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Abstract: 
 In this paper the modified trapezoidal rule is presented for solving Volterra 

linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure 

is effective in solving the equations. Two examples are given with their comparison 

tables to answer the validity of the procedure.  
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Introduction: 
      The quadrature methods are bases 

of every numerical method for finding 

solution of integral equations [1]. 

     The problem of numerical 

quadrature arises when the integration 

can not be carried out exactly or when 

the function is known only at a finite 

number of data. Furthermore numerical 

quadrature methods are primary tools, 

used by engineers and scientists to 

obtain approximate answers for 

definite integrals that cannot be solved 

analytically [2]. 

     The main purpose of this paper is to 

use Bernstein polynomials to derive 

the composite modified trapezoidal 

rule of first order. Moreover, This 

method is used for solving Volterra 

linear integral equations of the second 

kind. Integral equations are solved by 

interpolation and Gauss quadrature 

method. [3]. (V.I.E) of the 2nd kind 

with convolution kernal are solved by 

using the Taylor expansion method. 

[4]. Linear integral equations are 

solved with repeated Trapezoidal 

quadrature method. [5]. 

Integral equation in Urysohn form  are 

solved numerically [6]. Fredholm 

integral eigen value problems are 

solved by alternate Trapezoidal 

quadrature method.[7]. Collocation 

method is used for solving Fredholm 

and Volltera integral equation.[8]    

 

The modified Trapezoidal rule 

of first order [9] 
      Polynomials are useful 

mathematical tools as they are simply 

defined, can be calculated quickly by a 

computer system and represent a 

tremendous variety of functions. They 

can be differentiated and integrated 

easily, and can be pieced together to 

form spline curves that can 

approximate any function to any 

accuracy desired. Most students are 

introduced to polynomial at a very 

early stage in their studies of 

mathematics, and would probably 

recall them in the form below 

 ( )     
       

         
    

Which represents a polynomials linear 

combination of certain elementary 

polynomials               . 
      In general, any polynomial 

function that has degree less than or 

equal to n, can be written in this way 

and the reasons are simply. 

- The set of polynomials of 

degree less than or equal to n forms a 

vector space. Polynomials can be 

added together, can be multiplied by a 
*University of Baghdad, College of Science for Women, Mathematics department 

**University of Diala, College of   Administration and Economy  

 



 J. Baghdad for Sci.  Vol.11(4)2014 
 

9261 

scalar and all the vector space 

properties hold. 

- The set of functions 

              form a basis for this 

vector space-that is, any polynomial of 

degree less than or equal to n can be 

uniquely written as a linear 

combinations of these functions. 

This basis commonly called the power 

basis is only one of an infinite number 

of bases for the space of polynomials. 

Consider Bernstein polynomials given 

by the following equation:- 

∑ (
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Then:- 
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By substituting    . Then 

 ( )   ( )(   )   ( ) (   )  

                   ( )(   )   ( )  
Let    

      ( )               ( )          
  ( )    (   )                (1) 
By integrating both sides of above 

equation from (0 to1) one can get:- 

∫  ( )   ∫  ( )  
 

 

 

 

 

                    
 

 
(     ) 

 

Now by  using the transformation. 

     (   )   
   

 
  

                                    

        

∫  ( )   
 

 
[     ]         

 

 

(  ) 

 

This formula is the modified 

trapezoidal rule of first order . 

 

1-The composite modified 

Trapezoidal Rule of first order :- 
       It can be derived by extending the  

modified trapezoidal rule of first order 

.This procedure  begins by dividing [a , 

b] into n subintervals and applying the 

modified trapezoidal rule of first order 

over each interval then the sum of the 

results obtained for each interval is the 

approximate value of integral ,that is  
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This formula is said to be the 

composite modified Trapezoidal Rule 

of the first order.   

 
Numerical solution for solving 

the one-dimensional Volterra 

:linear integral equation using 

the composite modified 

trapezoidal rule :- 
 

The composite modified trapezoidal of 

first order for finding 

∫  ( )  
 

 
             ∫  ( )   

 

 
 

 
[ ( )   ∑  (  )   ( )   

   ]  ( )  

where n is the number of subintervals 

of the interval [a, b] and    
   

 
 .In 

this section this rule is used to solve 

the one-dimensional Volterra linear 

equations of the second kind given by : 

 ( )  

 ( )   ∫  (   ) ( )            ( )
 

 
  

First, the interval [a, b] is divided into 

n subintervals,  [       ]   
              
Such that                  

where   
   

 
 so the problem here is 

to find the solution of equation (6) at 

each              Then by 

setting       in equation (6) one can 

get:- 

 (  )  

 (  )        ∫    (    )   ( )         
  
 

         ( )  
Next we approximate the integral 

appeared in the right hand side of the 

above integral equation by the 

composite modified trapezoidal rule to 

obtain       

      
    

 
 (     )   

    ∑  (     )   
   

 
 (     )  

