Open Access
Published Online First: July 2021

Baghdad Science Journal
2022, 19(1): 64-70

P-1SSN: 2078-8665
E-ISSN: 2411-7986

DOI: http://dx.doi.org/10.21123/bsj.2022.19.1.0064

Solving Whitham-Broer-Kaup-Like Equations Numerically by using Hybrid
Differential Transform Method and Finite Differences Method

Zeena M. Al-Botani

Abdulghafor M. Al-Rozbayani”

Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Irag
Corresponding author: zeena.botani@gmail.com, abdulghafor_rozbayani@uomosul.edu.ig

“ORCID ID: https://orcid.org/0000-0003-3092-1495 https://orcid.org/0000-0002-4497-1461"

Received 17/9/2019, Accepted 5/11/2020, Published Online First 20/7/2021, Published 1/2/2022

—@ B This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

This paper aims to propose a hybrid approach of two powerful methods, namely the differential
transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like
equations which arises in shallow-water wave theory. The capability of the method to such problems is
verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D
and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in

comparison with the analytic ones.

Keywords: Differential Transform Method, Finite Differences Method, Hybrid Differential Transform -
Finite Differences Method, Whitham-Broer-Kaup-Like Equations.

Introduction:

In various scientific fields, the vast majority
of the arising phenomena are known to be described
by partial differential equations (PDESs). For
instance, wave propagation, heat flow and other
physical phenomena. It is therefore important to be
aware of all the traditional techniques recently
developed to solve PDEs and to implement these
techniques. A growing interest in this topic has been
shown up in recent activities of researchers *. In this
work, our investigations restricted to solve non-
linear PDEs according to the initial conditions of
the adopted variable (IVP).

The double-equation (WBKL) is considered
to describe the propagating shallow-water waves
which have different dispersion relationships 2 The
associated WBKL equations studied by Whitham?,
Broer * and Caup ° are given as follows:

{ Ve + Yy + vy + Bhyy = 0,
Ot +VPx + Oy + Asxx — LPxx = 0.
with exact solutions
Y(x,t) = A — 2kcoth (k(x + xo) — At),
o(x,t) = —2k?csch? (k(x + xy) — At),
where ¥ = (x, t)denotes the horizontal velocity,
@ = @(x,t)denotes the height that deviates the
liquid from its equilibrium position, and «, S are
constants that could appear indifferent diffusion
powers °.

1)

64

Many researchers have discussed various
numerical and analytical methods to solve the
shallow wave equation since its emergence. For
instance, the Whitham-Broer-Kaup equations and
their variances were solved by using the homotopy
perturbation method ’the bifurcation method 2 the
Adomian decomposition method , and the power
series method °.

As a combination of differential transform
and finite difference methods, the hybrid
differential transform-finite difference
method(HDTFDM)has been developed to handle
plenty of problems and attracted the attention of a
broad group of scholars. For instance Chu and Ghen
% have utilized it to solve the nonlinear heat
construction problem. Maerefat et al. ** have used it
to solve heat transfer model in an annular fin with
variable thermal conductivity. Singu and Demir *2
have applied it to solve some nonlinear equations.
Che * has studied the nonlinear heat combustion
problem via the hybrid method. Mosayebidorcheh
et al.  have analyzed the turbulent MHD
Couettenanofluid flow and heat transfer by using
the hybrid method.

