Exponential Function of a bounded Linear Operator on a Hilbert Space.

Radhi I. Mohammed *

Fatin A. Ahmed **

Received 28, May, 2013 Accepted 18, September, 2013

Abstract:

In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^{T} according to the operator T.

Key words: Self-adjoint operator, positive operator, normal operator, quasinormal operator, binormal operator hyponormal operator and compact operator.

Introduction:

Let B(H) be a space of all bounded linear operator on a Hilbert space H (real or complex).

We introduced a new bounded linear operator defined on H, as a limit of sequence or power series of linear operator T. Giaquinta; Modica in [1] gave a definition of an exponential operator e^Tof a bounded linear operator T as the sum of power series of T. and it started the properties of exponential operator of bounded linear operator T. In this paper we study the inherited properties of T into the operator e^{T} , and the spectrum of exponential operator e^T according to the operator T. Such properties of T can be found in [2], [3], [4], [5], [6], [7] and [8].

Preminilaries: Definition:

Let $T \in B$ (H) then e^T : $H \to H$ defines as $e^T x = \sum_{n=0}^{\infty} \frac{1}{n!} T^n x$. So, we write $e^T = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$.

We need to check the definition of exponential operator is well-define, i.e. The power series is convergent for each $x \in H$, by following proposition in [1].

Proposition:

Let H be a Hilbert space and $T \in B(H)$.

1. If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with radius of convergence R > 0 and $||T|| \le R$.

Then the series $\sum_{n=0}^{\infty} a_n T^n$ convergence in B(H) and define a linear continuous operator.

2. The series $\sum_{k=0}^{\infty} \frac{1}{k!} T^k$ converges in B(H) and define the linear continuous operator $e^T = \sum_{k=0}^{\infty} \frac{1}{k!} T^k$.

Examples:

1 . $e^{o} = I$, Where 0 is a zero operator and I is an identity operator defined on H.

2.
$$e^{I} = \sum_{n=0}^{\infty} \frac{1}{n!} I^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} I = eI.$$

3. If T is a nilpotent of degree n
 $\in N$, i.e. $T^{n} = 0$ in [2], then $e^{T} = \sum_{k=0}^{n-1} \frac{1}{k!} T^{k}$,
 $e^{T} = \sum_{n=0}^{\infty} \frac{1}{n!} T^{n} = I + T + \frac{1}{2!} T^{2} + \dots + \frac{1}{(n-1)!} T^{n-1}.$

This paper consists of three sections. In section one we study some

*Dept. of Mathematics, College of Science for Women, University of Baghdad

properties of an exponential operator on H. While, in section two we study some properties operator T on H inherited to operator e^{T} . In section three, we study the spectrum of exponential operator e^{T} according to the operator T.

1. Some properties of an Exponential operator on a Hilbert space H:

In [1] Mariano gave some properties of e^{T} without proof. In this section we present its proofs.

Proposition (1.1)

Let $T, S \in B(H)$ we have the following properties of e^{T} :

1. If TS = ST then $e^{T+S} = e^T e^S = e^S e^T$.

2. $e^T e^{-T} = I$, and hence the inverse of e^T is e^{-T} , i.e. $(e^T)^{-1} = e^{-T}$.

3. $e^{(\alpha+\beta)T} = e^{\alpha T}e^{\beta T}$, for any α, β scalar.

- 4. $||e^{T}|| \le e^{||T||}$.
- 5. $(e^{T})^* = e^{T^*}$.

Proof:

1. By using of multiplication of absolutely convergent series we get :

$$e^{T}e^{S} = \sum_{n=0}^{\infty} \frac{1}{n!} T^{n} \sum_{m=0}^{\infty} \frac{1}{m!} S^{m}$$
$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} T^{k} S^{n-k} =$$
$$\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} T^{k} S^{n-k} =$$
$$\sum_{n=0}^{\infty} \frac{1}{n!} (T+S)^{n}$$

$$= e^{T+S}$$
.
2. $e^{T}e^{-T} = e^{T+(-T)} = e^{0} = I$, by part (1).

