is onto and one of the 

following condition satisfies " 

--- U   is  𝔇 −  in ℳ  iff  ℌ(u) is 𝔇 − in ℋ. 
---  U   is  𝔇 =in ℳ  iff  ℌ (u) is 𝔇 = in ℋ. 

 For example :  Let  ℋ = {𝒹, 𝓀, 𝓅, 𝒪}  and ℳ = {1,2,3 }  be equipped with the topologies   ℑℋ =
{ℋ, φ, {𝓀, 𝓅}, {𝒹, 𝓀}, {𝓀} } ,ℑℳ = {φ, ℳ , {1,2}, {2,3}, {2}}  

If    𝔣 ∶ ℋ ⟶  ℳ defined by 𝔣 (𝒹) = 1, 𝔣 (𝓀) = 2, 𝔣 (𝓅) = 3, 𝔣 (𝒪) =  3  .      
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we get  𝔣  is α − identification. 
Proposition 10 :  

  Every α − irresolute and 𝔇 −(𝔇 = ) onto functions is α − identification. 

Proof  : A 𝔣 ∶ ℋ ⟶  ℳ,  𝔣(U) is 𝔇 −  since 𝔣  is onto and  𝔇 −, 

 so (ℱ(U)) = U is 𝔇 −  .  and  U ⊆  ℳ. 

 𝔣 is α − irresolute hanc  ℌ(U) is 𝔇 −  in  ℋ,   so 𝔣  is α − identification. 

While if  : 

If   𝔣 ∶ ℋ ⟶  ℳ is onto , 𝔇 = and α − irresolute , 

Hence ℌ  (U) is 𝔇 − ,  implies (ℌ (U))c = ℌ (Uc) is 𝔇 = , which (ℱ(Uc)) = (Uc) is 𝔇 =, 

Since 𝔣  is α − irresolute by def. so 𝔣  is α − identification. 𝔭 −in ℋ". 

Definition11  :  

" A function   𝔣 ∶ ℋ ⟶ ℳ is called pre − identification if   𝔣   is onto and  U   is  𝔭 −  in ℳ  iff  

f −1(u) is 𝔭 − in ℋ ". 

Remark :  from  figure (1) we get every α − identification is pre – identification but the 

opposite  is not true . 

As follows  instance . 

    ℋ = {𝒹, 𝓀, 𝓅, 𝒪, 𝒞}   , ℳ = {𝒹, 𝓀, 𝓅, 𝒪 }  be equipped with  topologies   

ℑx = {ℋ, φ, {𝓅, 𝒪}, {𝒹, 𝓀}, {𝒹, 𝓀, 𝓅, 𝒪} } and ℑℳ = {φ, Y, {𝒹, 𝓀}, {𝓀, 𝓅}, {𝓀}}. 

If   𝔣 ∶ ℋ ⟶ ℳ  defined by 𝔣 (𝒹) = 𝒹, 𝔣(𝓀) = 𝓀, 𝔣 (𝓅) = 𝓅, 
𝔣(𝒪) = 𝒪  , 𝔣(𝒞) = 𝓅, we get 𝔣  is pre − identification. 

Lemma 12 : A onto function  𝔣 ∶ ℋ ⟶ ℳ is called pre – identification , U   is  𝔭 =  in ℳ  iff  

ℌ (U) is 𝔭 =in ℋ.  

Proposition  13 :  

  Every pre − irresolute and 𝔭 − (𝔭 =) ontofunctions is pre − identification 

Proof  : 

   from " figure (1 ,4)"  every   𝔇 −  function is   𝔭 −function and α − irresolute   is 

pre – irresolute  ,   by Proposition 10 ,  we get every 𝔣   α − irresolute is  pre − irresolute.  

Definition  14:  

" A function   𝔣: ℋ ⟶ ℳ is called b − identification   if  𝔣  is onto and one of the following 

condition satisfies " 

       1) U   is 𝔟 − in ℳ iff  ℌ (u) is 𝔟 − in ℋ. 
 2)  U   is  𝔟 = in ℳ iff  ℌ (u) is 𝔟 = in ℋ. [ 3  ] 

"from  figure  (1) every 𝔭 −  is   𝔟 −  then for each pre  – identification is b − identification. "     

example  1 : We note from an 

     A  𝔣 ∶ ℋ ⟶ ℋ    be defined by 𝔣(𝒹) = 𝒹, 𝔣 (𝓀) = 𝓀, 𝔣 (𝓅) = 𝒞 , 𝔣(𝒪) =  𝒪  , 𝔣 (𝒞) = 𝓅 , 
then 𝔣  is b − identification but not pre − identification, since ℌ{𝒹, 𝓀, 𝓅} = {𝒹, 𝓀, 𝒞} ∉
PO(ℋ). 

