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Abstract:

In a connected graph G, the distance function between each pair of two vertices from a set vertex
V(G) is the shortest distance between them and the vertex degree u denoted by degu is the number of edges
which are incident to the vertex u. The Schultz and modified Schultz polynomials of G are have defined as:
Sc(G;x) = Y(degu + degv) x*®@Y) and Sc*(G;x) = ¥ (degu.degv) x*®?), respectively, where the
summations are taken over all unordered pairs of distinct vertices in V(G) and d(u,v) is the distance
between u and v in V(G). The general forms of Schultz and modified Schultz polynomials shall be found and
indices of the edge — identification chain and ring — square graphs in the present work.

Keywords: Edge — Identification Chain and Ring , Schultz index , Modified Schultz index, Polynomials.

Introduction:
All the connected graphs were considered The Schultz and modified Schultz indices are
in this paper simple, finite and undirected. V =  defined respectively as:
V(G) and E = E(G) denotes the set of verticesand  Sc(G) = Y vcve)(degu + degv) d(u,v).
the set of edges respectively of G, the number of * — }
vertices of G is called the order of G, that is $¢'(6) = Luwevo(degu - degv) d(w,v).
p =p(G) = |V(G)| and the number of edges of G The Schultz
is called the size of G, that is g = q(G) = |E(G)|.
The vertex degree deggu or degu referes to the
number of vertices that are incident to the vertex u.
The distance between any two arbitrary vertices u
and v of G is the length of the shortest path joining
u to v, and it is denoted by d (u, v) or d(u, v). The
diameter of a connected graph G is the maximum

distance between any two vertices in V(G) and N _
denoted by diamG, *?, that is, Se(G;x) __Z{lfr”}g"(‘;)(deg v degu) x

The indices of Schultz and modified Schultz
can be obtained by the derivative of Schultz and

modified Schultz polynomials with respect to x at x

and Modified Schultz
polynomials are important polynomials which can
obtain the indices and study some properties of the
coefficients. The Schultz polynomial is defined as:
Sc(G; x) = Xupiev(e)(degu + degv) xd@wv)

In addition, the modified Schultz

polynomial is defined as:
d(u,v) i

diamG = maxy yeyc)td(w, v)}.
There are many studies on polynomials and
indices with respect the Schultz and modified

Schultz,*%, and also, there are studies on applied of 1, that are: a
its,”™, Sc(G) = - (Sc(G; x))|x=1 and
i i * d *
The Schultz index (molecular topological Sc*(G) = E(SC (G;20))| g1

index) was introduced by Schultz in 1989," ,and the
modified Schultz index was defined by Klavzar and
Gutman in 1997,%.

The average distance of a connected graph
G of order p(G) with respect Schultz and modified
Schultz are have defined as:
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Sc(G) = 28c(6)/p(6) (p(G) —1)  and

Sc*(G) = 25¢7(6)/p(G) (p(G) —1).
That the graph G is said to be r — regular
graph if all vertex of G has r degree.
If G is an r-regular graph, then

Sc(G;x) = Xuvyev ) 21 xdwv) and
Sc*(G; %) = Tumeve > x4,
Hence Sc*(G,x) = gSc(G, x). (L)

With simplified, can be obtained as the following
Sc*(G) = gSc(G) and Sc*(G) = gma)....(u)

The number of pairs of vertices of G that
are distance k which denoted by D(G,k). Let
Dy(r,h) be the set of all unordered pairs of
vertices (u, v) of G with distance k such degu = r
and degv = h. From clearly that :

DD ()] =p(6)(P(G) — 1)/2,
where D(G, k) = |D,(G) |.

Finally the topological indices such as
Schultz and modified Schultz indices determine
some properties of chemical structures, see,**™*.

In this work, the general forms can be

identified of Schultz and modified Schultz

G G, Gs Gy

, G,,). Edge — Identification Chain (EIC) — Graphs.

Figure 1. C.(G4, G, ...

The graph is noted as C.(Gy, G, ..., G,) has:
L p(Ce(Gy, Gy, -rr, Gp)) = Xizq P(Gy) — 2(n = 1).
2. Q(Ce(Gll GZ' ey Gn)) = Z?=1 q(Gl) - (Tl - 1)
3. n < diam(C,(Gy, Gy, ..., Gy)) <

*diam(G) — (n—1).

