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 Abstract 

   The support vector machine (SVM) is a highly accurate and adaptable 

binary classification technique. It has had considerable success, but its 

performance can suffer if too many covariates are included. In this article, 

we used lasso penalizes least squares regression by adding the absolute 

values of the coefficients (𝐿1 − 𝑛𝑜𝑟𝑚). This penalty's structure promotes 

sparse solutions (with many variables coefficients equal to 0). We propose 

the fused lasso as a generalization designed for situations like this. Both 

the simulation study and colon cancer data example show that proposed 

methods outperform the other existing methods.  
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Introduction 

   As a result of the recent advent of new data collection and storage 

technology, we have seen an explosion in data complexity in a variety of 

study fields such as genomics, imaging, and finance. As a result, the 

number of forecasters increases dramatically. However, there are just a few 

examples available for investigation.(Donoho et al., 2000) in tumor 

categorization using genomic data; for example, tens of thousands of gene 

expression levels are employed. Are accessible, although the number of 

arrays is usually in the tens. The classification of high dimensional data 

presents several statistical problems, necessitating the development of 

novel approaches and theories. 

In this post, we will look into high-dimensional classification, where the 

number of variables is large. Diverges with sample size and may be 

considerably bigger than the sample size. The support vector machine 

(SVM) is a strong binary classification technique developed by (Vapnik, 

1996) excellent precision and adaptability. It has found success in a variety 

of applications. However, one significant disadvantage of the conventional 

SVM is that its performance might suffer as a result. If the decision rule 

has a large number of redundant variables (Friedman et al., 2001). 

Variable selection is crucial in the construction of a support vector 

machine. This approach gives shrinkage for appropriate estimating 

parameters, good production, and identification of the key variables. The 

supply of interpretable models distinguishes statistical techniques for 

variable selection. Variable selection approaches, such as stepwise and best 
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subset selection, may be unstable. (Tibshirani, 1996) presented the least 

absolute shrinkage and selection operator to solve this problem (lasso). 

(Tibshirani et al. 2005) proposed the fused lasso, , it may be used to 

functional data, which can be thought of as multivariate data having order 

on its dimensions. Variables, on the other hand, can be grouped into 

strongly correlated groups and then a single representative covariate 

retrieved from each cluster. 

Support vector machine:  

   The support vector machine (SVM) is a big margin classifier that 

distinguishes between two classes by maximizing the margin between 

them.When dealing with non-separable data, the soft – margin SVM 

employs the slack variable to regulate the upper bound of the 

misclassification error. SVM is a classification approach that employs 

multidimensional hypotheses and is powered by an optimization algorithm 

developed from statistical learning theory (Vapnik, 1974). SVM has 

numerous benefits in handling nonlinear and high-dimensional 

classification problems, and it has shown good results in pattern 

recognition, function approaches, and probability density (Shi, 2012). 

SVM training is a computationally demanding operation, owing mostly to 

the curved quadratic programming problems associated with the dense 

Hessian Matrix used during optimization (Godwin, 2013).The SVM 

method is briefly discussed here "(Burgers, 1998), (Huang, Chen, and 

Wang, 2006), (SchÖlkopf and smola, 2002)". Let (𝒙𝒊, 𝒚𝒊), 𝟏 ≤  𝒊 ≤  𝑵, 

represent a collection of training data. Where N is the quantity of training 

data. Each datum must the xiϵ Rd And 𝒚𝒊𝝐{−𝟏, 𝟏} where  d  is dimension 

count in terms of input data. SVM tries to locate a hyper plane, it serves as 

a dividing plane for data categorization in a multi-dimensional space w and 

b are parameters provided by  
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(⟨𝒘 ⋅ 𝒙𝒊⟩ + 𝒃) = 𝟎,            (𝟏)           𝒊 = 𝟏, … , 𝑵 

If there is a hyper plane that meets Eq (𝟏), 

Then there is linear separation.. W and b may be rephrased as follows in 

this situation 𝐄𝐪(𝟏) is transformed into  

 

