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Abstract : Quantile regression extends the mean regression model to conditional quantiles of the response variable 

(Koenker and Bassett, 1978; Koenker, 2005). As a result of its capacity to take advantage of all available data in the 

analysis, the Bayesian method of analysis has become extremely popular. We proposed a novel estimation method 

and selected variables.   Using Bayesian methodology for binary quantile regression. On the basis of the recently 

proposed scale mixture of normal distribution mixing Rayleigh density representation for Laplace distribution prior 

density of the parameters vector, new hierarchical models have been developed. Simulation Scenarios and actual data 

are used to evaluate the efficacy of the new method in comparison to two existing methods. 
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INTRODUCTION: The classical theory of linear models concentrates on the conditional mean function, which 

defines the relationship between the response variable y and the covariate vector x. However, the mean may not be of 

paramount importance to the researcher, or additional information regarding the entire conditional distribution of the 

response variable may be required. For instance, Whittaker et al. (2005) demonstrate that various quantiles of the 

response distribution necessitate different predictors for bank account usage. In addition, least squares methods, which 

center on the conditional mean function, presume the error has the same distribution regardless of the value of x. It is 

anticipated that the components of the vector of x will affect only the location of the conditional distribution of y, and 

not its scale or any other attribute of its distributional shape. In practice, however, it is frequently challenging to 

uphold these assumptions.  

     Quantile regression extends the mean regression model to conditional quantiles of the response variable (Koenker 

and Bassett, 1978; Koenker, 2005). Note that quantile regression includes median regression (or equivalently L1-

regression), as the median is the most central quantile that divides the upper and lower halves of a sample. The 

technique provides a more nuanced view of the relationship between the dependent variable and the covariates, as it 

enables the user to investigate the relationship between a set of covariates and the various sections of the response 

variable's distribution.  

      A further advantage of the quantile regression method is that parameter estimates are not biased by a location-scale 

shift in the conditional distribution of the dependent variable. Not only have theoretical statisticians acknowledged 

these two distinct benefits, but they have also encouraged researchers from a variety of disciplines to employ quantile 

regression in their studies. Applications range from ecology (Brown and Peet, 2003), to cancer research (Li and Zhu, 

2007), to economics (Buchinski, 1994; 1998), among others. See Yu et al. (2003) for a comprehensive overview of the 

various applications of quantile regression.  In addition, quantile regression has been expanded to model dependent 

variables besides ratio/scale variables. Among these extensions are models for left-censored data (Powell, 1986; Yu 

and Stander, 2007), count data (Machado and Santos Silva, 2005), and proportions (Hewson and Yu, 2008).   

      Adopting quantile regression in the case of a binary response variable is not an evident choice.  The dependent 

variable has only two possible values; consequently, regression cannot be used to model continuous quantiles. 

Nonetheless, numerous authors have acknowledged the prospective advantages of binary quantile regression. Manski 

(1975; 1985) defined the general semi-parametric binary quantile regression estimator. The focus of succeeding 

research has been exclusively on the median case for unknown reasons (Koenker and Hallock, 2001). Recent research 

by Kordas (2006) has examined the ramifications of estimating quantiles other than the median for binary regression 

models and demonstrated that, even in the dichotomous case, the approach provides a much richer understanding of 

how covariates influence the response variable.  

     Benoit and Van den Poel (2012) list some of the disadvantages of the frequentist approach, including the difficulty 

in optimizing the estimated parameters and the structure of the confidence interval. Benoit and Van den Poel (2012) 

adopted a new estimation procedure based on the Bayesian approach due to these issues. As a result of its capacity to 

take advantage of all available data in the analysis, the Bayesian method of analysis has become extremely popular. 