The equality of lower bound is satisfied at
complete graph but the upper bound is satisfied at
path graph.

If G;=H, , forall1 <i<mn, where H, is
a connected graph of order p, the C,(Hp, Hp, ..., Hy)
by Ce(H, ), is denoted.
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polynomials and indices of the edge — identification
chain and ring — square graphs.

Main Results:

Binary operations are construct the new
graph from any two graphs such as: Cartesian
graph product, strong graph product, tenser graph
product, ... etc.. In this paper, the special definitions
are given of operation for edge identification chain
and ring graphs.

Definition 1: Edge — Identification Chain (EIC) —
Graphs:

Let {Gy,G,,...,G,} be a set of pairwise
disjoint graphs with non adjacent edge
uiv;,x;y; € E(Gl),l =12,..,n,n=>2, then the
edge-identification chain graph
Co(Gy,Gy, ..., Gy) =
Co(Gy,Gyy e, GriUq Vg , X1 Y15 oo s UnUp , Xn V) OF
{G;}7-, with respect to the edges {w;v;,x;y;}i=, is
the graph obtained from the graphs G4, G5, ..., G,, by
identifying the edge x;y; with the edge u;y1v;41
foralli =1,2,...,n — 1. (Fig. 1) in which:

Gi?*l G:?

Definition 2: Edge — Identification Ring (EIR) —
Graph:

Let {G;,G,,...,G,} be a set of pairwise
disjoint graphs with non adjacent edge
u;v;,x;y; € E(Gl),l =12,.,n,n=2, then the
edge-identification ring graph
R.(Gy, Gy, ..., Gy) =
Ro(G1,Gy, ..., Gpi UV , X1 V15 3 UV , XnYn)  OF
{G;}7-, with respect to the edges {u;v;,x;y;}=; is
the graph obtained from the graphs G4, G,, ..., G, by
identifying the edge x;y; with the edge u; 1v;+1
for all i =1,2,..,n, where u,, V41 = uyv;. (
Fig. 2).
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Figure 2. R.(G4, G, ...
Edge - Identification Ring (EIR) — Graph.

,Gn).

In addition, the graph is denoted
R.(G4,G,, ..., Gy) has:
L. p(Re(G1, Gy, ..., Gp)) = Xi=1 P(G;) — 2n.

2. q(Re(Gy, Gy, ., Gp)) = Xiz1 q(Gy) — .

| V) vy Vi Vs Vp-1  vp
] i liy lig iz ip] Up

(a) — Edge — Identification Chain of C4, C.(C4)p-

From Fig. 3 (a), can be noted that (Ce(C4)p_1) =
2p,q(Ce (C4)p—1) =3p—2,

3. [”7‘1] < diam(R,(Gy, Gy, .., Gy)) <
[Z?zl diam(Gi)—n—l].

2

Also, the equality of lower bound is
satisfied at complete graph but the upper bound is
satisfied at path graph.

If G; = Hp, forall 1 < i <n, where H, isa
connected graph of order p, the R, (Hy, Hy, ..., H,)
by R.(H,) is denoted.

Finally, there are more chains and rings
consisting of special graphs about finding the
polynomials and indices of types distance such as:
ordinary distance, Detour distance, ... etc., (17-19) .
Therefore, the Schultz and modified Schultz will be
continued to be found of them.

Schultz and modified Schultz of C.(C4)p-1
and R, (C4)p:

Figure 3.

1

(b) — Edge — Identification Ring of C4, R.(C4)p.

diam(Co(Cy)p—1)=pand 2<ij<p—1,i #]j,
and there will be:

Table 1. The degree vertices for edge — identification chain of C4, C.(C4),_1.