𝒎𝒊𝒏
𝟏⩽𝐢≤ 𝑵

 𝒚𝒊(⟨𝒘 ⋅ 𝒙𝒊⟩ + 𝒃) ⩾ 𝟏,      (𝟐)          𝒊 = 𝟏, … , 𝑵 

Assume that the distance between the data point and the hyper planes 

𝟏/||𝒘||. There is one optimum separating hyper plane (OSH)  a monq 

separating hyper planes.  and the distance between them is between two 

support vector points located on opposite ends of this .The hyper plane is 

the most extensive because the distance between two support vector points 

equals 𝟏/||𝒘||𝟐  may be used to calculate the shortest distance to OSH. 

||𝒘||𝟐 a separating hyper plane’s margin computed as the generalization 

of the hyper plane is determined by  𝟐/||𝒘|| ability. Among separating 

hyper planes, the OSH has the greatest margin Eq (2)And Lagrange ’s 

polynomial are used to minimize ||𝒘||𝟐.Let a stand in for (𝒂𝟏, . . . . , 𝒂𝒏). 

Combining the polynomial of Lagrange ("in the order of N") with 𝑬𝒒 (𝟐) 

generates the following maximizing equations  

 

𝑾(𝒂) = ∑  

𝒏

𝒊=𝟏

𝒂𝒊 −
𝟏

𝟐
∑  

𝒏

𝒊,𝒋=𝟏

𝒂𝒊𝒂𝒋𝒚𝒊𝒚𝒋𝒙𝒊𝒙𝒋          (𝟑) 

 

Where 𝒂𝒊  ≥  𝟎  and  ∑  𝒏
𝒊=𝟏 𝒚𝒊𝒂𝒊 = 𝟎  under constraint .To do this, the 

quadratic programming approach might be used solve the maximizing 

issue described above. If a vector is 𝒂𝟎 = (𝒂𝟏𝟎 … 𝒂𝒏𝟎) in maximizing, if N 

satisfies 𝑬𝒒 (𝟑) ,then the OSH in terms of (𝒘𝟎, 𝒃𝟎) may be written as 

follows  
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𝒘𝟎 = ∑  

𝒏

𝒊=𝟏

𝒂𝒊
𝟎𝒚𝒊𝒙𝒊        (𝟒) 

Where the support vector points must satisfy 𝒂𝒊𝟎  ≥  𝟎 and 𝑬𝒒 (𝟐).When 

looking at expansion in constraint 𝑬𝒒 (𝟒) the hyper plane determinant 

function is written as follows 

 

𝒇(𝒙) = 𝐬𝐢𝐠 𝐧 (∑  

𝒏

𝒊=𝟏

𝒂𝒊
𝟎𝒚𝒊𝒙𝒊𝒙 + 𝒃𝟎) = 𝟎        (𝟓) 

 

Most of the time, the data are not linearly separable and must be transferred 

to a higher dimensional feature space. As a result, if the data cannot be 

properly categorized .The SVM will then map in current dimensional space 

.They are then classified in a higher dimensional space .The input data is 

assigned to a higher dimensional feature by drawing a curve that is not 

linear in space curve . The OHS is built in the feature space 𝝓(𝒙) can be 

used in limited 𝑬𝒒 (𝟑) by first defining the feature space. As shown below  

 

𝑾(𝒂) = ∑  

𝒏

𝒊=𝟏

𝒂𝒊 −
𝟏

𝟐
∑  

𝒏

𝒊,𝒋=𝟏

𝒂𝒊𝒂𝒋𝒚𝒊𝒚𝒋𝝓(𝒙𝒊)𝝓(𝒙𝒋)          (𝟔) 

 

The existence of Mercer’s theorem may be inferred from asymmetric and 

positive kernel function 𝑲 (𝒙, 𝒚) .As a result, 𝑲(𝒙, 𝒚) =  𝝓(𝒙) 𝝓(𝒚) 

.Assuming that the kernel function K fulfills Mercer ’s theorem, and the 

derived training method is ensured for minimizing  

 

𝑾(𝒂) = ∑  

𝒏

𝒊=𝟏

𝒂𝒊 −
𝟏

𝟐
∑  

𝒏

𝒊,𝒋=𝟏

𝒂𝒊𝒂𝒋𝒚𝒊𝒚𝒋𝝓(𝒙𝒊)𝝓(𝒙𝒋)           (𝟕) 
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The decision function is expressed as follows: 

 

𝒇(𝒙) = 𝐬𝐢𝐠 𝐧 (∑  

𝒏

𝒊=𝟏

𝒂𝒊𝒚𝒊𝑲(𝒙𝒊 ⋅ 𝒙𝒋) + 𝒃)                  (𝟖) 

 

Kernel function helps the SVM in determining the best answer .The 

polynomial, sigmoid, and radial basis kernels are the most often utilized 

kernel functions (RBF) is the most often used classification method since 

it can categorize multidimensional data. 