 Proposition  15 :  

If   𝔣 ∶ ℋ ⟶ ℳ is onto , 𝔟  − (𝔟 =  )  and b − irresolute   then  𝔣  is  b − identification. [ 3 ]. 

Proposition 16  : 

  The composition of two, α −identification( pre − identification, b − identification) 

functions is  α − identification(pre − identification, b − identification). 

Proof : 

Suppose that 𝔣 ∶ ℋ ⟶ ℳ , 𝒢: ℳ ⟶ ℵ are α − identifications 

Whenever The compo. of two onto functions is onto ".  " 
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 Now ,if U be  any 𝔇 −in  ℵ , by hypo. 𝒢 , 𝔣  are α − identifications  then 𝔥 (U) is  𝔇 −  in ℳ 

and we have ℌ (𝔥 (U)) = (𝒲)−1(U) is  𝔇 − in ℋ. implies U is  𝔇 −  in ℋ , thus 𝒲  is 

α − identification.  

Similarly ,to prove   𝒲  is (pre − identification, b − identification). 

Proposition 17  : 

A 𝔣: ℋ ⟶ ℳ and    𝒢 ∶ ℳ ⟶ ℵ    are  functions and 𝔣  is α − identification ( pre −
identification, b − identification) 

then  the following statement are valid : 

1- If  𝒲  is  α − cont. (pre − cont., b − cont. )then 𝒢 is α − cont. (pre − cont., b −
cont. ).  

2- If  𝒲 is  α − irresolute  (pre − irresolute , b − irresolute . )then 𝒢 is α −
irresolute . (pre − irresolute , b − irresolute ).  

3- If  𝒲 is contra α −  cont. (contra pre − cont., contra b − cont. ) 

then 𝒢 is contra α −  cont. (contra pre − cont.,contra  b − cont. ). 

Proof :  

1) Let 𝒲  : ℋ ⟶ ℵ is α − cont. , Assume  that  k any  an open set in ℵ , Let V  = 

𝔥 (k)    and  U=  ℌ (V) , whenever   𝒲−1 (k) = ℌ (𝔥 (k)) =U is 𝔇 −  in ℋ , then   

𝒲 −1 (k)    𝔇 − in ℋ ,but 𝔣  is α − identif.    
then V is  𝔇 −  in ℳ .So 𝔥( k)  𝔇 −  in ℳ , so  𝒢  is α − cont. 

2)  Assume  that  k any  an 𝔇 −  set in ℵ , Let V  = 𝔥 (k)    and  U=  ℌ (V) , we have  

𝒲 −1 (k) = ℌ (𝔥 (k)) =U ,that is, U is𝔇 −  in  ℋ,  we get   𝒲−1 (k)    𝔇 −  in ℋ,but  

𝔣  is α − identif .  
 , then V is   𝔇 − in ℳ . whenever  𝔥 (k)  𝔇 −in ℳ .  

 So 𝒢  is  α − irresolute . 

3) Assume  that  k any  an 𝔇 − set in Z , Let V  = 𝔥 (k)   and  U=   ℌ( V),      we have  

𝒲−1 (k) =  ℌ(𝔥 (k)) =U is 𝔇 − in ℋ,  then  𝒲−1 (k)    𝔇 −in ℋ ,but  𝔣  is α −
identif.    , then V  = 𝔥 (k)  is    𝔇 =   in ℳ , thus 𝒢 is contra α − cont. 

Definition 18  :  

" A function   𝔣: ℋ ⟶ ℳ is called β − identification if    𝔣  is onto and  U   is  𝔅 −  in ℳ  iff  

ℌ (u) is 𝔅 −  in ℋ". 

" from  figure (1) we get every b − identification is β – identification but the converse is not 

true".  From instance 1: let 𝔣 ∶ ℋ ⟶ ℋ be defined by 

𝔣(𝒹) = 𝒹, 𝔣(𝓀) = 𝓀, 𝔣 (𝓅) = 𝒞 , 𝔣(𝒪) =  𝒪 ,, 𝔣(𝒞) = 𝓅  

then 𝔣  is b − identification but not pre − identification, since ℌ {𝒹, 𝓀, 𝓅} = {𝒹, 𝓀, 𝒞} ∉
𝔭O(ℋ). 
Proposition 19: 

 A onto function   𝔣 ∶ ℋ ⟶ ℳ is called β – identification if   U is  𝔅 =in ℳ  iff  ℌ (U) is 𝔅 =  in 

ℋ.  