The finite difference method is one of the
most important methods in the field of numerical
analysis because of its accurate and detailed results.
It is one of the oldest methods used to solve the
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normal and partial differential equations, This
method was proposed in the eighteenth century by
Euler And relies on the sequential Tyler % .
However, the differential method alone needs a lot
of time, so Hybrid DTFD Methods has been
suggested

Our motivation in this paper is to construct
the approximate solution of the coupled nonlinear
WBKL equations by using a hybrid approach of two
well-known methods, namely, the differential
transform and finite difference methods. To this
end, the HDTFDM is described in Sec. 2. The
underlying method is analyzed to gain the
approximate analytical solution of the coupled
WBKL equations in Sec. 3. Finally, some
conclusions are exhibited in Sec.4.
The Hybrid DTFD Method

In order to describe the hybrid method, the
differential transformation of the analytic function
P(x) in a given domain can be written as *°

2
W) = '[d P(x)

dx? ’
x=x0
The function ¥ (x) is analytic and differentiated
continuously in the domain of interest .
where W(1) stands for the transformed (spectrum)
function. The original function could be regained by
taking the inverse transform as follows

pw =)
=0
this series converges if 3 0 < y < 1 such that
V241l < ¥ ()Il, VA = 4, for some
Ao EIN P
Now, upon combining the above two
equations, Taylor's series expansion of 1(x) can be
readily obtained as follows

P (x = x0)%,

Therefore, one can easily deduce that the
DTM is based on the Taylor's series expansion.
According to the DTM, the derivatives are not
evaluated symbolically. In particular, the function
P(x)can be expressed in a finite series as follows

P = Z W) - x),

To solve the PDE in the domain [0, T]
and x € [Xgirst, Xena] Using the hybrid method, the
finite differences and DTM are applied on space
variable and time variable respectively. The time
domain is divided into N sections. Assume that the
time ranges are H = T / N (18). The partial
derivatives are approximated, with respect to the
space-variable, x, in the PDE by the finite
differences formulas. The area 0 < x < a is divided
into several equal time periods and the length of the
interval is equal to h and to the approximation of the
central difference with respect to the first three
derivatives, so that equations are recalculated.

It is worth mentioning that this method can
be applied directly to non-linear differential
equations without the need for linear system.
Although the DTM series solution has a good
approximation to the exact solution of many
equations, it is not applicable to solve the PDEs. For
EE“S reason, the hybrid method can be used instead
Approximate Solution of the WBKL equations

To apply the hybrid method to the system
{ Y = — Yy — vy — Bxx

Ot = —POx — Oy — APyyy + BPsx )

Taking differential transform of equation
(2) with respect to the time only with the time
intervalH = 1. The above system is turned to be:

1d"y()
w(x)—Z(x—xo)l —
x=x0
(e + DW0x k +1) = —W(x, k) &R 20000 pOWGE), -
(k+ DOCxk + 1) = —d(x, k) ‘“’(" 9 (x, k) 2R, PO | 9700k
The central-difference formula is used on (k+1D)D;(k+1)
the first three derivatives in Eqg. (3) to obtain the ok (W1 (k) =¥, 1 (k)
following difference equations: =~
(k + D¥,(k + 1) ) (@41 (k) — @;_1 (k)
= (o Fin®) — ¥ (0) : 2h
B : —a (Lpi+2(k) - 21Pi+1(k) + 2wi—1(k) - lPi—z(k))
((D1+1(k) — P 1(k)) 2h3
2h B (Cbi+1(k) 20;(k) + ®;_ 1(k))
(Lpl-l-l(k) 2W; (k) + ;- 1(k)) h?

h2
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The differential transform result of the
initial condition reads
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Y(x,0) = ¥;(0) = A — 2kcoth (k(x + xo)),
@(x,0) = ®;(0) = —2kZcsch?(k(x + xo)),

whereW; (k)and
transformations ofy (x, t)and ¢(x, t)respectively at
the pointx = x;.
W, (k + 1)

_ —¥; (k) (qji+1(k) - qji—1(k))

@, (k)

are

k+1
Y ((Di+1(k) - (Di—1(k))

2h

T k+1 2h

[’) (lpi+1(k) - ZlIJi(k) + q"i—1(k))

k+1
D (k+1)

_ 9 (Wisa (k) — W1 (K))

k+1

2h

Wi (k) (@41 (k) — D1 (K))

T k+1 2h

(4)

differential

a (Lpi+2(k) —2¥W (k) + 291 (k) — lPi—z(k))