Benoit et al. (2013) proposed Bayesian lasso variable selection for quantile regression when the response variable is 

binary and the Gibbs sampler technique is used to estimate the model parameters.  Alhamzawi (2015) proposed the 

normal prior distribution with mean zero and unknown variance for the parameter vector for each quantile when the 

response variable is binary and obtained a censored quantile model as a result.  Hashem and colleagues (2015) 

introduced the Bayesian group lasso penalty for binary quantile regressions. In this paper, we employ the new scale 
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mixture of Normal distribution that mixes with independent Rayleigh distribution representation of the Laplace 

density proposed by Flaih et al. in 2020 to develop a new hierarchical Bayesian model for estimation and variable 

selection of binary quantile regression. 

2. New Bayesian Binary quantile Regression:  
Quantile  regression has become a very important tool  since the seminal work of Koenker and Bassett (1978). 

Empirical studies took the features of quantile regression ability to  research the impact of prediction variables on the 

dependent variable Hao et al. (2007). The model can be described as follows:  

     
                  

 

where x = (x1,…,xn) be an (n × m) design matrix of  covariates variables,      is the error term at τ quantile, (  ,…,   ) 

is the response variable and                    are the unknown quantile parameters. Binary quantile regression 

has been addressed by many researchers in the last few decades and they receive more attention in the literature see 

(Horowiz (1992), and Benoit and van den poel (2012)). In this study, we suppose that the response variable    (  
        )  are observed variable and take the values (         ). Whereas this variable is determined by the 

unobserved Latent variable   
 .  So that we can rewrite the model as follows:  

           
    

                     

       
                             

                           
We can estimated the parameter vector    at each quantile by minimizing the objective function : 

        
       

        
where        is  the check function and can be determine  as                 } , I(.) is the indicator function. 

Bayesian Inference supplies an important method for accurate inference even within the case of a small sample. 

Actually, the Bayesian, quantile regression model is based on the assumption that the error term is distributed as a 

symmetric Laplace distribution. Minimizing the check function is equivalent to maximizing the density function of 

symmetric Laplace distribution. (konker and Machado (1999)) and we can write as follows : 
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where τ is the skewness of asymmetric Laplace distribution and θ is the scale parameter. 

The likelihood function of   
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Asymmetric Laplace distribution can be re-write as a mixture of scale normal  distribution and an exponential Kozumi 

and Kobayashi (2009). Therefore, the error term can be write as          √        , then the  model : 
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Where         
 

       
 is an exponential distribution, vi is the standard normal,           and        

Alshaybawee et al. (2016), so that the likelihood function become as follows: 
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Here we consider quantile regression with Lasso penalty, Tibshirani (1996) proposed that the Lasso regularized can be 

explained as posterior mode estimated when the parameters of the model are independent and set Laplace distribution 

as priors, to the parameter   :  
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this prior is similar to the l1- penalty  (park and Casella (2008); Hans (2009)). New hierarchical model construct in this 

study, the prior distribution double exponential density for the parameters represented as scale mixture of normal 

mixing Rayleigh distribution (Fliah et al. 2020)  
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The prior distribution for 𝜸 set as Gamma distribution and θ is inverse gamma distribution. 

Based on the priors distribution the hierarchical model for Bayesian binary quantile regression will be given as 

follows:  
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Posterior of Binary quantile regression: 
1- Sampling   

  ,i= 1,2,…,n from truncated normal  distribution  
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2- Sampling     
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The conditional posterior dist. For    is a normal distribution N(A,   ) 
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(3) Sampling    
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The full conditional of    is    (
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The full conditional for ti is           ,    ) 

    
  

 

 
     

 

 
  

(5) Sampling  . 

                                                    

            {
 

 
∑  

              
 

    

}  
 

 
     { 

        }

 
}             { 

 

 
}  

   
 
 

           { 
 

 
[∑  

   
            

 

   

           ]}  

Then the conditional distribution of   is 

Inverse gamma 
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(6) sampling   

                                     

        { 
 

 
    

   
 

 
}           { 

 

 
}              { 

 

 
[ 

  
 

 
  ]} 

then the distribution of    is Inverse gamma. 