+ x deguy =2 degv, =2 degu;=3 degv;=3 degu,=2 degv,=

degu, =2 4 4 5 6 5 6 4 4 4 4
degv, =2 4 4 5 6 5 6 4 4 4 4
degu; =3 5 6 5 6 6 9 ©6 9 5 6 5 6
degv;=3 5 6 5 6 6 9 6 9 5 6 5 6
degu,=2 4 4 4 4 5 6 5 6 4 4
degv,=2 4 4 4 4 5 6 5 6 4 4

Theorem 1.1: For p > 4, then they will be given: P1. If d(uv)=1, then |D;|=3p—-2=

1. Sc(Co(Cy)p-1;x) = 2(9p — 10)x
+4 P72 (6p — 6k + 1)x* + 8xP.
2. Sc*(Co(Ch)p-1;x) = (27p — 40)x
+6 Y0 2(6p — 6k — 1)x* + 32xP~1 + 8xP.
Proof: For all p>5 and every two vertices
u,v € V(Co(Cy)p-1) thereisd(u,v) =k, 1 <k <
p. There will be five partitions for proof:
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q(C.(C4)p—1), three subsets will be of it:

P111D;(2,2)| = [{(w;v):i=1,p} = 2.

P1.2 |D,(2,3)| =

|{(u1: uZ): (up: up—l): (vlr UZ): ('Up, vp—l)}l = 4

P13[D:(33)| = [{(up ui41), Wy vi41):2 <P <p
-2} U{(u,v):2<i<p-1} =3p—-8.

P2.1fd(u,v) =k,2 <k <p—3,then |Dy| =

4p — 4k + 2, two subsets will be of it:
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P2.1 Dy (2,3)] = 1{(u1, us11), (Ups Up—i ), (1, V1410), 1. Sc(Co(C)p-1) =2(p+1) — ﬁ.

(vp' vp—k): (ull Uk), (vp: up—k+1)l (Ul, uk): o 2
2. Sc*(Co(Cy)p—1) =3p ——.
(up vps2)}] = 8 (Celladpa) =30 = @

P2 ZIJD"?’?’)' Qs Uiic), (v“v”")_ 2sis From Fig. 3(b), can be noted that
p—k—1}U{(uyvigr-1), W Uigp-1):2 S U< _ _
p—k} = 4p — 4k — 6. P(Re(Ca)p) = 2p,q(Re(Ca)p) = 3D,
diam(Re(C4)p) = |P5=| and for 1 < i,j < p,i #,
P3.If d(u,v) = p — 2, then |D,_,| = 10, two there will be:
subsets will be of it:
P3.1 |Dp_2(2,3)| = |{(u1,up_1), (ul, vp_z), Table 2: — Edge - Identification Ring of €y, R.(C4),,.
V1, Vp—1), (V1, Up_2), ((up'uZ)' * - degu; =3 degv; =3
(Up V3), (Vp, V2), (v, Us)}] = 8. degu; =3 6 9 ® ?
2P3'2 |Dp-233)] = [{(u2, vp-1), (v2, up-1)}| = degv; = 3 6 9 6 9
Theorem 2.1: For p = 6, then they will be given:
P4.If d(u,v) = p — 1, then |D,_;| = 6, two P y p_ﬂl_zg
subsets will be of it: 1. Sc(Re(Co)psx) = 18px +24p %, 2, x*
P4.1(Dp_1(22)| = [{(u1,wp), (v1.vp)}| = 2. +6p {4xp7_1 + prZi, when p is an odd,
P42 |D,_,(2,3)| = {(uqy,v,-1), (v,, u,), P P
| P a )l l{( vop 1) ( P 2) 3x2 +x2+1, when p is an even.

(1 up-1), (. v2)} = 4

p+1)_
P5. If d(u,v) = p, then |D,,| = 2, one subset will 2.S¢*(Re(Cy)p; x) = 27px + 36p ZLZZ xk
' _ _ -1 +1
be Of |t|Dp(2;2)| - |{(u1; vp); (vl; up)}| —_ 2. +9p {4-_’)(1)7 + ZXPT,Whenp iS an Odd,
L 5| .
From P1 — P5 and Table 1, there will be: 3xz + x2_+ , Wwhen p is an even.
1. Sc(Ce(C4)p_1; x) =2(9p — 10)x Proof: For every two vertices u, v € V(Re(C4)p )
+4Z£;;(6p — 6k + 1)x* + 8xP, thereisd(u,v) =k, 1<k < [pTH .