3. The result following by part one of this proposition .

4. We have $\left\|\sum_{k=0}^{n} T^{k}\right\| \leq \sum_{k=0}^{n} \|T^{k}\| \leq \sum_{k=0}^{n} \|T\|^{k}$. And $\left\|\sum_{k=0}^{n} \frac{1}{k!} T^{k}\right\|$ converges to $\|e^{T}\|$ and $\sum_{k=0}^{n} \frac{1}{k!} \|T\|^{k}$ to $e^{\|T\|}$. So ,we have $\|e^{T}\| \leq e^{\|T\|}$.

5.
$$(e^{T})^{*} = \left(\sum_{n=0}^{\infty} \frac{1}{n!} T^{n}\right)^{*} = \sum_{n=0}^{\infty} \frac{1}{n!} (T^{n})^{*} = \sum_{n=0}^{\infty} \frac{1}{n!} (T^{*})^{n} = e^{T^{*}}.$$

There is another equivalent definition of an exponential operator of a bounded linear on a Hilbert space H, as a limit of sequence of some bounded operators [1].

Theorem (1.2)

Let T be a bounded linear operator defined on a Hilbert space H , then $\left(I + \frac{1}{n}T\right)^n \rightarrow \ e^T \ .$

The proof of this theorem can be found in [1]

2.Main Results:

In this section, we are going to give some properties of linear operators defined on a Hilbert space H, that inherited an exponential operator many them: self-ajoint, positive, normral, quasinormal , hyponormal and compact.

Lemma(2.1)[2]

1. If T is a self-adjoint operator. Then α T is a self-adjoint, for all real number α .

2. If T,S are self-adjoint linear operators on H. Then T+S is a self-adjoint.

3. If T, S are self-adjoint linear operators on H. Then TS is a self - adjoint if and only if TS = ST.

4. If T is a self-adjoint operator. Then T^n is a self-adjoint, too for any positive integer $n \ge 2$.

5. If (T_n) is a sequence of bounded self-adjoint linear operators on H, and T_n converges to a linear operator T. Then the operator T is also self-adjoint.

Proposition (2.2)

If T is a self-adjoint operator on a Hilbert space H, then so is e^{T} .

Proof:

If T is self-adjoint operator and n any positive integer, we have that

lemma (2.1) parts (1), (2) and (4) (I + $\frac{1}{n}$ T)ⁿ is a self-adjoint . But (I + $\frac{1}{n}$ T)ⁿ convergent to e^T, then by lemma (2.1) part (5) e^T is self-adjoint.

Definition (2.3)[2]

Let $T \in B(H)$ be a self-adjoint operator, it is said a positive operator if $T \ge 0$, i.e. $\langle Tx, x \rangle \ge 0$, for all x in H.

Lemma (2.4)[2]

1. If T is a positive operator. Then α T is a positive, each non negative scalar α .

2. If T,S are positive linear operators. Then T + S is positive.

3. If T,S are positive linear operators and TS = ST. Then TS is positive.

4. If T is a positive operator . Then T^n is positive , too for any positive integer $n \ge 2$.

5. The limit of a sequence of positive linear operators on H, is a positive operator.

Proposition (2.5)

If T is a positive operator on a Hilbert space H, then so is e^{T}

Proof:

If T is a positive operator and n any positive integer, then by lemma (2.4) parts (1),(2) and (4) we have $(I + \frac{1}{n}T)^n$ is a positive operator. But $(I + \frac{1}{n}T)^n$ converges to e^T , then by lemma (2.4) part (5) we have e^T is positive.

Remark (2.6)

If T is a skew-self-adjoint operator , i.e. $T^* = -T$ in [2], then e^T may not be a skew, to see this, we have the following example:

Let T= 2iI be a linear operator on a complex Hilbert space H. We have $T^* = (2iI)^* = -2iI = -T$, hence T is a skew-self-adjoint operator . But $(e^T)^* = (e^{2iI})^* = e^{(2iI)^*} =$

 e^{-2iI} , i.e. e^{T} is not a skew-self-adjoint.