5.  Simulation Study    
In current study, we  want to  evaluated  our proposed method via  simulation approach and compared with other 

methods in the same filed. First method is Bayesian binary regression quantile denoted  by (BBqr) that is proposed by 

(C. F. Manski,1975). The second method is Bayesian lasso binary quantile regression denoted  by (BLBqr) that is 

proposed by (D. F. Benoit, Alhamzawi,,2011). R code will be used to implement each of these packages. We will 

discuss our proposed  method Bayesian new lasso binary quantile regression denoted  by (BNLBQR) where, our 

proposed method is focus on estimation and variable selection in binary quantile regression via using Bayesian 

approach. Two criterions are used in current  study are:  Median of mean absolute deviations, referred to as (MMAD) 

and computed by the following formula                 (|   ̂      |)  and Mean absolute error referred  

as (MAE)  and computed by the following formula,     |   ̂      |. 

where    is true parameters ,  ̂ is estimation parameters. In this simulation, we will used three quantile levels , low 

quantile at         and middle quantile          and high quantile level       . In current simulating, we will 

use three different distribution for the error term            chi-square distribution with 4 degrees of freedom, normal  

distribution with mean (0) and variance (7)            and Laplace distribution with location parameters (0) and scale 

parameters (1)            . In the current study for each simulation example, The first 2000 iterations of our 

algorithm's 12000 total iterations were excluded as burn in.  

5.1 First Simulation Scenario 
In this simulation first scenario study, We demonstrate the efficiency of the our proposed method with sparse models 

The independent variables are simulated from the uniform distribution (0,1). The correlation between of two pairwise 

each independent variable equalizes to    |   |. The true parameters                       , therefore the true model 

taken the following formula : 

                                                                  
                                                  

                                                   
                         ,     

   is observed  depend variable  for the unobserved   
 ,   

  is the latent dependent variable.  
The results listed in Table 1, it presents a brief of the results for Median of mean absolute deviations (MMAD) and 

Mean absolute error (MAE) for the three methods under comparison at sparse model . It is clear from  this table the 

MMAD and MAD that computed for our proposed method (BNLBQR) are much smaller than MMAD and MAD are 

computed by other two methods (    ) and (      ). From these results, We judge that our proposed method has an 

outstanding performance in coefficient estimation and variable selection in our model study.   

Table 1: Median of mean absolute deviations (MMAD) for first simulation example, the  results are averaged over 

100 independent simulations. 
Methods                                                                                     .  

         0.892 (0.618) 0.925(0.752) 1.120(0.948) 

          
 

0.862 (0.607) 0. 871(0.692) 1.067(0.839) 

           
 

0.721(0.585) 0.716(0.572) 0.973(0.737) 

         0.825(0.592) 0.762(0.572) 0.956(0.734) 

          

 

0.752(0.548) 0.749(0.538) 0.946(0.692) 

           

 

0.729(0.528) 0.692(0.472) 0.847(0.631) 

         0.753(0.572) 0.726(0.528) 0.869(0.651) 

          
 

0.681(0.510) 0.708(0.528) 0.821(0.631) 

           
 

0.584(0.395) 0.573(0.417) 0.762(0.593) 

Note: In the parentheses are MAE. 
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5.2 Second  Simulation Scenario 
In this simulation scenario study, We demonstrate the efficiency of the our proposed method with dense  models The 

independent variables are simulated from the uniform distribution (0,1). The correlation between of two pairwise each 

independent variable equalizes to    |   | .  The true parameters                                                 , 

therefore the true model taken the following formula : 

                                                                                                                  
                                           

       
  

                                                                                  , 

   is observed  depend variable  for the observation,   
  is the latent dependent variable.  