T k+1

When k = 0,1,2, yeilds

2h3

B (®iy1(k) — 20;(k) + @, (k))

k+1

¥ (1)
— —¥:(0) (“Pi+1(0) - Lpi—l(o))

1 2h
7 (@i41(0) = -4(0))

1

2h

_ E (lpi+1(0) - 2%;(0) + qu—l(O))

@,(1)
— _ @;(0) (Lpi+1(0) - "I"i_l(O))

1
W) (i4a(0) —

2h
®;_1(0))

1 2h
B E(‘pwz(o) = 2¥;41(0) +2¥;_1(0) — ¥;_,(0))

2h3

1
4 B (@;41(0) — 29;(0) + ;_,(0))

1

hZ

—P(1) (Wi (D) — ¥4 (D)

¥, (2) = > oh
Y (1421 — @;_4 (D))
2 2h
~ B (Wi (D — 2% (D) + i (D)
2 h?
®;(2)
@) (P (D = Wi (D)
B 2 2h
3 Y (D) (@41 (1) — @1 (1))
2 2h
a (Wi (1) — 24, (1) + 2%, (1) — ¥i_,(1))
2 h3
B (@1 (1) — 20;(1) + P;_4(1))
2 h2
w,(3) = ‘Pé(Z) (‘PHl(Z)Zh%_l(Z))
7 (04,2 =94 (2))
3 2h
B (Wi (@ —2¥(2) + s ()
3 h?
®;(3)
@) (¥ (@) — Wi ()

3 2h
W@ (i (2) — @1 (D)

3 2h

_ ﬁ(q’in(z) —2W;41(2) +2%¥;_1(2) — ¥;2(2))

3 h3

B (Piy1(2) —20;(2) + D;_41(2))
T3 72
So, the approximate solution could be achieved as
Y =¥;(0) + ¥ (1) + ¥;(2) + ¥:(3)
@ =;(0) + ;(1) + P;(2) + ?;(3)

With the aid of MAPLE software, the
numerical results are given in Tables 1-6 and
depicted graphically in two and three dimensions in
Figs. 1-6. From which, one can notice that the
approximate solutions of the coupled WBKL
equations agrees with the analytical ones for
different values of k,a,B,xand t. It is worth
mentioning that calculating more components will
increase the accuracy of the resultant solution but
the computational work will be increased as well.