Proposition (2.7)

If T is a normal operator on H , then e^{T} is also normal .

Proof :

T is a normal operator $T T^* = T T^*$ in this implies by (1.1) part (1), we have:

 $e^Te^{T^*}=e^{T+T^*}=e^{T^*+T}=e^{T^*}e^T$

hence e^{T} is normal.

Definition (2.8)[3]

Let T be a bounded linear operator on H. It is called a quasinormal if T commutes with T^*T , i.e. T (T * T) = (T * T) T

Lemma (2.9)

Let T , $S \in B(H)$ be quasinormal operators then :

1. αT is a quasinormal , α for any scalar.

2. T+S is a quasinormal with property that each commute with the adjoint of the other.

3. ST is a quasinormal if the following conditions are satisfied:

(i) ST = TS (ii) $ST^* = T^*S$

4. The limit of a sequence of quasinormal linear operators on H, is a quasinormal operator.

The proof of this lemma can be found in [2],[3]

Remark (2.10)

By using mathematical induction and lemma (2.9) part (3), we have T^n is quasionormal operator on a Hilbert space H, for $n \ge 2$.

Proposition (2.11)

Let T be a quasinormal operator on H, then e^{T} is also quasinormal.

Proof:

If T is a quasinormal operator and n any positive integer, then by lemma (2.9) parts (1),(2) and (2.10) we have $(I + \frac{1}{n}T)^n$ is a quasinormal operator. But $(I + \frac{1}{n}T)^n$ converges to e^T , then by lemma (2.9) part (4), we have e^T is quasinormal.

Definition (2.12) [4]

An operator T on H is said a binormal if T T^{*} commutes with T^{*}T, i.e. [TT^{*}, T^{*}T] = 0

Remark (2.13)

If T is binormal operator on H. Then e^{T} may not be binormal, so we are going to

example to show this :

Let
$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 can easily verify

that T be binormal and $T^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, we have :

$$e^{T} = \sum_{n=0}^{\infty} \frac{1}{n!} T^{n} x = I + T$$
$$= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \text{ and } e^{T^{*}} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \text{ that's why}$$

$$e^{T} e^{T^*} e^{T^*} e^{T} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \text{ and}$$
$$e^{T^*} e^{T} e^{T} e^{T^*} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}.$$

Which are not equal, therefore e^{T} is not binormal operator.

Definition (2.14)[4]

An operator T on a Hilbert space H. It is said a hyponormal if $T^*T - T^*T \ge 0$, i.e. $\langle (T^*T - T^*T) x, x \rangle \ge 0$, for every $x \in H$.

Lemma (2.15)

Let T,S be hyponormal operators on H, then:

1. αT is a hyponormal, for each $\alpha \in \mathbb{C}$ 2. If T,S are hyponormal operators with the property either commute with adjoint of the other. Then T+S is hyponormal.

3. If $T_n: H \rightarrow H$ (n= 1,2,...) is a sequence of hyponormal operator and $T_n \rightarrow T$ then T hyponormal.

The proof of this lemma can be found in [2].

Remark (2.16)

In [5], P.R Halmos gave example of a hyponormal operator T such that T^2 is not hyponormal implies that T^n may not be a hyponormal for some $n \ge 2$.

proposition (2.17)

If T is a hyponormal and a binormal operator, then T^n is a hyponormal for $n \ge 1$.

We can find the proof in [4].

We are going to proof that if T is hyponormal and binormal then e^{T} is hyponormal.

Proposition (2.18)

If T is a hyponormal and a binormal operator then e^{T} is hyponormal.

Proof:

If T is hyponormal and binormal operator and n any positive integer, we have that lemma (2.15) parts (1),(2) and proposition (2.17) $(I + \frac{1}{n}T)^n$ is a hyponormal . But $(I + \frac{1}{n}T)^n$ convergent to e^T by lemma(2.15) part (3) e^T is hyponormal.

