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Abstract:

In this paper, we introduce an exponential of an operator defined on a Hilbert
space H, and we study its properties and find some of properties of T inherited to
exponential operator, so we study the spectrum of exponential operator eT according

to the operator T.
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Introduction:

Let B( H ) be a space of all

bounded linear operator on a Hilbert
space H (real or complex).
We introduced a new bounded linear
operator defined on H, as a limit of
sequence or power series of linear
operator T. Giaquinta; Modica in [1]
gave a definition of an exponential
operator eTof a bounded linear
operator T as the sum of power series
of T, and it started the properties of
exponential operator of bounded linear
operator T. In this paper we study the
inherited properties of T into the
operator eT, and the spectrum of
exponential operator eT according to
the operator T. Such properties of T
can be found in [2], [3], [4], [5], [6],
[7] and [8].

Preminilaries:
Definition:

Let Te B (H) theneT: H - H
defines as eTx = Z;’;;Oﬁ T'x . So, we

. w 1
write e"=Y0 o —T" .
We need to check the definition

of exponential operator is well-define,
i.e. The power series is convergent for

each xe H, by following proposition in
[1].
Proposition:

Let H be a Hilbert space and
T € B(H).
1. If f(z) = XY -0a,z" be a power
series with radius of convergence R >
Oand ||T|| <R
Then the series Yooan T
convergence in B(H) and define a
linear continuous operator.

. 1 .
2. The series Zﬁo:o; TX converges in

B(H) and define the linear continuous
operator el = fo:(,% Tk
Examples:

1.e° =1, Where 0 is a zero operator

and | is an identity operator defined on
H.

©o 1 oo 1
2.el = Yoo I"=Xe I=el
3. If T is a nilpotent of degree n
EN, ie. T"=0 in [2], then eT =
11
Zﬂ:ég Tk,
w 1 1
el = Yoo T"=14+T+_T*+
cee 1 n_1
+ (n—-1)!

This paper consists of three
sections. In section one we study some
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properties of an exponential operator
on H. While, in section two we study
some properties operator T on H
inherited to operator eT. In section
three, we study the spectrum of
exponential operator eT according to

the operator T.

1. Some properties of an
Exponential operator on a
Hilbert space H:

In [1] Mariano gave some properties

of eT without proof. In this section we
present its proofs.

Proposition (1.1)
Let T,SeB(H) we
following properties of e™:
1.If TS=STthen e™5 =¢Te’
eSeT,

2.eTe T =1, and hence the inverse
ofeTise T, je. (eT) 1 =¢eT.

3. e(@#BT = eaTeBT  for any o,p
scalar.

4. )|eT|| < ellTH

5. (eN)*=eT".

Proof:

1. By using of multiplication of
absolutely convergent series we get :
eTeS = Yo o~ T Nip_o—S™

0 1
ano Zﬂzo k!(n—k)!
Z;?:O%ZE:O(E) TS, =

o0 1
Zn:OE (T + S)n

have the

kSn—k —

= eT+S

T
2. eTer =eTH(D =0 =1 | by part
1) .
3. The result following by part one of
this proposition .
4, We have ||Zh_o T¥|| <
Thool|THI| < ZR-oliTI* -
And ”Z{;zo %Tk” converges to |leT||
and Zﬂzoﬁ IT|I¥ to el™. So we
have ||eT|| < el Tl
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*

* o 1
5. (€M) =( ™) =
o 1 * o 1 *
Zn:oa (") = Zn:oa (TH" =
el
There is another equivalent

definition of an exponential operator of
a bounded linear on a Hilbert space H,
as a limit of sequence of some bounded
operators [1].

Theorem (1.2)

Let T be a bounded linear operator

defined on a Hilbert space H , then
n

(I+%T) - el

The proof of this theorem can be found

in[1]

2.Main Results:

In this section, we are going to
give some properties of linear
operators defined on a Hilbert space H,
that inherited an exponential operator
many them: self-ajoint, positive,
normral, quasinormal , hyponormal
and compact.

Lemma(2.1)[2]

1. If T is a self-adjoint operator.
Then aT is a self-adjoint, for all real
numbera.

2. If T,S are self-adjoint linear
operators on H. Then T+S is a self-
adjoint .

3.IfT,S are self-adjoint linear

operators on H. Then TS is a self -
adjoinet if and only if TS = ST .