There will be four partitions for proof:
Now, modified Shultz polynomial can be found:

2.Sc*(Co(Cy)p-1;x) = (27p — 40)x + PL. If d(u,v) = 1, then [D;| = 3p = q(R.(Cy)p).
6Z£;§(6p — 6k — 1)x* + 32xP~1 4 8xP. and one subsets will be of it:

ID;1(3,3)| = [{(uy ujr1), (Wi Vigr), (U v): 1 <
Simply, calculating the following: i < p}l =3p, where uy 1 = uy and vy = vy
Sc(C,(Cy)3;x) = 52x + 52x2 + 28x3 + 8x*.
Sc*(Co(Cy)s; X) = 68x + 66x2 + 32x3 + 8x*, P2. If d(u,v) =k, for 2<k<[22] -2, then
With this, the proof is completed. | |D; | = 4p, and one subsets will be of it:

1Dy (3,3)] = [{(wi, Ui, (Wi, Vigseds (Ui Vire—1)
Wiy Ujpk-1): 1 S T < p}| = 4p,where  up,q = uq
and vp,q = vg,a = 1,2,3, .. k.

Remark:
1. Sc(Co(Cy)q;x) = 34x + 28x2 + 8x3.
2. Sc*(C,(Cy);x) = 41x + 32x2 + 8x5.

+1
Corollary 1.2: For p = 3, then they will be given: P3. Ifd(w,v) = [pT] — 1, then
1. Sc(Co(Ca)p1) = 20(20% +p — 2). _ {4p ,when p is an odd,
2. Sc*(Co(Ca)p-1) =p(6p2—3p—2). m 3p,whenp is an even.

Pt}

Corollary 1.3: If n is a number of rings C,,n > 2, a. If p is an odd, one subset will be of it:

then they will be given: |D[&]_1(3,3)| = |{<up__1, up-1),(vu. yp_l)}
1. Sc(Co(Cy)p) =2(2n3 + 7n% + 60+ 1), 2 2 2
2. Sc*(C.(Cy)p) = (6n3 +15n%2 +10n+1). m U {(ui,uH;l)'(Vi:UHE)v(ui'VHE):
2 2 2
. . . -3
Corollary 1.4: For p > 3, the they will be given: (vi,quT—s 1<i< pT}I = 4p, where

563
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— — p-3
Uppg SUg AN Vg = vq,a =123, I

‘D[PTH]_l(S;S)‘ = |{(ull ul_l_pT_l) ) (vl) vl_l_pz;l)i

(ui, UH_PT—3); (vi, ui+p2;3) :1 <i<p}=4p, where

— — p-1
Uprg = Ug AN Vprq = Vg, a = 1,2,3, A

b. If p is an even, one subset will be of it:
‘D[p_ﬂ]_l(B,B)‘ = ‘{(ui,uiJrg),(vi,viJrg) 1<i<
2 2 2

g} U {(ui,vi+§_1),(vi,ui+§_1> 1<i< p}| = 3p,

where u,, 4 = Uy and v,y 4 = vg,a = 1,2,3, ..,
L
5~ L

P4. If d(u,v) = == |, then
2p, whenp is an odd,
{p, whenp is an even.
a. If p is an odd, one subset will be of it:

o 9] [ ()1
2 2 2
where

p—1
Vg, :51,2,3,".,—5—.

o =

i < p}‘ = 2p, Uprg = Ug AN Vpyg =

b. If p is an even one subset will be of it:

‘D[p_—l—l](3,3)| = |{(ui,vi+g),(vi,ui+g) 11<i<
2 2 2

p)| _
o =r

D[p_ﬂ](3,3)| = |{(ui,vi+g) 1<i< p}|p, where
2 2

— p
Vpta = Vg, Q= 1,2,3, e

From P1 and P4 and Table 2, there will be:
p_+1

L Se(Ro(Ce)nsx) = 18px 4 24p 3| 2172 gk
e(Ca)p p P2y

=2

p p

p-1 p+1
4x 2 4 2x 2z ,whenpisan odd,
2

3xz 4+ x2"°, whenp is an even.
Now, modified Schultz polynomial can be
computed from the Schultz polynomial by

1 L) V3oV Vs 'p-1 p
M'\ ~ . .
1y 7)) i3 ly Uiz Hp—l Hp

(a) — Edge - Identification Chain of €4, C¢(€4)p-1.