 

Least absolute shrinkage and selection operator ( lasso): 

   (Tibshirani, 1996) presented the least absolute shrinkage and selection 

operator to solve this problem. This approach offers shrinkage coefficients 

toward zero and makes certain coefficients precisely zero, attempting to 

maintain the key variables with substantial impacts. A penalty function was 

added to the least squares loss function, as seen in the equation below. 

𝜷𝒍𝒂𝒔𝒔𝒐  = 𝒂𝒓𝒈 𝒎𝒊𝒏 ∑(𝒚𝒊 − 𝒙𝒊
𝑻𝜷)𝟐

𝒏

𝒊=𝟏

+  𝝀 ∑|𝜷𝒌|            (𝟗)

𝒌

𝒊=𝟏

 

 

𝝀 ≥ 𝟎 Controls the strength of penalty 

Thus, they dealt with the issues that arose in the work of the lasso 

technique, they examined the lasso, and pointed out numerous lasso 

problems as follows: 

1- When 𝒑 > 𝒏, the lasso picks approximately n variables.  

2- If there is a group of tightly linked variables, lasso will select only 

one from this grouping and disregard the remaining variables. 
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Studies have found that the lasso  estimator is sometimes inefficient, and 

the results of the variables selection are  inconsistent (Fan & Li, 2001;  Zou, 

2006).  

 To overcome this problem, Zou (2006) proposed the adaptive least 

absolute  shrinkage and selection operator (alasso), which penalizes 

different regression  coefficients by different weights. These penalties 

reflect the size of the coefficient to define the correct model. 

 

Fused lasso: 

   (Tibshirani et al. 2005) proposed the fused lasso, an expanded variant of 

the lasso that penalizes least squares regression based on the sum of 

absolute values (𝑳𝟏 − 𝒏𝒐𝒓𝒎) of the coefficients. The fused lasso penalizes 

the 𝑳𝟏 − 𝒏𝒐𝒓𝒎 of both coefficients and their subsequent differences, as 

shown below. 

 

𝜷̂ = 𝐚𝐫𝐠𝐦𝐢 𝐧 ∑  

𝒊

(𝒚𝒊 − ∑  

𝒋

𝒙𝒊𝒋𝜷𝒋)

𝟐

                      (𝟏𝟎)

 subject to ∑  

𝒑

𝒋=𝟏

|𝜷𝒋| ≤ 𝒔𝟏 and ∑  

𝒑

𝒋=𝟐

|𝜷𝒋 − 𝜷𝒋−𝟏| ≤ 𝒔𝟐           (𝟏𝟏)

 

 

 

Features at the 𝒊 − 𝒕𝒉 observation, 𝒊 =  𝟏, . . . , 𝒏, and 𝑺𝟏 and 𝑺𝟐   are tuning 

parameters. The fused lasso follows feature ordering. As a result, it may be 

used to functional data, which can be thought of as multivariate data having 

order on its dimensions. Variables, on the other hand, can be grouped into 

strongly correlated groups and then a single representative covariate 

retrieved from each cluster. 
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"Consider how many degrees of freedom"are employed in a "fused lasso 

fit"                                    𝒚̂  = 𝑿𝜷̂ 

A 𝑺𝟏 and 𝑺𝟐 are changed. "(Efron et al., 2002)" examined a concept 

number of "degrees of freedom" based on Stein's (1981) formula: 

𝐝𝐟(𝒚̂) =
𝟏

𝝈𝟐
∑  

𝒏

𝒊=𝟏

𝐜𝐨𝐯(𝒚𝒊, 𝒚̂𝒊)                (𝟏𝟐) 

Where 𝝈𝟐 denotes 𝒚𝒊variance with X  held constant, while cov signifies 

covariance with X held constant.  df ( 𝒚̂ )reduces to p for a conventional 

multiple linear regression with 𝒑 < 𝒏  predictors. Now consider the 

situation of an orthonormal design. The lasso estimators are essentially soft 

threshold estimations. of (𝑿𝑻𝑿 = 𝑰), and "(Efron et al., 2002)" 

Demonstrated that the "degrees of freedom" are proportional to   

the number of coefficients that are not zero. They also demonstrated this is 

applicable to the "LAR and lasso estimators under the 

positive cone situation", implying that the estimations are monotone as a 

function of the 𝑳𝟏 − 𝒃𝒐𝒖𝒏𝒅 𝒔𝟏. In the orthonormal situation, the evidence 

is straightforward: it use Stein's formula. 