4. If T is a self-adjoinet operator.
Then T" is a self-adjoint , too for any
positive integer n >2.

5. If (T,) is a sequence of bounded
self-adjoint linear operators on H, and
T, converges to a linear operator T .
Then the operator T is also self-
adjoint.

Proposition (2.2)

If T is a self-adjoint operator on a
Hilbert space H, then so is e™.
Proof:

If T is self-adjoint operator and n
any positive integer, we have that
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lemma (2.1) parts (1), (2) and (4) (1 +
%T)n is a self-adjoint But (I+
%T)n convergent to eT , then by lemma
(2.1) part (5) eTis self-adjoint

Definition (2.3)[2]

Let Te B(H) be a self-adjoint
operator, it is said a positive operator if
T>0,ie. (Tx, x)=0, forall xin
H.

Lemma (2.4)[2]
1.If T isapositive operator. Then aT
is a positive, each non negative scalar
a.
2. If T,S are positive linear operators.
Then T + S is positive.
3. If T,S are positive linear operators
and TS = ST. Then TS is positive.
4. If T is a positive operator . Then T"
is positive , too for any positive integer
n=2.
5. The limit of a sequence of positive
linear operators on H, is a positive
operator.
Proposition (2.5)

If T is a positive operator
Hilbert space H, then so is eT

Proof :

If T is a positive operator and n any
positive integer, then by lemma (2.4)
parts (1),(2) and (4) we have (I+

ﬁT)rl is a positive operator. But(l +

on a

ﬁT)rl converges toeT, then by lemma
(2.4) part (5) we have eTis positive.
Remark (2.6)

If T is a skew-self-adjoint operator
,i.e. T*==Tin[2], then eT may not
be a skew, to see this, we have the
following example:

Let T= 2il be a linear operator on a
complex Hilbert space H. We have
T* = (2i)* = —=2il = —T, hence T is
a skew-self-adjoint operator But
(D" = (ezil)* = @iD" =

e ?l je. eTis not a
adjoint.

skew-self-
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Proposition (2.7)
If T is a normal operator on H , then
eT is also normal .

Proof :

T is a normal operator TT* = T T*
in this implies by (1.1) part (1), we
have:

eTeT* — eT+T* =e
hence eTis normal.
Definition (2.8)[3]

Let T be a bounded linear
operator on H. It is called a
quasinormal if T commutes with T'T,
e T(T' =T NT
Lemma (2.9)

Let T,S € B(H) be quasinormal
operators then :

1. oT is a quasinormal , o for any
scalar.

2. T+S is a quasinormal with
property that each commute with the
adjoint of the other.

3. ST is a quasinormal if the
following conditions are satisfied:

()ST=TS (ii))ST=TS
4. The Ilimit of a sequence of
quasinormal linear operators on H, is a
quasinormal operator.

The proof of this lemma can be found

in [2] ,[3]

T*+T T

€ ,

Remark (2.10)

By using mathematical induction
and lemma (2.9) part (3) , we have T
is quasionormal operator on a Hilbert
space H, forn > 2.

Proposition (2.11)

Let T be a quasinormal operator on
H, then eT is also quasinormal .

Proof :

If T is a quasinormal operator and
n any positive integer, then by lemma
(2.9) parts (1),(2) and (2.10) we have

(I+ ﬁT)rl is a quasinormal operator.
But(l + %T)rl converges to e , then by

lemma (2.9) part (4) we have €'is
quasinormal.
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Definition (2.12) [4]

An operator T on H is said a
binormal if T T commutes with T'T ,
ie. [TT,TT]=0
Remark (2.13)

If T is binormal operator on H.

Then e"may not be binormal , so we

are going to
example to show this :
0 1 . .
LetT= (0 0) can easily verify
. 0 O
that T be binormal and T 2= (0 0)’
we have :
el =32 — T =1+T
n=0 n!
_(1 1 ™ _ (1 0) .
(g 1)mde’ = pq) At
why
T T T . T-(3 4
e'e e e —(2 3)and

T T T T = (3 2
e e ee —(4 3).

Which are not equal, therefore
e’ is not binormal operator.
Definition (2.14)[4]

An operator T on a Hilbert space
H. It is said a hyponormal if T*T —
T*T>0,i.e. ((T*T —
T*T) x,x) = 0, for every x € H.