Corollary (1.1). Since the graph R,(C4), is 3-
regular graph, then:
* 3
2. Sc*(Re(Cy)pix) = ESc(lze(a,)p;x) = 27px
[P_’fl_
ko2 X°
p-1 p1
4x 2 +2x 2 , whenpisanodd,

+36p Y

+9p{ P v, .

3xz2 +x2 °, whenp is an even.
With this, the proof is completed. m

Remark:

1. poly(R,(Cy)3;x) = a{9x + 6x2}.

2. poly(R,(Cy)4;x) = a{l12x + 12x? + 4x3}.
3. poly(R.(Cy)s;x) = a{15x + 20x? + 10x3}.
Where a = 6 when the polynomial poly is Schultz
and a =9 when the polynomial poly is modified
Schultz.

Corollary 2.2: For p > 3, they will be
given:
1. Sc(R(Cy)p) =

{(PZ +2p—1), whenpisanodd,

p(p+2), when p is an even.

2. Sc*(Re(Cy)p) =
9 {(p2 +2p —1), whenpisanodd,
28 (p(p+2), when p is an even.

Corollary 2.3: For p > 3, they will be given:

1. Sc(Re(Co)p) =
3(2p+5+2p1_1)
4

3(2p+5+ > )

,Whenp is an odd,

2p—-1
4
2. Sc*(Re(Cp)p) =

9(2p+5+2p1_1)

,when p is an even.

5 ,Whenp is an odd,

9(2p+5+ > )

2p—1 .
5 ,when p is an even.

Schultz and Modified Schultz of C.(€4)p-1
and R (€4)p:

”j Uiz
(b) — Edge — Identification Ring of €4, R (€4),.

Figure 4.
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From Fig. 4 (a), can be noted that
p(Ce ((24)17—1) =2p, q(C, ((24)1)—1) =4p—3and

diam(C,(C4)p—1) =p.Forall2<i,j <p -1,
i # j, there will be:

Table 3. Edge - Identification Chain of €4, Co(€4)p—1-

+ X degu, =2 degv, =3 degu; = 4 degv; =4 degu, = 3 degv, =2
degu, =2 5 6 6 8 6 8 5 6 4 4
degv; =3 5 6 7 12 7 12 6 9 5 6
degu; =4 6 8 7 12 8 16 8 16 7 12 6 8
degv; =4 6 8 7 12 8 16 8 16 7 12 6 8
degu, =3 5 6 6 9 7 12 7 12 5 6
degv, =2 4 4 6 8 6 8 5 6 5 6

Theorem 3.1: For p > 4, then they will be given:
1.Sc(Co(€4)p-1;x) = 2(16p — 19)x
+4 P72 (8p — 8k — 1)x* + 4xP.

2.Sc*(Co(€4)p-1;x) = 4(16p — 25)x

+32¥P22(2p — 2k — D)x* + 37xP~1 + 4xP,
Proof: For all p>5 and every two vertices
w, v € V(Ce(€a)p-1) there isd(u,v) =k,
1 < k < p. There will be five partitions for proof:

P1. If d(u,v) = 1, then

|D;| = 4p — 3 = q(C.(€4)p-1) and four subsets

will be of it:

P1.1|D,(2,3)| = |{(u1,v1), (vp,up)” = 2.

P1.2|D;(2,4)| = |{(u1,u2), (vp,vp_l)” = 2.

P1.3 |D1(3,4)| = |{(171,‘l72), (vlJuZ)' (upJup—l):

(pr vp2 )}l = 4.

P14 |D1(4.4)| = [{(us wir1), (Vi Vige), (wy vy),
(Wi ui41):2 ST <p =23 U {(Vp_1, Up—1)}
=4p — 11.

P2. Ifd(u,v) =k,2 <k <p —3, then
|Dy| = 4p — 4k + 1 and three subsets will be of it:
P2.1 Dk (2,4)| = [{(ug, Uy 4x), (ug, ), (vp'vp—k)'
(Up'up—k+1)}| = 4.
P2.2 D B, = {1, Vi41)s (W1, g i), (Ups Vi),
(up up-i )}l = 4.
P2.3 D (4D = [{(ui, Uirr), (Wi, Vi), (Vi Uirk)
(W, Vipp-1):2 <i<p—k—1}
V] {(up_k, Up—1)}| =4p — 4k —7.