   
     

therefore  

          ∑  (     )   
   
   

    

 
 (     )   ( )  

To illustrate these methods, the 

following examples are considered:- 

 

Example (1):- 
Consider the one-dimensional Volterra 

linear integral equation of the second 

kind is:- 

 ( )    
 

 
∫    ( )         

 

 

 

If it is solved by successive 

approximation method taking the zero
th

 

approximation  

           

             
Then 

     
 

 
 ∫        
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Clearly 
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(
  

  
) 

  

 
    

 ( )     
   

  ( )    
  

           

                      
Now this example is solved  

numerically via the composite 

modified Trapezoidal rule. To do this, 

First the interval [0, 2] is divided into 9 

subintervals such that 

   
  

 
                   Here     

 ( )    

and  (   )      then the equation(2)  

becomes:- 

      
 

  
∑        

 

  
  
    

   
     

 

               ( ) 
By evaluating the above equation at 

each i=1,2,…….,9. one can get the 

following values  

 u0=0   u1=2224663554 u2=0.4473848062 

u3=0.6807463739 u4=0.9330084342 u5=1.2202144860 

u6=1.5663078835 u7=2.0074989850 u8=2.6002794255 

u9=3.4362093627   

 

Second if we divide the interval [0,2] 

in 18 subintervals , such that xi=
 

 
   

            then the equation (6) 

becomes  

      
 

  
∑   

   
         

 

  
  
                                   (  )   

By evaluating the above equation at 

each i=1,2,…….,18. one can 

get the following values 

 

u0=0 u1=0.1111263548 u2=0.2224052300 

u3=0.3342034914 u4=0.4471361532 u5=0.5620744555 

u6=0.6801612311 u7=0.8028363544 u8=0.9318755296 

u9=1.0694464177 u10=1.2181872268 u11=1.3813145441 

u12=1.5627695728 u13=1.7674153566 u14=2.0013024661 

u15=2.2720276405 u16=2.5892200122 u17=2.9652042709 

u18=3.4159117144 

 

Third the interval [0, 2] is divided into 

36 and 72 sub intervals, such that   

   
 

  
                and  

   
 

  
                 respectively 

and some of these results are tabulated 

down with the comparison with the 

exact solution:- 
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Table (1) represents the exact and the numerical solutions of example (1) at 

specific points for different values of n 

X Exact Solution 
Numerical Solution 

Trap.N=9 Trap.N=18 Least square N=9 

0.222222222 0.2223848585 0.2224663554 0.2224052300 0.22233400 

0.444444444 0.4470533010 0.4473848062 0.4471361532 0.44703057 

0.666666667 0.6799663130 0.6807463739 0.6801612311 0.67997299 

0.888888889 0.9314983085 0.9330084342 0.9318755296 0.93153676 

1.111111111 1.2175126789 1.2202144860 1.2181872268 1.21758688 

1.333333333 1.5615934837 1.5663078835 1.5627695728 1.56171134 

1.555555556 1.9992459998 2.0074989850 2.0013024661 1.99941861 

1.777777778 2.5855576010 2.6002794255 2.5892200122 2.58580467 

2 3.4092097306 3.4362093627 3.4159117144 3.40956069 

 

Now the equation of the best line is 

found  through the point for table (1) 

when n=9 by using Least square 

method. 

 (   )  ∑   
       

   

  ∑     
  

      ∑      
 
   

  ∑   
 
       ∑   

 
          (  )  

                         
                     
              
            In order to find a and b we 

equate  
  

  
      

  

  
          

                    
  

  
                       

             (  ) 
           

                   
  

  
                 

                   (  )  
 

From eq. (13) we have 

  
         

  
 

          

  
               

                          (  )  

Substitute the value of b in eq. (12) we 

have 

                       
                        
          

                              
                      
Substitute the value of a in eq. (14) we 

have b= -0.00007889. 

Then the point is (            -

0.00007889) and the equation of the 

beast line          is             
                      

 
Fig (1) represent the equation 

 ( )    
 

 
∫    ( )       
 

 
in three 

different methods 
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Table (2) represents the differences between exact and the numerical solutions 
for example1 

Exact Solution 
Numerical Solution 

Trap.N=9 

Numerical 

Solution Least Seq. 

Exact&trap. 

difference 

Exact &Least 

seq. difference 

Trap.&Least seq 

difference 

0.22238480 0.222466355 0.22256156 0.000082 0.00005080 0.00013236 

0.44705300 0.447384806 0.44721647 0.000332 0.00002243 0.00035423 

0.67996600 0.68229191 0.68011568 0.0007804 0.00000699 0.00077338 

0.93149800 0.933049867 0.93163280 0.001510 0.00003876 0.00147168 

1.21751200 1.220268673 1.21762988 0.002702 0.00007488 0.00262760 

1.56159300 1.575270659 1.56169051 0.004715 0.00011834 0.00459654 

1.99924500 2.008454507 1.99931662 0.008254 0.00017361 0.00808037 

2.58555700 2.601517097 2.58559392 0.014722 0.00024767 0.01447476 

3.40920900 3.48408712 3.40919719 0.027000 0.00035169 0.02664867 

 
Example (2):- 
Consider the one-dimensional Volterra 

linear integral equation of the second 

kind:- 

 ( )    
 

  
 
 
 ⁄  ∫ (  

 

 

 )      ( )               
Using successive approximation 

method for solving this example taking 

the zeroth approximation       

Then  
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Using integral by parts to solve 
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    ..               