Table 1. The Exact solution for ¥,,.q.:(x,t) when k = 0.1 and xo = 10

% 0 0.2 0.4 0.6 0.8 1

0 02576070572 02561777488  -0.2547852884  -0.2534285370  -0.2521063994  -0.2508178224
02  -0.2577520598  -0.2549229090  -0.2522370860  -0.2496859588  -0.2472615348  -0.2449564036
04  -0.2578974440  -0.2523681090  -0.2473798634  -0.2428707508  -0.2387873764  -0.2350834870
0.6  -0.2580432108  -0.2499352426  -0.2429780834  -0.2369833082  -0.2317990990  -0.2273018348
08  -0.2581893616  -0.2476174186  -0.2380821738  -0.2318795634  -0.2260040382  -0.2211205480
1 02454082240  -0.2353490436  -0.2274418012  -0.2211762634  -0.2161800660  -0.2121759128
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Table 2. The Exact solution for@ ... (x, t)when k = 0.1 and x, = 10
; 0 0.2 0.4 0.6 0.8 1
0 -0.0144812332 -0.0141069082 -0.0137441980 -0.0133926544 -0.0130518503 -0.0127213792
0.2 -0.0145193225 -0.0137799593 -0.0130854592 -0.0124324688 -0.0118179410 -0.0112391019
0.4 -0.0145575330 -0.0131191718 -0.0118477978 -0.0107199546 -0.0097161424 -0.0088200403
0.6 -0.0145958654 -0.0124959890 -0.0107465649 -0.0092779607 -0.0080369066 -0.0069820712
0.8 -0.0146343201 -0.0119077801 -0.0097636506 -0.0080559637 -0.0066814328 -0.0055652511
1 -0.0113521393 -0.0088838314 -0.0070145955 -0.0055778511 -0.0044603108 -0.0035826886
Table 3. The numerical results for Y (x,t) whenk = 0.1, A = 0.005, a = 0.7,  =0.1,y =
0.4 and x, = 10, for the approximate solution of the WBKL equation
% 0 0.2 0.4 0.6 0.8 1
0 -0.2550331063 -0.2536822611 -0.2523684483 -0.2510854467 -0.2498341281 -0.2486145006
0.2 -0. 2550331063 -0.2523684483 -0. 2498341281 -0.2474238524 -0.2451317168 -0.2429495538
0.4  -0.2550331063 -0.2498341281 -0. 2451317168 -0.2408692910 -0.2370005974 -0.2334838507
0.6 -0. 2550331063 -0.2474238524 -0.2408692910 -0.2352004000 -0.2302819110 -0.2260065976
0.8 -0. 2550331063 -0.2451317168 -0.2370005974 -0.2302819110 -0.2247051410 -0.2200562795
1 -0.2429495538 -0.2334838507 -0.2260065976 -0.2200562795 -0.2153000560 -0.2114790304
Table 4. The numerical results for ¢(x,t)whenk = 0.1, A = 0.005, « = 0.7, = 0.1,y =
0.4 and x, = 10, for the approximate solution of the WBKL equation
% 0 0.2 0.4 0.6 0.8 1
0 -0.0136849919 -0.0133708600 -0. 0130733161 -0.0127249939 -0.0123839941 -0.0120982000
0.2 -0.0136849919 -0.0130733161 -0.0123839941 -0.0118108800 -0.0112289000 -0.0106973600
04 -0.0136849919 -0.0123839941 -0.0112289000 -0.0102219941 -0.0092932860 -0.0084769951
0.6 -0.0136849919 -0.0118108800 -0.0102219941 -0.0088735364 -0.0077219963 -0.006704008
0.8 -0.0136849919 -0.0112289000 -0.0092932860 -0.0077219963 -0.0064362303 -0.0053445075
1 -0.0107073600 -0.0084776905 -0.0067063800 -0.0053493405 -0.0043159975 -0.0034899980
Table 5. The numerical results for e1 = abs(Yexace(x,t) —(x,t))whenk = 0.1, 2 =
0.005,a = 0.7, B = 0.1,y =0.4 and x, = 10, for the approximate solution of the WBKL
equation
% 0 0.2 0.4 0.6 0.8 1
0 0.0025750517 0.0024956167 0.0024171341 0.0023431599 0.0022717284 0.0022034549
0.2  0.0027200543 0.0025547547 0.0024024150 0.0022612499 0.0021296239 0.0020071683
0.4 0.0028654385 0.0025334380 0.0022479525 0.0020005069 0.0017863595 0.0016002768
0.6  0.0030112053 0.0025105337 0.0021078395 0.0017833926 0.0015165153 0.0012964358
0.8 0.0031573561 0.0024855077 0.0019811569 0.0015969797 0.0012982744 0.0010636458
1 0.0024589887 0.0018658334 0.0014364022 0.0011193612 0.0008803030 0.0006972816
Table 6: The numerical results for €2 = abs(@exac:(x,t) — @(x,t)) whenk = 0.1,
A=0005a=07,8=0.1,y=0.4 and x, = 10, for the approximate solution of the
WBKL equation
% 0 0.2 0.4 0.6 0.8 1
0 0.0007950080 0.0007391400 0.0006866838 0.0006750060 0.0006660058 0.0006218000
0.2  0.0008350080 0.0007066838 0.0006960058 0.0006191200 0.0005811000 0.0005426400
0.4 0.0008725410 0.0007350058 0.0006211000 0.0004980058 0.0004167140 0.0003430451
0.6  0.0009108734 0.0006891200 0.0005250058 0.0004044242 0.0003149102 0.0002780632
0.8  0.0009493281 0.0006811000 0.0004667140 0.0003280036 0.0002437696 0.0002154924
1 0.0006526400 0.0004061404 0.0003082154 0.0002285105 0.0001450024 0.0009000193
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Figure 1.The surface shows the solution Y(x,t)& o(x,pywhenk = 0.1, 2 = 0.005,a = 0.7, B =
0.1,y =0.4 and x, = 10 (a) approximate solution and exact solution for y(x,t) ,
(b)approximate solution and exact solution for @(x,t)