P3.Ifd(u,v) = p — 2, then |D,_,| = 9, and three
subsets will be of it:

P31 |Dp_2(2,4')| = |{(u1,up_1), (ul, Up_z), (vp,u3),

(Vp, v2)}| = 4.

P32 |Dp_2(3,4)| = |{(171, Up_l), (vl, up_l), (up, 172),

(up,u2)| = 4.
P33 |Dy_y (4,4)| = |{(uz vpr) }| = 1.

P4.If d(u,v) = p — 1, then |D,_,| = 5 and three
subsets will be of it:

P4.1 |Dp_1(2,3)| = |{(u1,up), (vp,vl)” =2.
P4.2 |Dp_1(2,4)| = |{(u1,vp_1), (vp,uz)}| = 2.
P4.3|D,-1(33)| = |{(vi.up) }| = 1.

P5. If d(u,v) = p, then |D,,| =1 and one subsets
will be of it: |D,(2,2)| = [{(u, vp) }| = 1.

From P1 — P5 and Table 3, there will be:
Sc(Co(€4)p-1;x) = 2(16p — 19)x
+4 P71 (8p — 8k — 1)x* + 4xP.

And
Sc*(Co(€4)p—1;x) = 4(16p — 25)x
+32 Zi;ﬁ(zp — 2k — 1)xk 4 37xP~1 4+ 44P.

It is easy to calculate that:

Sc(Co(€4)3;x) = 90x + 60x2 + 28x3 + 4x*.
Sc*(Co(€4)3;x) = 156x + 96x2 + 37x3 + 4x*.
With this, the proof is completed. m

Remark:
1. Sc(Co(€4)2; x) = 58x + 28x2 + 4x3.
2. Sc*(Co(€4)z;x) = 92x + 37x2% + 4x3,

Corollary 3.2: For p = 3, then they will
be given:

L Se(Co(@a)py) = 222042=3)

3_ 2 _
2 SC*(Ce(¢4)p_1) _ (32p 4-8p3 +43p 27)_ .

Corollary 3.3: If n is a number of rings ¢,,n > 2,
then they will be given:

3 2
L Se(Co(ly)y) = 2E2NES)

2. 5c*(Co(€y)n) =

n(32n%+48n+43)
-

Corollary 3.4: For p > 3, then they will be given:

— 8p+1 -2
L SC(Ce(Q‘*)p‘l) - p3 p(Zp—D'
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T _ le(p-1) , 9(p-1)
2. Sc*(Co(€a)p-1) = R —

From Fig. 4 (b), can be noted that
p(Re((Zz})p) = 2p, q(Re((Zz})p) =4p and
diam(Re(€4),) = [5] For

1<i,j<p,i+]j, therewill be:

Table 4. Edge — Identification Ring of €4, Re(€4),.

+ X degu; = 4 degv; = 4
degu; =4 8 16 8 16
degv; = 4 8 16 8 16

Theorem 4.1: For p = 5, then they will be given:
1. Sc(Re(€a)p;x) = 32292“

p+1
+8p{

x 2, whenpisan odd,
2.Sc*(Re(€4)ps x) = 64sz

b .
3x2, whenp is an even.

p+1
+16p {x 2 , When p is an odd,
3x2, whenp is an even.

Proof: For every two vertices u,v € V(R,(€4),),
there is d(u,v) = k,1 <k < [2].
There will be two partitions for proof:

PL Ifd(uwv) =k 1<k <|2] -1, then
|Dy| = 4p and one subsets will be of it:

D (48| = [{(wi, wisk), Wi, Vigr), (Wi Vigie—1),
(Wi, Uj): 1 < 0 < p}| = 4p, where u,, 4 = u, and
Vpta = Vg, a =123, e k.
_P
1 d(u,v) = 2], then

p,whenp is an odd,

‘D[p 3p ,whenis an even.