Proof  :   If  U subset of ℳ , 𝔅 = then Uc is 𝔅 − in ℳ, since  𝔣  is β − identification, so ℌ (U) is 

𝔅 = in ℋ ,(by def.  𝔣   is onto , (ℌ (U))
c

= ℌ (Uc) is 𝔅 − in ℋ .   Similarly  

,if ℌ (U) is 𝔅 = ,  in ℋ, we get ℌ (U)c = ℌ(Uc) is 𝔅 −   in ℋ and  𝔣  is β − identif.  ,  we get   U is 

𝔅 = in ℳ. 

Assume that U be  𝔅 −  𝑖n Y then Uc is 𝔅 = in ℳ, whenever (ℌ (U))
c

= ℌ (Uc) is 𝔅 = in ℋ, so  

ℌ (U) is 𝔅 − in ℋ.    Similarly, 

 if ℌ (U) is 𝔅 = in ℋ , we get (ℌ (U))
c

= ℌ (Uc) is 𝔅 = in ℋ , 
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and  then  Ucis 𝔅 =   ,  so U is 𝔅 − . 

proposition 20 : 

If  𝔣 ∶ ℋ ⟶ ℳ is onto ,𝔅 − ( 𝔅 = )  and β − irresolute then 𝔣 is β − identification. 

 

Proof : 

Assume that  U is 𝔅 =   in ℋ  ,  U⊆ ℳ  , such that ℌ (U) is 𝔅 = in ℋ .whenever     

 (ℱ(U))= U ,we get U is 𝔅 =   in ℋ  ( Since ℌ (U) is 𝔅 =in ℋ, ,and 𝔣  is 𝔅 = in  ℋ). 

 ,so Uc is 𝔅 − in ℋ , and since 𝔣  is  β − irresolute then  ℌ (U)𝑖𝑠  𝔅 − in  ℋ, whenever 𝔣  is 

onto (ℌ(U))
c

= ℌ (Uc)     imples  ℌ(U)   is 𝔅 − in ℋ,  thus ,by Proposition 19 , then  𝔣  is 

β − identification. 
Theorem   21  :   The below  stated expressions are hold . 

1- every identification  is α − identification. 

2- every α − identification  is pre − identification. 

3- every pre − identification  is b − identification. 

4- every b − identification is  β − identification.  

Proof :  obvious. 

Remark : " the above examples show that the inverse theorem is not necessarily true ."  

Proposition 22  : 

"The composition of two β − identification functions is  β − identification". 

Proof:  

 Let  𝔣 ∶ ℋ ⟶ ℳ , 𝒢 ∶ ℳ ⟶ ℵ are β − identifications 

Whenever The compo.  of two onto functions is onto" .  " 

 ,If  U be  any  𝔅 − in ℵ , by hypo. 𝒢, 𝔣  are β − identifications  then 𝔥 (U) is   𝔅 − in ℳ and 

we have ℌ (𝔥 (U)) = (𝒲)−1(U) is   𝔅 −  in ℋ , implies U is   𝔅 − in ℋ,  thus 𝒲  is  

β − identification. 
Proposition23  :   

 𝔣: ℋ ⟶ ℳ ,    𝒢: ℳ ⟶ ℵ   be functions and 𝔣  is β − identificationthen  the following 

statement are valid : 

1- If 𝒲  is  β − cont. then 𝒢 is β − cont.  
2- If 𝒲  is  β − irresolute  then 𝒢 is β − irresolute .  
3- If 𝒲  is  contra β −  cont.   then 𝒢  is contra β −  cont.  

Proof :  

1 ) Let 𝒲  f : ℋ ⟶ ℵ is β − cont. , Assume  that  k any  an open set in ℵ , Let V  = 

𝔥 (k)    and  U=  ℌ(V) , we have  W−1 (k) = ℌ(𝔥 (k)) =U is 𝔅 − in ℋ , then   

𝒲 −1 (k)    𝔅 −   in ℋ,but 𝔣 isβ − identification    , then V is  𝔅 − in ℳ .So 𝔥 (k)    

𝔅 −  in ℳ , thus 𝒢   is β − cont. 
2) Assume  that  k any  an 𝔅 − set in ℵ , Let V  = 𝔥 (k)    and  U=  ℌ (V) , we have  

𝒲−1 (k) = ℌ(𝔥 (k)) =U  ,that is, U 𝔅 − in ℋ,  we get  𝒲−1 (k)     𝔅 −  in ℋ,but 𝔣  
is β − identif.  ,  
then V is   𝔅 −   in ℳ, thus 𝒢  is  β − irresolute . 