𝟏

𝝈𝟐
∑  

𝒏

𝒊=𝟏

𝐜𝐨 𝐯(𝒚𝒊, 𝒈𝒊) = 𝑬 {∑  

𝒊

𝛛𝒈(𝒚)

𝛛𝒚𝒊
}           (𝟏𝟑) 

 

Where 𝒚 = (𝒚𝟏, 𝒚𝟐, . . . , 𝒚𝒏) "is a multivariate normal vector with mean and 

covariance I", and 𝒈(𝒚) is an estimator, a nearly distinguishable "function 

from RN to RN". We rotate the basis for the lasso with orthonormal design 

so that 𝑿 = 𝑰, and therefore from equation 

𝒈(𝒚) = 𝒔𝒈𝒏(𝒚𝒊)(|𝒚𝒊| − 𝜸𝟏 )                 (𝟏𝟒) 

If the i-th component is non-zero, the derivative 𝝏𝒈. (𝒚)|𝝏𝒚𝒊 equals 1; 

otherwise, it equals to 0. As a result, the degrees of freedom are equal to 

the number of non-zero coefficients. 
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Simulation:  

In this part, we will do a simulation study to demonstrate our behavior. 

The suggested model was created by fusing Lasso with the R package. 

And compare it to existing models such as Lasso and Fused lasso . Our 

comparison is based on the average sum of errors (MSE) criterion and the 

categorization error criterion. In addition, we utilized the mean to assess 

the performance of prediction accuracy for several models. Where 

samples with a volume of (n=100,150,200) were created for the purpose 

of generating data in the following format. 

yi =sign(b+ x . w+ error)           ( 15 ) 

(b) denotes a constant bias amount equal to (3). Where (x) is the result of 

a multivariate normal distribution. And (w) is the weight vector, where (k 

= 7) and =0.25 are the values. The random error term was produced using 

the conventional normal distribution. The results provided in the 

theoretical section were achieved and compared using the MSE and MIS. 

The results are stable after 1000 replications of the experiment. The 

number of factors that influence the outcome (p = 81,100,256). The 

sample count (n) was divided into two groups (g1,g2). We chose the best 

approach using the MSE and MIS criteria, with the least valuable way for 

the MSE and MIS criteria being the best. 

Table (1): explains the results of MSE when 𝜌 = 0.25  and K=3 

n P MSE 
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Lasso Fused 

lasso 

100 81 1.345 0.224 

100 1.268 0.029 

256 0.930 0.712 

150 81 1.639 0.482 

100 1.906 0.440 

256 1.126 0.520 

200 81 1.960 0.717 

100 1.674 0.581 

256 1.311 0.459 

 

Table ( 2 ): explains the results of MIS when 𝜌 = 0.25  and K=3 

n P MIS 

lasso Fused 

lasso 

100 81 0.138 0.101 

100 0.129 0.101 

256 0.142 0.134 

150 81 0.166 0.098 

100 0.173 0.118 

256 0.117 0.103 

200 81 0.169 0.109 

100 0.173 0.127 

256 0.135 0.107 
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Table (1) and table (2) show that the results when 𝜌 = 0.25 , 

n=100,150,200, and k=3 with its three weights ( 0.5,1.5,1). We note that 

the proposed method gives a best results compering with other methods 

depend on the values of (Mse and MIS), especially that the method fused 

lasso has the smallest values for MSE and MIS . 

Conclusion: 

In this paper, It is proposed fused lasso  with svm . The methods are  

illustrated using a simulation study . The results showed that the proposed 

method is more stable than lasso method in comparison. Thus, this 

proposed method is capable of handling this  data. Method fused lasso  with 

p = 81,100.256 and sample size n=100,150,200 gave the best results 

compared with method lasso. 
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