Lemma (2.15)

Let T,S be hyponormal operators
on H, then:
1. oT is a hyponormal, for each o € C
2. If T,S are hyponormal operators
with the property either commute with
adjoint of the other. Then T+S is
hyponormal.
3. If T, HoH (n= 1,2,...) is a
sequence of hyponormal operator and
To,—T then T hyponormal.
The proof of this lemma can be found
in[2].
Remark (2.16)

In [5], P.R Halmos gave example of
a hyponormal operator T such that T2
is not hyponormal implies that T" may
not be a hyponormal for some n > 2.
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proposition (2.17)

If T is a hyponormal
binormal operator, then T"
hyponormal for n> 1.

We can find the proof in [4].

We are going to proof that if T is
hyponormal and binormal then e is
hyponormal.

Proposition (2.18)

If T is ahyponormal and a binormal
operator then e is hyponormal .
Proof:

If T is hyponormal and binormal
operator and n any positive integer, we
have that lemma (2.15) parts (1),(2)

and proposition (2.17) (I+%T)n is a
hyponormal But (I+
%T)n convergent to eT by lemma(2.15)
part (3) eT is hyponormal.
Definition (2.19)[2]

An operator T on a Hilbert space
H, is said to be compact if for each

and a
is a

bounded sequence (x,) in H, the
sequence  (Tx,) contains and
convergent subsequence .

Lemma (2.20)[2]

1. If T, S, U € B(H) are compact
operators on H, and a € C, then aT ,
T+S and UT, TU are compact
operators.

2. If T is a compact operator on H,
then T™is a compact for any positive
integer n > 2.

3. If (T,) is a sequence of compact
linear operators on H. Suppose that T,
converges to linear operator T , then
the operator T is compact .

Theorem (2.21)
If T € B(H) is a compact operator.
Then:

1.eT is compact if H is finite
dimension.

2.eT —1 is compact if H is infinite
dimension.

Proof :

1.1 is a compact operator since H is

finite dimensional Hilbert space in[2] ,
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hence = Yo T¢is  compact
operator by lemma (2.20) parts (1) and
(2), Therefore S,convergent to the
compact operator by (2.20) part ( 3),
i.e. eT is compact.

2. 1 is not a compact operator, if H is
infinite dimensional Hilbert space[2] .

ButS," = Yp_ 1—Tk is
compact operator if Tis compact by
lemma (2.20) parts (1l)and (2),
therefore eT — I is compact .
Remark (2.22)

1. If T is a compact operator on
infinite dimensional Hilbert space H.
TheneT is not necessary
compact, to see this, the T = 0 (zero
operator) is a compact, where eT =
e® = I which is not compact in [2].

2. If T is isometric operator on H ,
then||Tx|| = ||x|]| V¥ x € H. Then e"may
not be isometric ,to see this, we give
the following example:

If T=1I, then ||T|| =1, hence |eT|| =
lle'll = elllll = e.
3. If T is a unitary operator on H, then
TT* =T*T =1. therefore eTmay not
be unitary to see this,

we give the example:

If T=(ﬁ—li)l and T*
2 2

£+1.

2

1)1 , implies that TT*

, L.e. T is unitary operator .
V3 1.)1

— N |

T'T =

have el = e( 2!
)I and el = e(d—#‘)I -

—e‘/3_l¢l.

We
= T3
e(\/—+1 )I ButeTe

of an
on a

3.The Spectrum
exponential __operator
Hilbert space H:

The spectrum of a linear operator
on a Hilbert space H, is a subset of the
set of complex numbers A, for which
T — Alis not invertible , denoted by
o(T). The complement of the spectrum
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of linear operator is resolvent, and it is
denoted byp(T).
Definition (3.1) [2]

Let T be a linear operator on a
Hilbert space H .
1. The eigenvalue of T is a complex
number A,for which T —AIis not
injective, i.e. There exists a non-zero
vector x in H, such that (T-AD(x) =
0, the vector x is called eigenvector of
T and the set of all eigenvalues of T
denoted by op(T) is called the set of
point spectrum of T.
2. The continuous spectrum of T, is a
set of complex numbers A, for which
T —Alis injective and T — Alis not
surjective, but the range of H by linear
operator T—AI is dense in H. The
continuous spectrum of T is denoted
by o.(T).
3. The residual spectrum of T, is the
set of all complex numbers A, for
which T — A Tis injective and the range
of H dose not equal H. The residual
spectrum of T denoted by oty .
4. The spectral radius of linear operator
T is denoted by r (T) and it is defined
as follows :

r(T)=sup { il
limy, [ T ||
Proposition (3.2)