3) Assume  that  k any  an 𝔅 −  set in ℵ , Let V  = 𝔥 (k)   and  U=  ℌ(V),      we have  

𝒲−1 (k) = ℌ(𝔥 (k)) =U is  𝔅 −  in ℋ .  So   𝒲−1 (k)    𝔅 −   in ℋ ,but  𝔣  is 

β − identifi., 
, then V  = 𝔥.  
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Remark : from  the above discussion and known results we have the following 

implications .  

identification ⟶  α − identification ⟶  pre –  identification ⟶  b − identification
⟶  β − identification  

 ( 6 ) figure 

Definition 24  : " A space (ℋ, ℑ  )  is said to be α − ℑ 1 (pre-ℑ1 ,b − ℑ1  , β − ℑ1)  [ 8,11,16, 18 ] 

iff  for each a pair of distinct points x, y ∈ ℋ, each belongs to an 𝔇 −(     𝔭 −     ,𝔟−, 𝔅−)sets 

which does not contain the other . 

Theorem 25  : A function   𝔣 ∶  ℋ ⟶ ℳ is α − identification and ℳ is α − ℑ 1 ,then ℋ is α − ℑ1. 
 Proof : let x, y ∈ ℋ, x ≠ y  ,since ℳ is α − ℑ 1,there exist 𝔇 − s ets Μ1 and Μ2   ,Of ℳ  such 

that 𝔣 (x) ∈ Μ1 and  𝔣 (y) ∈ Μ2  , 𝔣(y) ∉ Μ1 and 𝔣 (x) ∉  Μ2   . 
Since function  𝔣 ∶ ℋ ⟶ ℳ is α − identification , we have  

x ∈ ℌ(Μ1 ), y ∈ ℌ(Μ2  )and   x ∉ ℌ(Μ2 ), y ∉ ℌ(Μ1 )  
hence then ℋ  is α − ℑ 1. 
Theorem 26  : A function   𝔣 ∶ ℋ ⟶ ℳ   is pre − identification and ℳ is pre -ℑ 1 ,then ℋ is 

pre − ℑ1. 
 Proof : let x, y  ∈ ℋ, x ≠ y,since ℳ is pre − ℑ 1,there exist 𝔭 −  sets Μ1 and Μ2   ,0f  ℳ such 

that 𝔣 (x) ∈ Μ1 and 𝔣 (y) ∈ Μ2  , 𝔣 (y) ∉ Μ1 and 𝔣 (x) ∉  Μ2   .Since function   𝔣 ∶ ℋ ⟶ ℳ 

is pre − identification , we have  x ∈ ℌ(Μ1 ), y ∈ ℌ(Μ2  )and x ∉ ℌ(Μ2 ), y ∉ ℌ(Μ1 )  
hence then ℋ  is pre − ℑ 1. 
 Theorem 27: A function   𝔣 ∶ ℋ ⟶ ℳ is b − identification andℳ  is b −  ℑ1, then ℋ is 

b − ℑ 1. 
 Proof : letx, y ∈ ℋ, x ≠ y ,since ℳ is b − ℑ1,there exist  𝔟 − sets Μ1 and Μ2   ,of ℳ such 

that 𝔣 (x) ∈ Μ1 and  𝔣 (y) ∈ Μ2  , 𝔣 (y) ∉ Μ1 and 𝔣 (x) ∉  Μ2   .Since function   𝔣 ∶ ℋ ⟶ ℳ 

is b − identification , 

 we have  x ∈ ℌ(Μ1 ), y ∈ ℌ(Μ2  )and x ∉ ℌ(Μ2 ), y ∉ ℌ (Μ1 )  
hence then ℋ is b − ℑ 1. 
Theorem 28 : A function   𝔣 ∶ ℋ ⟶ ℳ is β − identification and ℳ is β − ℑ1  then ℋ  is 

β − ℑ 1. 
 Proof : let x, y ∈ ℋ, x ≠ y ,since ℳ is β − ℑ 1,there exist 𝔅 − sets Μ1 and Μ2   ,of ℳ such that 

𝔣 (x) ∈ Μ1 and  𝔣 (y) ∈ Μ2  , 𝔣(y) ∉ Μ1 and 𝔣 (x) ∉  Μ2   .Since function   𝔣 ∶  ℋ ⟶ ℳ is β −
identification , we have  x ∈ ℌ(Μ1 ) , y ∈ ℌ(Μ2  )and x ∉ ℌ (Μ2 ), y ∉ ℌ(Μ1 )  
hence then ℋ  is β − ℑ 1. 
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