             ( )        is the exact solution 

Now this example is solved 

numerically via the composite 

modified Trapezoidal rule. To do this, 

First, the interval [0, 2]is divided into 9 

subintervals such that 

    
  

 
              . Here     

 ( )         (   )  (   )
 
 ⁄ . 

Then equation (6) becomes:- 

      
 

  
  

 
 ⁄  

 

 
∑ (   

   
   

  )
 

                         (  )    

By evaluating the above equation of 

each            one can get the 

following values:- 

 

u0=0 u1=0.2216310035 u2=0.4429149690 

u3=0.6639218150 u4=0.8846406461 u5=1.1050205259 

u6=1.3249767838 u7=1.5443897270 u8=1.7630994682 

u9=1.9808975240 

 

Second, if the interval [0, 2] is divided 

into 18 subintervals, such that  

   
 

 
                 

the equation (6) becomes:- 

      
 

  
  

 
 ⁄  

 

 
∑ (   

   
   

  )
 
 ⁄                   (  )  

 
 

By evaluating the above  equation 

each           . One can get the 

following values. 
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u0=0 u1=0.1110588543 u2=0.2220880359 

u3=0.3330961478 u4=0.4440861641 u5=0.5550591943 

u6=0.6660153189 u7=0.7769538948 u8=0.8878736889 

u9=0.9987729386 u10=1.1096493733 u11=1.2205002125 

u12=1.3313221472 u13=1.4421113071 u14=1.5528632159 

u15=1.6635727341 u16=1.7742339905 u17=8848403004 

u18=1.9876275257 

 

Third, if the interval [0, 2] is divided 

into 36 and 72 subintervals, such that   

   
 

  
            and the 

   
 

  
          

Respectively and some of these results 

are tabulated down with the 

comparison with the exact solutions:- 

 

Table (3) represents the exact and the numerical solutions of example (3) at 

specific points for different values of n 

X Exact Solution 
Numerical Solution 

Trap.N=9 Trap.N=18 Least square N=9 

0.222222222 0.2222222222 0.2216310035 0.2220880359 0.22222222 

0.444444444 0.4444444444 0.4429149690 0.4440861641 0.44444444 

0.666666667 0.6666666667 0.6639218150 0.6660153189 0.66666667 

0.888888889 0.8888888889 0.8846406461 0.8878736889 0.88888889 

1.111111111 1.1111111111 1.1050205259 1.1096493733 1.11111111 

1.333333333 1.3333333333 1.3249767838 1.3313221472 1.33333333 

1.555555556 1.5555555556 1.5443897270 1.5528632159 1.55555556 

1.777777778 1.7777777778 1.7630994682 1.7742339905 1.77777778 

2 2.0000000000 1.9808975240 1.9876275257 2.00000000 

  
    

 

 

In the same way in example (1) the 

equation of the best line is found by 

least square method and the values of a 

and b are 1 and 0 respectively , and the 

equation is            is      

 

 
Fig (2):represent the equation 

 ( )    
 

  
 
 

 ⁄  ∫ (   )
 

   ( ) 
 

 
  

in three different method 

 

Table (4) represents the differences between exact and the numerical solutions 
for example(2) 

Exact Solution 
Numerical Solution 

Trap.N=9 

Numerical 

Solution Least Seq. 

Exact&trap. 

difference 

Exact &Least 

seq. difference 

Trap.&Least seq 

difference 

0.2222222 0.2216310 0.22239899 0.0005912 0 0.000591219 

0.4444444 0.4429150 0.44460806 0.0015295 0 0.001529475 

0.6666667 0.6639218 0.66681714 0.0027449 0 0.002744852 

0.8888889 0.8846406 0.88902621 0.0042482 0 0.004248243 

1.1111111 1.1050205 1.11123528 0.0060906 0 0.006090585 

1.3333333 1.3249768 1.33344435 0.0083565 0 0.008356549 

1.5555556 1.5443897 1.55565343 0.0111658 0 0.011165829 

1.7777778 1.7630995 1.77786250 0.0146783 0 0.01467831 

2 1.9808975 2.00007157 0.0191025 0.000E+00 0.019102476 
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 الخلاصة:
تم اشتقاق طريقة شبه المنحرف لحل معادلات فولتيرا التكاملية من النوع الثاني ولاحظنا ان هذا الاسلوب جيد في 
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