Let Te B (H) and A be eigenvalue
of T, then e” is eigenvalue of eT.
Proof:

There exists a non zero vector x in
H, such that T x =Ax(since A is an
eigenvalue of T), hence T"x = A"x
But eTx =Y OiTnx =

Zn 0 Il _(Zn 0_,)X_e X.
Therefore e’ is an eigenvalue of eT
and x is a corresponding eigenvector .
Remark (3.3)

In[2] E. Kreyszing, proved that, if H
is finite dimensional Hilbert space.
and Te B(H), then o (T) # ¢ .
Furthermore Le o(T) if and only if A
is eigenvalue of T. Hence if H is a

Aeo(T)}=
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finite dimensional Hilbert space then
Le o(eT) if and only if A is
eigenvalue of eT.

In the following example we are
going to compute the spectrum of the
some linear operators.

Examples (3.4)

1.o(M) ={1},s00(e®) =0 (1) = {1}
2.0 (e") = o (el) = {e}.

3. Let T be a nilpotent operator on a
finite Hilbert space H. With order n ,

we have eT = Y- é; TX, and ¢ (eT) =
o(sichi) = {ZhicaNne

o(T)} by [2]. But o (T)={0}by [2]

,henceo (eT)={1}.

Theorem (3.5) [2]

Let T be a bounded self-adjoint
linear operator on a complex Hilbert
space H. Then:

1. The spectrum o(T) is real.

2.  The residual spectrum o(T) is
empty.

3r(T)=TIl

Proposition (3.6)

If TeB (H)and T is a self-
adjoint operator. Then :

1. op(eT) subset of real number and

Oy (eT) =0
2.1 (e7) < e'®
Proof:

1. T is a self-adjoint operator, then eT
is self-adjoint by proposition (2.1).
Hence op (eT) is subset of real
number by theorem (3.5) and o,.(eT) =
o .

2. By theorem (3.5), we have
r(e™) = ||eT|| and by proposition (1.1)
part 4), we have
r(eT) < elTl = e,

Lemma (3.7) [2]

T is a positive self-adjoint if and
onlyif o (T) < [0,00).
Proposition (3.8)

If T is a positive self-adjoint on a
complex Hilbert space H. Then o(e™)
< [1,00).
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Proof:

If T is a positive operator |,
then T™ is also positive ( by
proposition (2.4) part (4 )) , I.e.
<T"x,x>>0, for x in H and n
positive integer. So, we have <

eTx, x> = < Z;?:O%Tnx,x > =
o 1 '
SRt < Thxx>= [IxIf? +
Z;‘f’zli < TP, x >. Hence inf
{<eTx,x>x€eHand|x|| =1} >1
, then o (eT) < [1,00).
Remarks (3.9)

1. In [6] M. Akkouch , proves that if
T is a normal operator on H. Then:
=H}

D) p(T)={rreC,Rry =
2) Gp (T) - {}\, }\,EC RT—XI *
H}
3) oc(T)={MAreC,Rry =
4) o (T) is empty.
So, if eTis normal operator by
proposition (2.8), we have :

=H}

1) p(eT)={7L:7ue(C,ReT_kI =H}
2) Gp(eT)={kae(C,m¢H}
3) GC(eT)={k: reC,Rer_; =H}
4) o, (e7) is empty.

2. In [6], we have if T isanormal
operator on a Hilbert space H, then
r(T) =TIl , so r(e”) =
lleT|| < "™, (because e is normal if
T is anormal by proposition (2.8)) .

3. In [7] , we have if T is a
hyponormal operator , then o(T) =
op(T*) . Henceo(eT) = op(eT) , (
because (eT) is hyponormal if T is

hyponormal  and binormal by

proposition (2.19)) .

4. In [8] , we have if T is a

hyponormal operator on a Hilbert

space H , the r (T )=|T] ,

therefore r (eT) = || || < ™M

because e is hyponomral if ( T is

hyponormal and  binormal by

proposition (2.19)) .
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