The results shown in Table 2   present  summary  of the results for Median of mean absolute deviations (MMAD) and 

Mean absolute error (MAE) for the three methods under comparison at dense  model. It is clear the MMAD and MAD 

are reported in Table 2 that generated for our proposed method (BNLBQR) are   smaller than the  MMAD and MAD 

that computed by the other two methods (    ) and (      ). Based on  these results, We can conclude that the  

proposed method has a good  performance in coefficient estimation and variable selection in our model study.   

Table 2: Median of mean absolute deviations (MMAD) for second simulation example, the  results are averaged over 

100 independent simulations. 
Methods                                                                                     .  

         1.211 (0.954) 1.185(0.978) 1.006(0.879) 

          1.153 (0.923) 0. 962(0.783) 0.958(0.782) 

           0.968(0.735) 0.828(0.633) 0.748(0.617) 

         0.963(0.792) 0.875(0.718) 0.892(0.692) 

          0.894(0.747) 0.817(0.659) 0.775(0.573) 

           0.682(0.492) 0.717(0.582) 0.648(0.492) 

         0.828(0.682) 0.845(0.662) 0.761(0.538) 

          0.726(0.502) 0.782(0.519) 0.684(0.482) 

           0.619(0.432) 0.525(0.385) 0.519(0.397) 

Note: In the parentheses are MAE. 

One may choose to look directly at the parameter estimations instead of  the MMADs and MADs. Table 3 lists the 

parameters estimates in the first and second  simulation. It can be concluded that our parameters estimates are much 

closer to the true parameters values than other methods under comparison.  

Table 3. parameters  estimates for the competing methods to first and second  Simulation scenario  with normal  error 

distributions 
First Simulation Scenario 

 

                                          

                           

0 1 0 2 0 0 2 0 1 Comparison Methods 

0.683 0.539 0.634 1.082 0.843 0.692 1.563 0.562 0.648          

0.673 0.632 0.394 1.417 0.683 0.472 1.683 0.435 0.793           

0.019 0.963 0.054 1.974 0.039 0.063 1.903 0.072 1.012            

       

0.356 0.537 0.286 1.491 0.472 0.593 1.583 0.582 0.672          

0.293 0.788 0.125 1.673 0.282 0.318 1.627 0.391 0.736           

0.084 0.941 0.091 1.959 0.087 0.016 1.937 0.083 0.923            

       

0.627 0.603 0.718 1.493 0.845 0.783 1.583 0.453 1.582          

0.472 0.764 0.506 1.684 0.693 0.619 1.672 0.397 1.373           

0.107 0.992 0.062 1.952 0.167 0.135 1.975 0.069 1.036            

second Simulation Scenario   
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0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85  0.85 Comparison Methods 

0.967 0.183 0.854 0.567 0.293  0.683 0.573 0.946 0.153          

0.502 0.276 1.471 0.613 0.483  0.736 0.721 0.649 0.473           

0.821 0.933 0.862 0.685 0.719  0.836 0.810 0.926 0.746            

       

0.603 0.673 0.694 0.563 1.037 0.810 0.572 0.583 0.492          

0.793 0.959 0.720 0.683 0.985 0.921 0.683 0.782 0.693           

0.906 0.846 0.839 0.837 0.890 0.893 0.789 0.808 0.923            

       

0.684 0.583 0.384 0.268 0.467 0.367 0.683 0.434 0.283          

0.679 0.793 0.452 0.478 0.563 0.563 0.743 0.663 0.598           

0.907 0.869 0.693 0.683 0.826 0.903 0.904 0.832 0.704            

 

The  MCMC chain for first simulation at quantile 0.25 as in Figures 1 show the rapidly MCMC  our algorithm  

converges to the stationary .  in first simulation at quantile 0.25 as in Figures 2 shows that the   our  posterior 

histograms   show that the  our conditional posterior distributions are closed from normal distributions. 

 

 
Figure 1. Trace plots of binary quantile regression parameters for first Simulation at quantile level 

       . 
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Figure 2. Histograms based on posterior distribution for our proposed method  for Simulation 1 at quantile level   
    . 