-1

a. If p isan odd, and one subset will be of it:

Dp_+1(4,4)| = |{ (v )i 1< < p}| _»,
2 2

1

where vy, = v, a = 1,23, ..., 7=,

b. If p is an even, and one subset will be of it:

D§(4,4)‘ = ‘{ (ui, ui+§),(vi,vi+§) 1<i<

}U {(uil vi+2_1); (vi'ul+2) 01 < [ < p}| = 3p’
2 2

where Upra = Ug, and Vpta = Vg, @ = 1,2,3, g

p

2

From Pland P2 and Table 4, there will be:
1. Sc(Re(€4)p;x) = 32p Z[ I
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p+1

x 2, whenpisan odd,
+8p{ » p

3x2, whenp is an even.

Now, modified Schultz polynomial can be
computed from the Schultz polynomial by (1.1).
Since the graph R, (€4),, is 4-regular graph, then:

2.Sc*(Re(€4)p; x) = ZSC(R (€4)p; x)

P”l—
=64p X,
p_+1
+16p {x ; , When p is an odd,
3x2, when p is an even.

]
Remark:

1. poly(R,(€4)3,x) =« {12x + 3x2}.

2. poly(R,(€4)4,x) = {16x + 12x2}.

Where «c= 8 when poly is polynomial Schultz and
o= 16 when poly is polynomial modified Schultz.

Corollary 4.2: For all p = 3, then they
will be given:
1. Sc(R(€4),) = 4p*(p + 1).
2. Sc*(Ro(€4)p) = 8p2(p + 1). n
Corollary 4.3: For all p = 3, they will
be given:

= 3
1. Sc(Ro(€4)p) =2p+3 + P

2. 5¢7(Re(€4)p) = 2 (2p +3+ 2;—_1)

Some Properties of the Coefficients of
Schultz and Modified Schultz Polynomials:

A finite sequence (a;,a,, ... ,ay) of h
positive integers is coefficients of polynomial
P(x) = XM, a; x!. Then (Table 5):

1. The polynomial P(x) is called j-unimodal if, for

some index ja3<a;<--<a;=aj;q =
- = ap and it is strictly j-unimodal if the

inequality holds without equalities.

2. The polynomial P(x) is called monotonically
increasing (or monotonically decreasing) if,
a; <ajy1 OF a; = aj.q, respectively, for all
1 <i < hand it is strictly-increasing or strictly-
decreasing respectively if the inequalities holds
without equalities.

3. The polynomial P(x) is called palindromic if

a; =ap_ij+1, for all 1<i<h and is called

semi-palindromic if a; =ap_j4q, 1+i<j <

h—iandforall1<i<h-2.

The polynomial P(x) is called troubled if

a; +aj,q, forall1 <i < h.
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5. The polynomial P(x) is called equality if
a; =a;4q1, forall 1 <i < h and is called semi-

equality if a; = a;,, for some values of i.

Table 5. Some Properties of the Coefficients of Schultz and Modified Schultz Polynomials

Polynomials of Property 1 Property 2 Property 3 Property property 5
Types graphs 4
Sc(Ce(Ca)p-1;%) Satisfy at Not Satisfy Not Satisfy Satisfy Not Satisfy
j=2
Sc*(Ce(Ca)p-1;%) Satisfy at Not Satisfy Not Satisfy Satisfy Not Satisfy
j=2
Sc(Re(Ca)p; x) Satisfy at Not Satisfy Satisfy semi at Not Satisfy semi at j = 2
j=2 j=2 Satisfy toj=[p/2] -1
Sc*(Re(Ca)p; x) Satisfy at Not Satisfy Satisfy semi at Not semi at j = 2 Satisfy
j=2 j=2 Satisfy toj=[p/2]-1
Sc(Ce(€a)p-1;%) Satisfy at satisfy Not satisfy Satisfy Not Satisfy
j=1
Sc*(Ce(€4)p-1:X) Satisfy at satisfy Not satisfy Satisfy Not Satisfy
j=1
Sc(Re(€4)p; x) Satisfy at satisfy Satisfy semi at Not Satisfy semi from
j=1Ip/2]1 -1 j=2 satisfy i=1to[p/2] -1
Sc*(Re(€4)p; X) Satisfy at satisfy Satisfy semi at Not Satisfy semi from
j=[p/2]1—-1 j=2 satisfy j=1to[p/2] -1

Conclusion:

From this paper, the general formulas can be
obtained for square graphs for the modified Schultz
and Schultz polynomials and some of their
properties have been discussed.
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