Definition (2.19)[2]

An operator T on a Hilbert space H, is said to be compact if for each bounded sequence (x_n) in H, the sequence (Tx_n) contains and convergent subsequence.

Lemma (2.20)[2]

1. If T, S , U \in B(H) are compact operators on H, and $\alpha \in \mathbb{C}$, then αT , T+S and U T, T U are compact operators.

2. If T is a compact operator on H, then T^n is a compact for any positive integer $n \ge 2$.

3. If (T_n) is a sequence of compact linear operators on H. Suppose that T_n converges to linear operator T, then the operator T is compact.

Theorem (2.21)

If $T \in B(H)$ is a compact operator. Then:

 $1. e^{T}$ is compact if H is finite dimension.

2. $e^{T} - I$ is compact if H is infinite dimension.

Proof:

1. I is a compact operator since H is finite dimensional Hilbert space in[2],

hence $S_n = \sum_{k=0}^n \frac{1}{k!} T^k$ is compact operator by lemma (2.20) parts (1) and (2), Therefore S_n convergent to the compact operator by (2.20) part (3), i.e. e^T is compact.

2. I is not a compact operator, if H is infinite dimensional Hilbert space[2]. But $S_n^* = \sum_{k=1}^n \frac{1}{k!} T^k$ is compact operator if T is compact by lemma (2.20) parts (1) and (2), therefore $e^{T} - I$ is compact.

Remark (2.22)

1. If T is a compact operator on infinite dimensional Hilbert space H. Then e^T is not necessary compact, to see this, the T = 0 (zero operator) is a compact, where $e^{T} =$ $e^0 = I$ which is not compact in [2]. 2. If T is isometric operator on H,

then $||Tx|| = ||x|| \forall x \in H$. Then e^{T} may not be isometric ,to see this, we give the following example:

If T = I, then ||T|| = 1, hence $||e^{T}|| =$ $||e^{I}|| = e||I|| = e.$

3. If T is a unitary operator on H, then $TT^* = T^*T = I$. therefore $e^T may$ not be unitary to see this,

we give the example:

 $T = \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)I$ and $T^* =$ If $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)I$, implies that $TT^* = T^*T = I$, i.e. T is unitary operator. We have $e^{T} = e^{\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)I}$ $= e^{\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)}I$ and $e^{T^*} = e^{\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)I} =$ $e^{\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)}$ I. But $e^{T}e^{T^{*}} = e^{\sqrt{3}}$ I \neq I.

3.The Spectrum of an exponential operator on a Hilbert space H:

The spectrum of a linear operator on a Hilbert space H, is a subset of the set of complex numbers λ , for which $T - \lambda I$ is not invertible, denoted by $\sigma(T)$. The complement of the spectrum of linear operator is resolvent, and it is denoted by $\rho(T)$.

Definition (3.1) [2]

Let T be a linear operator on a Hilbert space H.

1. The eigenvalue of T is a complex number λ , for which T $-\lambda I$ is not injective, i.e. There exists a non-zero vector x in H, such that $(T-\lambda I)(x) =$ 0, the vector x is called eigenvector of T and the set of all eigenvalues of T denoted by $\sigma_{\rm P}(T)$ is called the set of point spectrum of T.

2. The continuous spectrum of T, is a set of complex numbers λ , for which $T - \lambda I$ is injective and $T - \lambda I$ is not surjective, but the range of H by linear operator $T - \lambda I$ is dense in H. The continuous spectrum of T is denoted by $\sigma_c(T)$.

3. The residual spectrum of T, is the set of all complex numbers λ , for which $T - \lambda I$ is injective and the range of H dose not equal H. The residual spectrum of T denoted by $\sigma_{r(T)}$.

4. The spectral radius of linear operator T is denoted by r (T) and it is defined as follows :

r (T) = sup { $|\lambda|$, $\lambda \in \sigma(T)$ } = $\lim_{n\to\infty} \|T^n\|^{\frac{1}{n}}$

Proposition (3.2)

Let $T \in B$ (H) and λ be eigenvalue of T, then e^{λ} is eigenvalue of e^{T} .