(@ (b)
Figure 2. The surface shows the solution y(x,ywhen k = 0.1, 4 = 0.005,a¢ = 0.7, B =
0.1,y =0.4 and x, = 10 (a) exact solution , (b)approximate solution

(b)
Figure 3. The surface shows the solution p(x,ywhenk = 0.1, 2 = 0.005, ¢ = 0.7, B =
0.1,y =0.4 and x, = 10 (a) exact solution , (b) approximate solution
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Figure 4. The surface shows the maximum Absolute value (MAE) for w(x,p)&e(x,)when k =
0.1, = 0.005,a = 0.7, B = 0.1,y = 0.4 and x, = 10 (a) MAE for w(x,5), (b) MAE for
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Figure 5. Exact and approximate solution for
y(x,t) when the time response of the point t=0.6
andx=0,0.2,04,06,08,1
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Figure 6. Exact and approximate solution for
o(x,t) when the time response of the point t=0.6
andx=0,0.2,04,06,08,1

Conclusions:
A physical model of the propagation of
shallow water waves is analyzed by the hybrid

differential transform-finite difference method. The
approximate analytic solutions of the coupled
Whitham-Broer-Kaup-Like equations are attained
depicted in Figs. 1-6. These solutions are compared
with exact ones to measure their accuracy. The
results exhibit that the used approach is robust and
efficient for solving nonlinear PDEs, whereas the
differential transform method is not applicable for
such problems.

Authors' declaration:

Conflicts of Interest: None.
We hereby confirm that all the Figures and

Tables in the manuscript are mine ours. Besides,
the Figures and images, which are not mine ours,
have been given the permission for re-
publication attached with the manuscript.

- Ethical Clearance: The project was approved by
the local ethical committee in University of
Mosul.

Authors' contributions statement:

AM. Al-Rozbayani: Conception, Design,
Analysis, Interpretation, Methodology,
Investigation, Resources, Validation, Revision,

Drafting the manuscript and proofreading. ZM. Al-
Botani: Acquisition of Data, Resources, Software,
Visualization, Writing - Original draft, Writing -
Review & Editing.

References:

1. Wang ML, Zhou Y, Li Z Application of a
homogenous balance method to exact solutions of
nonlinear equations in mathematical physics. Phys.
Lett. A, 1996; 216: 67-75.



Open Access Baghdad Science Journal P-1SSN: 2078-8665

Published Online First: July 2021 2022, 19(1): 64-70 E-ISSN: 2411-7986
2. Song M, Cao J, Guan X. Application of the 12.Sungu IC, Demir H. Application of the hybrid
bifurcation method to the Whitham-Broer—Kaup- differential transform method to the nonlinear
Like equations. Math. and Comput. Model. 2012 equations. Appl. Math. 2012; 3: 246-250.
February; 55: 688-696. 13.Chu SP. Hybrid differential transform and finite

3. Whitham GB, Variation methods and applications to difference method to solve the nonlinear heat
water waves. Proc. of the R. Soc. Lond. 1967; Series conduction problem. Whampoa - An Interdisciplinary
A 299: 6-25. J. 2014; 66: 15-26.