6. Real data   

In this section, we will use Pima Indians data to evaluation the performance  of the  proposed method (      ) 

compared to other two method (    ) and (      ). The data of Pima Indians are existing in R programs within  

caret package. These data have (532) observations, the important component in the analysis of Pima Indian data 

evaluates the relationship between diabetes and other cases using WHO criteria, (diabetes) as the dependent variable 

and 7 independent variables are : Number of pregnancies(  ) referred by (npreg), Plasma glucose concentration in an 

oral glucose tolerance test (  ) referred by (glu), diastolic blood pressure(  ) referred by (bp), triceps skin fold 

thickness (  ) referred by (skin), body mass index (  ) referred by (bmi), diabetes pedigree function (  ) referred by 

(ped) and age in years (  ) referred by (age). 

The methods under consideration are evaluated based on two criterions are  mean squared error (MSE) and standard 

division(SD)  also use confidence interval at  95% reliability at                         . 

Table 4  show the Mean squared errors (MSE) and standard division (SD)for the method under comparison for Pima 

Indians data. 

Methods 
                     

MSE (SD) MSE (SD) MSE (SD) 

     0.956 (0.721) 0.862 (0.584) 0.761 (0.525) 

      0.836 (0.672) 0.817 (0.584) 0.635 (0.437) 

       0.573 (0.375) 0.548 (0.402) 0.458 (0.294) 
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The results shown in Table 4 are a  summary  of the results for Mean squared errors (MSE) and standard division (SD) 

for the three methods under comparison. It is clear from Table 4 the MSE and SD are computed   for the proposed 

method (BNLBQR) are less than that the MSE and SD are computed for the other two methods (    ) and (      ). 

From these results, We conclude  that our proposed method has a good  performance in coefficient estimation and 

variable selection even with real data.    

Table 5  Coefficients estimates for the proposed method via three quantile level for the Pima Indians data 
Name Variables Variables                       

npreg    0.835 1.026 0.041 

glu    0.138 0.642 0.593 

bp    0.006 0.008 0.000 

skin    -1.023 -0.473 -0.452 

bmi    0.009 0.011 0.634 

ped    0.364 0.526 0.173 

Age     0.000 0.000 0.000 

 

the results are listed in table 5 show coefficients estimate in direct way for our proposed method via three quantile 

                     ) as shown in the table above. In quantile level        , the variables (age)  ineffective on 

dependent variables , but the rest independent variables have positive and negative effects on dependent variables. 

Also in quantile level        , the variable (age) is ineffective on dependent variables, but the rest independent 

variables have positive and negative effects on dependent variables. in quantile level        , the variables (bp) and 

(age) are ineffective on age, but the rest independent variables have positive and negative effects on dependent 

variables. From the results listed in table -5 ,we see our proposed method has good performance for coefficient 

estimate and variable selection in binary quantile regression.  

The following figure show the confidence interval of coefficients estimates of our proposed method (BNLBQR) 

through three quantile levels (                     )) 

 
Figure 3. Confidence  intervals of the parameter estimates for                      }  by  the three methods for 

Pima Indians data    . 
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7.  Conclusion: 
In this study, we introduced a novel approach for estimation, along with certain factors to consider.   Utilizing 

Bayesian methodology for binary quantile regression. A new hierarchical model has been created based on a scale 

mixture of normal distribution mixing Rayleigh density representation. This representation was only recently 

presented for the Laplace distribution before density of the parameters vector.   

Simulation Scenarios and actual data are taken into consideration in order to test the efficacy of the newly developed 

approach, which is based on a scale mixture of normal distribution mixing Rayleigh density, and to evaluate the 

performance of this method in comparison to the other two methods that are currently in use.  The results of the 

simulation and the actual data that are provided in the tables that are located above have proved that the newly 

suggested approach is superior to the other ways that are currently in competition.  
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