Proof:

There exists a non zero vector x in H, such that T x = λx (since λ is an eigenvalue of T), hence $T^n x = \lambda^n x$. $e^{T}x = \sum_{n=0}^{\infty} \frac{1}{n!} T^{n}x =$ But $\sum_{n=0}^{\infty} \frac{\lambda^n x}{n!} = \left(\sum_{n=0}^{\infty} \frac{\lambda^n}{n!}\right) x = e^{\lambda} x.$ Therefore e^{λ} is an eigenvalue of e^{T} and x is a corresponding eigenvector. **Remark (3.3)**

In[2] E. Kreyszing, proved that, if H is finite dimensional Hilbert space. and $T \in B(H)$, then $\sigma(T) \neq \phi$. Furthermore $\lambda \in \sigma(T)$ if and only if λ is eigenvalue of T. Hence if H is a

finite dimensional Hilbert space then $\lambda \in \sigma(e^{T})$ if and only if λ is eigenvalue of e^T.

In the following example we are going to compute the spectrum of the some linear operators.

Examples (3.4)

1. σ (I) = {1}, so σ (e⁰) = σ (I) = {1} 2. $\sigma(e^{I}) = \sigma(eI) = \{e\}.$

3. Let T be a nilpotent operator on a finite Hilbert space H. With order n, we have $e^{T} = \sum_{k=0}^{n-1} \frac{1}{k!} T^{k}$, and $\sigma(e^{T}) =$ $\sigma\left(\sum_{k=0}^{n-1}\frac{1}{k!}T^k\right) = \quad \left\{\sum_{k=0}^{n-1}\frac{1}{k!}\;\lambda^k:\lambda\in\right.$ $\sigma(T)$ by [2]. But $\sigma(T) = \{0\}$ by [2]

, hence $\sigma(e^T) = \{1\}$.

Theorem (3.5) [2]

Let T be a bounded self-adjoint linear operator on a complex Hilbert space H. Then:

1. The spectrum $\sigma(T)$ is real.

2. The residual spectrum $\sigma_r(T)$ is empty.

3. r(T) = ||T||.

Proposition (3.6)

If $T \in B$ (H) and T is a selfadjoint operator. Then :

1. $\sigma_{\rm P}({\rm e}^{\rm T})$ subset of real number and $\sigma_{\rm r} ({\rm e}^{\rm T}) = \emptyset$

2. r (e^{T}) $\leq e^{r(T)}$

Proof:

1. T is a self-adjoint operator, then e^{T} is self-adjoint by proposition (2.1). Hence $\sigma_{\rm P}$ (e^T) is subset of real number by theorem (3.5) and $\sigma_r(e^T) =$ Ø.

2. By theorem (3.5), we have $r(e^{T}) = ||e^{T}||$ and by proposition (1.1) part (4), we have $r(e^{T}) \leq e^{||T||} = e^{r(T)}.$

Lemma (3.7) [2]

T is a positive self-adjoint if and only if $\sigma(T) \subseteq [0,\infty)$.

Proposition (3.8)

If T is a positive self-adjoint on a complex Hilbert space H. Then $\sigma(e^{T})$ $\subseteq [1,\infty).$

Proof:

is a positive operator, If T then Tⁿ is also positive (by proposition (2.4) part (4)), i.e. $\langle T^n x, x \rangle \geq 0$, for x in H and n positive integer. So, we have < $e^{T}x, x > = \langle \sum_{n=0}^{\infty} \frac{1}{n!} T^{n}x, x \rangle =$ $\sum_{n=0}^{\infty} \frac{1}{n!} < T^{n} x, x > = \|x\|^{2} + \frac{1}{n!} \|x\|^{2} + \frac$ $\sum_{n=1}^{\infty} \frac{1}{n!} < T^n x, x >.$ Hence inf $\{ < e^{T}x, x > : x \in H \text{ and } ||x|| = 1 \} \ge 1$, then $\sigma(e^{T}) \subseteq [1,\infty)$. Remarks (3.9)