4. Broer LJF. Approximate equations for long water 14. Mosayebidorcheh S, Sheikholeslami M, Hatami M ,
waves, Appl. Sci. Res. 1975; 31: 377-395. Ganji DD. Analysis of turbulent MHD

5. Kaup DJ. A higher-order water wave equation and the couettenanofluid flow and heat transfer using hybrid
method for solving it. Prog. Theor. Phys. 1975; 54: DTM-FDM. Particuology. 2016 Jun 1;26:95-101.
396-408. 15.Kazem S, Dehghan M. Application of finite

6. Kupershmidt BA. Mathematics of dispersive water difference method of lines on the heat equation.
waves. Comm. Math. Phys. 1985; 99: 51-73. Numerical Methods for Partial Differential

7. Nikkar A, Ahmadiasl R. A Novel Method For Equations . 2018 Mar; 34(2):626-660.

Solving Nonlinear Whitham-Broer-Kaup Equation 16. Ahmed S. Finite difference method for solving the
System. Proceedings of Academics World 5th initial value ordinary differential equations (ODE).
International Conference, Paris, France. 2015; 6-9. IJRASET.2018; 6(1):2545-2549.

8. Ahmad J, Mushtag M, Sajjad N. Exact solution of 17.Yazengaw N. Convergence analysis of finite
Whitham-Broer—Kaup shallow water wave equation. difference method for differential equation. J. Phys.
J. Sci. Arts. 2015; 1(30): 5-12. Math. 2017;8(3)1-3.

9. Wang XB,Tian SF, Qin CY, Zhang TT. Lie 18.Raslan KR, Biswas A, Abu Sheer ZF. Differential
Symmetry Analysis, Analytical solutions, transform method for solving partial differential
and conservation laws of the generalised Whitham— equations with variable coefficients,. 1JPS. 2012;
Broer—Kaup-Like equations. Zeitschriftfir 7(9): 1412-1419.

Naturforschung A. 2017; 72(3): 269-279. 19. Odibat ZM, Kumar S, Shawagfeh N, Alsaedi A,

10. Chu HP, Chen CL. Hybrid differential transform and Hayat T. A study on the convergence conditions of
finite difference method to solve the nonlinear heat generalized differential transform method. Math.
conduction problem. CNSNS. 2008; 13: 1605-1614. Meth. Appl. Sci. 2017; 40: 40-48.

11. Maerefat M, Rad MT, Ghazizadeh HR . Hybrid 20. Hatami M, Ganji DD, Sheikholeslami M. Differential
differential transform-finite difference solution of 2D transformation method for mechanical engineering
transient nonlinear annular fin equation. Iranian J. problems. Academic Press of Elsevier, 2017.

Mech. Eng. 2010; 11: No.2.

Ay 4h g Al ) gasll 48 b cuaa aladiady base Whitham-Broer-Kaup-Like <¥saa Ja
dugiial) culd g 4l

2 A ia ) ol dana sl ! Gada dana 5

oA cJm sl i pall el ccibaaly Sl g o puial o gle IS

duadAl

le Jsmanlly dpgind) 5 dll 45 Ha g Laldll Jy saill Laa iy 8 0y yhal A 46y 5ha alodin) s Canll 138 (e Caagll
5eliS (e (33a3l) % Cus Alaall slial) s g LS SIS ol E8 A A5EIWhHitham-Broer-Kaup-Like <Y da
letle Jgmnll 4 il g Slasl 432 5 (pansy Aaun ge A2l il Al da gy g Cilalea 220 IS (e Jilosall 028 Jin e 44y L))
Aollail) il ae ) o2 ol BY 35S A8 @l G s Aldal) Jslall ae gt jlia 5 4y Hhall 38 aladiuly

Oid 4dy sk (Whitham-Broer-Kaup-Like <¥ale dgiiall @ild s @l 45 jla ¢ Laliil) Jysaill 45l 4alidall cilalsl)
gl el gl Loalil) st

70