1 In [6] M. Akkouch, proves that if T is a normal operator on H. Then:

1)
$$\rho(T) = \{ \lambda: \lambda \in \mathbb{C}, R_{T-\lambda I} = H \}$$

2) $\sigma_p(T) = \{ \lambda: \lambda \in \mathbb{C}, \overline{R_{T-\lambda I}} \neq H \}$

H }

3)
$$\sigma_{c}(T) = \{ \lambda : \lambda \in \mathbb{C}, \overline{R_{T-\lambda I}} = H \}$$

4) $\sigma_r(T)$ is empty.

So, if e^T is normal operator by proposition (2.8), we have :

- $\rho(e^T) = \{ \ \lambda \colon \lambda \in \mathbb{C} \ , R_{e^T \lambda \ I} \ = H \ \}$ 1)
- 2)
- $\begin{aligned} \sigma_{P}(e^{T}) &= \{ \ \lambda: \lambda \in \mathbb{C} \ , \frac{e^{-\lambda T}}{R_{e^{T}-\lambda I}} \neq H \} \\ \sigma_{c}(e^{T}) &= \{ \lambda: \ \lambda \in \mathbb{C} \ , \overline{R_{e^{T}-\lambda I}} = H \ \} \end{aligned}$ 3)

 σ_r (e^T) is empty. 4)

2. In [6], we have if T is a normal operator on a Hilbert space H, then r(T) = ||T||, so $r(e^{T}) =$ $||e^{T}|| \le e^{r(T)}$, (because e^{T} is normal if T is a normal by proposition (2.8)).

3. In [7], we have if T is a hyponormal operator , then $\sigma(T) =$ $\sigma_{\rm P}({\rm T}^*)$. Hence $\sigma({\rm e}^{\rm T}) = \sigma_{\rm P}({\rm e}^{\rm T}^*)$, (because (e^T) is hyponormal if T is hyponormal and binormal bv proposition (2.19)).

4. In [8], we have if T is a hyponormal operator on a Hilbert space H, the r (T) = || T || , therefore $r(e^T) = ||e^T|| \le e^{r(T)}$ because e^{T} is hyponomral if (T is hyponormal and binormal bv proposition (2.19)).

References:

1. Mariano Giaquinta; Giueppe 2007. Modica. Mathematical

analysis linear and Metric structure and continuity. Springer, Italy, PP 465.

- **2.** E. Kreyszing . 2010. Introductory to functional Analysis with application, john weily and sons. PP: 688
- **3.** S.Panayappan¹ and N. Sivamani². 2012. A-Qusinormal operators in semi Hilbertian space, Gen. Math. Notes . 10 (2):30-35
- 4. Raghad , Ehsan ; AL- Sultan. 2000. Some generalization of normal operators. A Master thesis Department Mathematics, College of Science, Baghdad University. PP: 56.

- 5. P. R. Halmos.1967. A Hilbert space problem book. Springer verlag, New York. PP 367.
- **6.** Akkouch , I. M. 2008. Remarks on spectrum of bounded and normal operator on a Hilbert space, An . St. 16(2): 7-14.
- 7. Sheth , I . H .1966. On hyponormal operators , Proc .Amer .Math .Soc ,17:998-1001.
- 8. Eman , H. Al Ganabi .1996. Numerical range and normal operators. A master thesis, Department Mathematics, College of science, University of Baghdad. PP: 82

الداله الأسيه لمؤثر خطى مقيد على فضاء هلبرت

فاتن عباس احمد*

راضى إبراهيم محمد على*

الخلاصة :

قدمنا في هذا البحث مؤثر القوى لمؤثر معين معرف على فضاء هلبرت مع دراسة خواص مؤثر القوى . كما تم دراسة خواص المؤثر المعين والتي تورث إلى مؤثر القوى. ودرسنا طيف مؤثر القوى الذي يمنحه المؤثر المعين.

^{*}قسم الرياضيات ،كلية العلوم للبنات ،جامعة بغداد.